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Abstract 
After Markowitz proposed the mean-variance model, the research on portfo-
lio problems has been a hot topic for many investors. The research on portfo-
lio optimization is becoming more and more perfect. The investment theory 
changes from second-order moment to high-order moment, and from sin-
gle-stage to multi-stage. More and more factors affecting portfolio optimiza-
tion are taken into consideration. In this paper, a high-order portfolio opti-
mization problem considering background risks is studied. Firstly, an opti-
mization model of high-order moments including background risks is estab-
lished, and the genetic algorithm is used to solve the model. Finally, the ef-
fects of background risks and high-order moments on the portfolio optimiza-
tion model are analyzed empirically. 
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1. Introduction 

After Markowitz proposed the mean-variance model (Markowitz, 1952), many 
researchers and investors found some deficiencies in mean-variance model. 
Some limitations of the mean-variance model are as follows: in order to make 
the mean-variance model consistent with the expected utility principle, it is 
necessary and sufficient for the investor’s utility function to be quadratic or to 
ensure that the return rate of risk assets obeys the normal distribution (Liu & 
Liping, 2004; Maringer & Parpas, 2009), but this is not feasible in reality. A 
large number of studies have shown (Zhang, He, Zhang, & Pandey, 2017; Zhang, 
2017) that the return rate on risk assets is characterized by obvious asymmetry 
and non-normal distribution with sharp peaks and thick tails. This makes skew-
ness and kurtosis a factor for investors to consider.  
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From the research of investment theories in recent decades, kurtosis and 
skewness have become an important factor to consider in portfolio selection 
(Naqvi, Mirza, Naqvi, & Rizvi, 2017), and the inclusion of kurtosis is emphasized 
in portfolio selection and optimization. Including kurtosis and skewness in 
portfolio selection makes it non-convex (Kellner, Lienland, & Utz, 2019). Since 
the inclusion of higher-order moments is non-convexity, various objectives, 
such as revenue maximization and positive skewness, can be obtained, while the 
variance and skewness are minimized. FAZ, Gökgöz and Atmaca (2017) think 
that the addition of skewness not only improves the efficiency of the mean 
variance portfolio, but also has an impact on the optimization of the portfolio 
and its selection. Ioannis Oikonomou’s study further confirms the influence of 
skewness and kurtosis on the portfolio problem (Oikonomou, Platanakis, & 
Sutcliffe, 2018). The research results of Khan, Naqvi and Ghafoor (2020) show 
that the optimal combination including skewness and kurtosis is sustainable 
and significantly different from the mean-variance optimal combination with 
asymmetry and fat-tail risk. Therefore, it is not enough to consider only the 
second-order moment of the mean variance. The consideration of higher-order 
moments has become an inevitable trend in the study of portfolio problems.  

On the other hand, scholars have done a lot of research on portfolio selection 
under background risk. Background risk usually refers to the risk that cannot be 
traded in the financial market, such as real estate investment, health condition, 
etc., and beyond the investor’s control in the short term. Therefore this risk can 
be considered exogenous. In the general portfolio optimization model, investors 
usually only consider the endogenous risks such as stock price risk, and less con-
sider the background risks. But there is the risk that the stock price generates, 
although it is the primary risk, it is not the total risk. Many empirical results 
show that background risks affect investment decisions. Atatella et al. (2012) 
show that health risk as a background risk can influence portfolio selection, but 
this effect can be moderated by a protective and universal national health ser-
vice. There is also a lot of theoretical research on portfolio selection under back-
ground risk. Heaton and Lucas (2000) proposed a theoretical model of portfolio 
selection decision with background risk, and reached a conclusion consistent 
with their previous empirical findings, that is, background risk plays an impor-
tant role in portfolio decision making. Jiang et al. (2010) analyzed the hedging 
behavior of investors in the face of background risk. Guo et al. (2018) studied the 
behavior of banking enterprises in the mean-variance model and the risk-taking 
behavior under the background risk. Then Guo, Chan, Wong, and Zhu (2019) 
discussed the influence of TIGATING background on the portfolio selection of 
venture investors, Mean-VaR Mean-CVaR and Mean-Variance framework-work, 
and analyzed the existence of background risks in the mean-VaR boundary and 
Mean-VaR effective boundary of characteristics. Xiaoxia Huang and Tingting 
Yang Donlinks (2020) studied the influence of background risk on individual in-
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vestment decisions under the framework of uncertainty theory. An uncertain 
mean-variance model with background risk is proposed, and the optimal solu-
tion is given when the return on stock and the return on background assets obey 
the normal uncertain distribution. All the above studies show that background 
risk greatly affects portfolio selection. Decisions that do not take into account 
background risk will lead to investment failure.  

