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Abstract 
The impact of successive jumps in price process on volatility is very impor-
tant. We study the nature of self-motivation in price process using data from 
China’s stock market. Our empirical results suggest that: 1) Price jumps in 
China’s stock market are generally self-motivated, i.e., price jumps are cluster-
ing. 2) The jump intensity of China’s stock market is time-varying, and follows 
log-normal distribution, which indicates that the jump intensity is asymme-
trical. 3) The jump intensities’ sequence exhibits typical long memory. 
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1. Introduction 

With the availability of high-frequency data, the study of dynamic behavior of 
volatility based on high-frequency data has become a focus of econophysics. A 
large number of studies have shown that volatility has remarkable clustering and 
long memory [1] [2] [3] [4]. The clustering and long memory of volatility are 
generally considered to be related to the jumps in the price process. Early re-
searches into price jumps came from former works [5] [6]. In the last decade, the 
research focus of price jump has shifted from jump test to jump correlation 
[7]-[14]. Later research studied the correlation between jumps which they called 
self-motivation in a continuous semimartingale with jump component [15]. Anoth-
er research team proposed methods to test jump self-motivation [16] [17]. In 
[15], the self-motivation of price jump is determined by a time-varying intensity 
process which can be expressed as a differential equation of time and counting 
process. Clearly, the dynamic behavior of intensity process dominates the degree 
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of self-motivation of price jump. However, as far as we know, there is little re-
search on the dynamic nature of the intensity process. 

In this paper, our contribution is empirical. We use the jump self-motivation 
test [16] to study the phenomenon of price jump in China’s stock market, and 
focus on the long memory of the intensity process of price jump. We find that 
the intensity of price jumps is generally long-memory in China’s stock market. 
This not only explains the phenomenon of self-motivation between price jumps, 
but also deepens our understanding of the phenomenon of violent volatility in 
China’s stock market. 

The remainder of the paper is organized as follows. Section 2 formally intro-
duces the jump detection method and self-motivation detection method. Section 
3 presents the empirical analysis. Section 4 concludes. Appendix details the ker-
nel database of statistics generated in our framework. 

2. Theory and Method 
2.1. Price Jump Theory 

One-dimensional asset price process defined on probability space ( ), ,tΩ    
could be presented as 

( ) ( )
0 0

log log 0 d d
t t

s s sS t S s Wµ σ= + +∫ ∫                  (1) 

where ( )S t  is asset price at time t, ( )tµ  for drift process, ( )tσ  for realized 
market volatility, and ( )W t  is standard Brownian process. The jump compo-
nent is introduced to obtain the following formula: 

( ) ( ) ( ) ( )
( )( )

0 0
log log 0 d d

t t s s
s s s t

s
t

S t S s W h s b v

h b

µ σ δ

δ δ

= + + + ∗ ∗ −

+ − ∗

∫ ∫        (2) 

where h is truncation function, sb  and sv  are poisson distribution estimate 
in E× , δ  is predictable function. For Equation (2), assumptions follow: 

Assumption 1: b and σ  are locally bounded. 
Assumption 2: ( ) ( ),d ,d d ,ds

sv t s t F sω ω= ⊗ , where sF  is a predictable 
random measure. Set three non-random numbers ( ( )0,2β ∈ , [ )0,β β′∈  and 

0γ > ) and a locally bounded process ( 1tL ≥ ) to have t t tF F F′ ′′= +  for all 
( ),dtω , where  

1) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1

,d d ,0 ,

1
,1 0,

t t t t t

t
t t t t

F x f x x L

x h x
f x x h x h x L

x

γ
γ

β

ω λ ω λ ω

+

′ ′= − < ≤

+
′ = + ≥ ≤

; 

2) tF ′′  is a singular measure and tF ′  satisfies ( ) ( )1 dt tx F x Lβ ′ ′′∧ ≤∫ ; 
3) tλ  is a positive Itô semimartingale process,  

0 0 0 0
d d d

t t t x x
t s s s s s t ts W Bλ λ µ σ σ δ µ δ µ⊥′ ′ ′′ ′ ′′= + + + + × + ×∫ ∫ ∫  , where B  is a stan-

dard Brownian process independent from W, x
tµ  is orthogonal to x

tµ
⊥ , and 

,δ δ′ ′′  are predictable. 
On the basis of asset price process above, define asset return at time it  as 
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it
r : 

( ) ( )1log log
it i ir S t S t −= −                         (3) 

When applying to discrete data, T refers to total number of minutes ( T ∈ ). 
Let sampling frequency be n T n∆ = , where sample size is n and t i= ∗

( )n i∆ ∈ . Let ( )log
ni iX S ∗∆= , asset return can be defined as: 

( ) ( )( ), 1log log
n n n

n
i i iir S S X∆ ∗∆ − ∗∆= − ∆                  (4) 

2.2. Price Jump Self-Motivation Test 

In this paper, we use the self-motivation test method of price jump to make em-
pirical analysis [16]. Boswijk extends the activity of price jump to infinite jump. 
The self-motivation is defined as 

{ }0, 0
0

1 0
t tt X

t T
λλ ∆ ≥ ∆ ≠

≤ ≤

∆ >∑                         (5) 

where T stands for a total length of the sample, ( )logt tX S= , and tλ  is den-
sity of jump arrivals at t. 