2. The Establishment of Model 

In order to compare high-order portfolio optimization models with background 
risks, a general high-order portfolio optimization model with high-order mo-
ments is presented.  

This model is constructed by considering kurtosis, skewness, variance and 
expectation. Suppose that in a frictionless market where short selling is not al-
lowed. There are n risky assets with return vector ( )1 2, , , nR R R R=  , where the 
vector ( )T

1 2, , , nµ = µ µ µ  represents the expected return vector of risky assets,  

( )T
1 2, , , nx x x x=   is the investment weight vector of risk assets in the portfo-

lio, [ ]
1

1
1 1

n

i
i

x x
+

=

= =∑ . Where is the unit column vector of order n. The return rate 

of investment portfolio is T
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=

= = ∑ , TB asically, In order to solve the  

aspect problem, the method proposed by Athayde and Flores (2003) is used to 
represent the model with the tensor in physics. we compute the first four mo-
ments of R by.  
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( )( ) ( ) { } 2
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M E R R R s
×

 = −µ −µ ⊗ −µ =   is the 2n n×  Coskewness 
matrix, ⊗  is the Kronecker product. 

( ) ( )T
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1 1 1
Kurtosis

n n n n

P i j m l ijml
i j m l

K k i j x M x x x
= = =
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( )( ) ( ) ( ) { } 3

T T T
4 ijml n n

M E R R R R k
×

 = −µ −µ ⊗ −µ ⊗ −µ =   is the 3n n×  

Cokurtosis matrix.  
The introduction of tensor can make the solution of the problem more conve-

nient. After each order moment of the portfolio is expressed by tensor, the mod-
el with higher order moment can be expressed as the following (P1): 
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( )T
4min PK x M x x x= ⊗ ⊗  

( )T
3max PS x M x x= ⊗  

T
2min pV x M x=  

Tmax p xµ = µ  

1
s.t. 1

n

i
i

x
=

=∑
 

0ix ≥  
Due to the existence of background risks, the background risks should be 

taken into account in the model construction to achieve a better purpose of risk 
dispersion. Therefore, the next step is to build a model considering the back-
ground risk on the basis of the high-order moment model.  

So let’s assume that the total wealth of the investors is zero W0, meanwhile 
( )0 1ω ≤ ω ≤  Allocating wealth ( )0 1ω ≤ ω ≤  to risky financial assets. Thus, It 

means that the wealth available 1−ω  is allocated to the background risky as-
sets, ω  is background risk preference ratio. br  is represent the return on 
background risk. so, the total return received by the investor at the end of the 
investment is as follows: 

( )( )T
0 1p bR W X r r= ω + −ω

 
And then the expected rate of return at this point is: 

( ) ( ) ( ) ( )( )T
0 1p bE R W X E r E rµ = = ω + −ω

 

( )bE r  is represents the expected rate of return of background risk. Minimi-
zation kurtosis is still used as the objective function, then the high-order portfo-
lio optimization model with background risks based on this model can be ex-
pressed as the following model (P2): 

( )T
4min PK x M x x x= ⊗ ⊗  

( )T
3max PS x M x x= ⊗  

T
2min pV x M x=  

( ) ( )( )T
0max 1p bW X E r E rµ = ω + −ω

 

1
s.t. 1

n

i
i

x
=

=∑
 

0ix ≥  

3. Solving Model 

Due to the complexity of solving the problem of the established model, this pa-
per adopts genetic algorithm to solve the model (Yang & Lin, 2014). Genetic al-
gorithm is widely used in intelligent optimization algorithm. Many researchers 
use intelligent optimization algorithm to solve problems related to investment 
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portfolio. Apply genetic algorithms. The solving steps of model are as follows: 
Step 1: We have N chromosomes as the initial population, generates Nthnx1’s 

0 - 1 distributed random numbers, So if I take the first random number vector, 
NX1, and I transform it, it’s going to be a portfolio. That gives you the initial 
population, then we have N chromosomes.  

Step 2: Determination of fitness function, in the model (P3), the multi-objective 
model was transformed into the single-objective optimization model (P4) (Yang 
& Lin, 2014) as the fitness function. as follows: 

2 41 3
31 2 4min

P p P p

dd d dZ
V S K

λ λλ λ

= + + +
µ

 
( ) ( ) ( )( )T

0 2s.t. 1p bW X E r E r dµ = ω + −ω +
 

T
2 2pV x M x d= − , ( )T

3 3PS x M x x d= ⊗ + , ( )T
4 4PK x M x x x d= ⊗ ⊗ −  

1
1

n

i
i

x
=

=∑ , 0ix ≥ , 0, 1,2,3,4id i≥ =  

where, is iλ  the preference coefficient of each moment, id  is the target varia-
ble, Used to evaluate the deviation between the actual moment and the expected 
value.  

Step 3: Selection, crossover, and mutation are performed on chromosomes 
Using roulette to select operations: The fitness function max Z obtained ac-

cording to Step 2 Fitness values for each chromosome ( ) ( )i ieval f Z F=  in 
count N paternal chromosomes ( )1 2, , , nF F F F=  , So for the chromosome  

iF , the probability of selection is 
1

N

i i i
i

p F F
=

= ∑ , the roulette wheel method was 

used to select the new population according to the different fitness values of each 

individual ( ) ( ) ( ) ( )( )1 1 1 1
1 2, , , NF F F F=  . 

A crossover operation is performed for crossover probability cP  using an 
arithmetic crossover algorithm: For the new population that we got using the 
roulette wheel algorithm ( ) ( ) ( ) ( )( )1 1 1 1

1 2, , , NF F F F=  , cP  as the probability to se-
lect chromosome ( )1

iF , ( )1
jF , A linear combination of them as follow: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1

2 1 1

1

1
i i j

j i i

F F F

F F F

 = ξ + − ξ


= ξ + − ξ  
So there are produce two new individuals ( )2

iF , ( )2
jF , apparently vector ( )2

iF  
add ( )2

jF  is one, It’s also an investment portfolio, ξ  is arithmetic crossover 
operator, The new population is obtained by crossover operation  

( ) ( ) ( ) ( )( )2 2 2 2
1 2, , , NF F F F=  .  

By exchanging the basic bits, the mutation operation is carried out for the 

mutation probability MP : If you choose the chromosome ( )2
iF  and ( )2

iβ ’s gene 

of population ( ) ( ) ( ) ( )( )2 2 2 2
1 2, , , NF F F F=   to process mutate operation, only 

need to swap ( )2
iβ  gene and ( )2

1i−β  gene’g in ( )2
iF . If you choose the ( )2

1β  gene 
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in ( )2
iF , need to swap the ( )2

1β  and ( )2
2β  in ( )2

iF . then  
( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2

1 2 1, , , , , ,i i i nF −= β β β β β   Mutate thus to 

( ) ( ) ( ) ( ) ( ) ( )( )3 3 3 3 3 3
1 2 1, , , , , ,i i i nF −= β β β β β  , by mutating, the new population becomes 

( ) ( ) ( ) ( )( )3 3 3 3
1 2, , , nF F F F=   

Step 4: Repeat Step 3 for M times, and select the chromosome with the highest 
fitness in each generation, that is, the optimal investment portfolio.  

4. Empirical Analysis 

This paper randomly selects stocks from 19 different industries in the market by 
using get_data_yahoo function in Python, and calculates the average annual re-
turn of 19 stocks from January 1, 2018 to December 30, 2019. Then, five stocks 
with higher returns and less correlation coefficients were selected for analysis. 
Table 1 shows the ticker symbols and expected annualized returns for 19 stocks.  

According to the foregoingselects five stocks in China’s stock market for re-
search, which are: Gree (000651), Hengrui Pharmaceutical (600276), Wuliangye 
(000858), Ping An (601318), Ping An Bank (000001).  

Sample data analysis 
As can be seen from Table 2, all stock returns are positive, while all skewness 

is less than 0, indicating that the probability density function of the return rate of 
portfolio risky assets has the feature of left bias. The kurtosis is less than 3, indi-
cating that the data distribution presents a dumpy feature. The results of the 
Jarque-Bera statistics show that the data are far from obeying the assumption of 
a normal distribution. In conclusion, the influence of skewness and kurtosis 

 
Table 1. Code and annualized returns of 19 stocks. 

stock 601989 000651 000725 000333 002024 600276 600519 

Annualized Return −2.223 15.70 −2.44 9.97 −4.67 52.57 41.02 

stock 601318 600887 000858 601166 600104 000063 000001 

Annualized Return 15.96 6.81 43.69 14.96 −5.41 13.14 18.15 

stock 000002 000413 601398 000538 600601   

Annualized Return 9.48 −34.99 4.34 −2.09 9.09   

 
Table 2. Expectation, variance, skewness, kurtosis and Jarque-Bera statistics of stocks. 

stock 000651 600276 000858 601318 000001 

expectation 0.002509 0.006145 0.008834 0.007273 0.001230 

variance 0.00082 0.000586 0.000662 0.000331 0.000428 

skewness −0.0480 −0.1057 −1.2316 −1.4349 −0.9204 

kurtosis 0.7771 0.8626 0.4086 0.2538 0.3683 

Jarque-Bera stats 24.5813 30.3727 22.2106 23.5520 14.1288 
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should be considered when studying portfolio optimization.  
Matlab was used to write genetic algorithm, and each parameter in the model 

was set as: initial wealth 0 1W = , Population size 200N = , Crossover probabil-
ity 0.5cP = , The arithmetic crossover operator 0.7ξ = ; Mutation probability 

0.05MP =  Generarions 1000M = . Three groups of different parameter prefe-
rences were selected for the study: 1) 1 1λ = , 2 1λ = , 3 0λ = , 4 0λ = ; 2) 

1 1λ = , 2 1λ = , 3 3λ = , 4 1λ = ; 3) 1 1λ = , 2 1λ = , 3 1λ = , 4 3λ = .  
1) When background risk 1ω = , That is, when there is no background risk, 

The resulting portfolio situation is as follows (Table 3). 
The first case (1, 1, 0, 0), At this time, Keede investors will consider investing 

24.06% of the amount in Gree, 29.14% in Hengrui Pharmaceutical, 19.92% in 
Wuliang Liquor, 1.08% in Ping An, and 25.79% in Ping An Bank.  

The second case (1, 1, 3, 1). It shows that when higher order moments are 
considered, that the investors are willing to pursue more excess returns regard-
less of risk level, At this time, it can be calculated that investors consider invest-
ing 26.64% of their funds in Gree, 19.36% in Hengrui Pharmaceutical, 21.61% in 
Wuliangye, 21.20% in Ping An of China, and 11.19% in Ping An Bank.  

The third case (1, 1, 1, 3) Indicates that investors attach more emphasis on 
risk control, investors consider to invest 35.60% of the funds in Gree, 9.30% in 
Hengrui Pharmaceutical, 38.34% in Wuliang Liquor, 1.73% in China Ping’an, 
and 15.04% in Ping An Bank.  

The above results show that different preference portfolios have a great impact 
on investors’ choice of different assets.  

2) When there is a background risk, hypothesis 1 2ω = , The resulting port-
folio situation is as follows (Table 4): 

Contrast that with the situation without background risk 
Investment in Gree 36.97%, Hengrui Pharmaceutical 1.34%, Wuliangye 17.07%, 

Ping An 14.84% and Ping An Bank 29.78% are required while preference parameters 
is (1, 1, 0, 0). 

 
Table 3. Portfolio of preference moments without background risk. 

preference 000651 600276 000858 601318 000001 

(1, 1, 0, 0) 0.2406 0.2914 0.1992 0.0108 0.2579 

(1, 1, 3, 1) 0.2664 0.1936 0.2161 0.2120 0.1119 

(1, 1, 1, 3) 0.3560 0.0930 0.3834 0.0173 0.1504 

 
Table 4. Portfolios with different preference degrees when the background risk prefe-
rence 1 2ω = . 

preference 000651 600276 000858 601318 000001 

(1, 1, 0, 0) 0.3697 0.0134 0.1707 0.1484 0.2978 

(1, 1, 3, 1) 0.3102 0.0729 0.1910 0.1738 0.2521 

(1, 1, 1, 3) 0.2307 0.2454 0.0898 0.2211 0.2130 
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We need to invest 31.02% in Gree, 7.29% in Hengrui Pharmaceutical, 19.10% 
in Wuliangye, 17.38% in Ping An of China and 25.21% in Ping An Bank while 
preference parameters are (1, 1, 3, 1).  

We need to invest 23.07% in Gree, 24.54% in Hengrui Pharmaceutical, 8.98% 
in Wuliangye, 22.11% in Ping An of China and 21.30% in Ping An Bank while 
preference parameters are (1, 1, 1, 3).  

By comparison, it can be found that when the background risk is included, the 
investment proportion of each asset has changed greatly. Therefore, considering 
the background has a great impact on the portfolio optimization and should not 
be ignored.  

5. Conclusion 

In this paper, background risk is added into the high-order moment model con-
sidering portfolio optimization to form a new model containing background 
risk. Due to the difficulty of analyzing and solving the model, this paper adopts 
the genetic algorithm in the intelligent optimization algorithm to solve the 
problem, and transforms the multi-objective optimization problem into the sin-
gle-objective optimization problem.  

In the end, this paper selects five stocks in Chinese stock market: Gree (000651), 
Hengrui Pharmaceutical (600276), Wuliangye (000858), Ping An (601318) and 
Ping An Bank (000001) for research. The comparative analysis shows that the 
investment proportion of the five stocks changed differently after the inclusion 
of background risk compared with that without background risk. Therefore, the 
consideration of background risk should be considered in the portfolio optimi-
zation problem.  

Because this paper establishes a static portfolio model, and in the real eco-
nomic market, portfolio returns are time-varying, and different time points will 
present different distributions. Therefore, in the next step, the static model can 
be transformed into a dynamic model for research, and the portfolio can be stu-
died from a dynamic perspective to make it more suitable for the market.  
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