Equation (5) shows, within the data range, the jump arrival density also 
changes in a non-negative way when the price changes, which means there’s 
self-motivation in the jumps. 

Choose a proper window size nk , the jump intensity ( )ˆ
n i

kλ  in ith window 
size 

( ) ( )

ˆ ˆ
,

1 ˆ

ˆ
1

n
n
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jn
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j in n n
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+

= +

 ∆  =
 ∆ ∆ 

∑                    (6) 

In Equation (6), 
10
2

ϖ< < , α  is the standard deviation of the income 

distribution and function ( )g ⋅  has following 3 forms: 

( ) { }0 11 xg x >=                             (7) 

( )1

, 1

1, 1

px x
g x
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 ≤= 
>

                         (8) 
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       (9) 

In Equation (9), 
( )1

2

p
p pa b a

c a
− −

= + , and when 1a b= = , ( ) ( )2 1g x g x= . 

In applications, ( )g ⋅  can be taken as any of the three forms. 

( )ˆC k
β  is defined as 

( ) ( )( ) 1
0

d
k

C k g x x xβ
β

∞ += ∫                      (10) 
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where the estimation of β  is 

( ) ( )
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where 2α α′ = ∗ , and ( ), ,V gϖ α : 
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According to Equation (5), statistics ( ), n T
U H k  and ( ), n T

U G k : 
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        (13) 

where nr ϖθ= ∆ . The H function is expressed as following: 

( ) ( )1 2 1 2 2 1 2 1 2, , , ,pH x x y y x x h y y= −                  (14) 

In Equation (14), p is usually 2 or 4. And ( )2 1 2,h y y  could be expressed as: 

( ) ( )( )2 1 2 1
2 1 2

2 1

exp 1 if
,

0 if

y y y y
h y y

y y

 − − >= 
≤

              (15) 

Statistic ( ), n T
U G k  is showed in the following form 
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where G function is 

( ) ( )
( )( )

( ) ( )( )2 2
1 2 1 2 1 3 1 2 1 2 2 4 1 2 1 22

2
, , , , , , , , ,
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C
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where ( )3 1 2 1 2, , ,H x x y y′  and ( )4 1 2 1 2, , ,H x x y y′  are the first partial derivatives 
of function ( )1 2 1 2, , ,H x x y y  with respect to 1 2,y y . Statistics ( ), n T

U H k  and 
( ), n T

U G k  are continuous parameters with finite variance, and have the fol-
lowing asymptotic properties: 
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∆
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            (18) 

Under the null hypothesis that price is not self-motivated, we could apply the 
above statistics to do hypothesis testing. However, under the null hypothesis that 
price is self-motivated, ( ), nU H k  could not be estimated as a finite sample er-
ror. Therefore, we need to reconstruct relative error statistic as following: 

( ) ( )
( )

, ,
,

n nT T
n

n T

U H k U H k
R

U H k
ω −

=                   (19) 

Relative error nR  has following asymptotic properties: 
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where stL  denotes stable convergence in law. 
And its rejection region is 

( )
( )

,

,
nn n T

n a
n n T

U H kk
C z

U G kϖβ

  = >
 

∆


∆



                    (21) 

where az  is quantile of the standard normal distribution, and statistic nV  is 
shown as following 

( ) ( )
( )( )2

1 ,

,
nn T

n
n n n T

U G k
V

k U H k

ϖβ ω

ω

−∆
=

∆
                    (22) 

3. Empirical Study 
3.1. Data Source 

In empirical analysis, we selected the CSI300 index and its constituent stocks of 
China stock market from January to December 2015. Twenty-three stocks were 
randomly sampled from CSI300 index (SH000300). The names and codes of 23 
stocks were shown in Table 1, and the 1-minute price data and CSI300 index 
(SH000300) were obtained. 

Resample 1-minute price into 5-minute price and smooth the return series: 

5logi iX S ∗= , ( )0,i n∈                       (23) 

( )5
51

1 log log
5i k kkr S S+=

−= ∑                    (24) 

Since we connect all the 1-minute price series, the overnight effect and week-
end effect should be taken into consideration, which could have a negative im-
pact on our result of detected jumps. We applied such method to get rid of the 
unexpected effects: 

gt gt
Gt

gt

r
r

µ
σ µ

σ
−

= +                         (25) 

 
Table 1. Information of 30 stocks selected. 

Name Code Name Code Name Code 

CSI300 SH000300 CGGC SH600068 PETROCHINA SH601857 

HD MEDICINE SH000963 NARI-TECH SH600406 JDCMOLY SH601958 

HPI SH600011 
KWEICHOW 

MOUTAI 
SH600519 PAB SZ000001 

SIPG SH600018 XTC SH600549 TCL SZ000100 

BAO STEEL SH600019 COOEC SH600583 WEICHAI POWER SZ000338 

SEP SH600021 FYG SH600660 FINANCIAL STREET SZ000402 

PRE SH600048 DAQIN RAILWAY SH601006 YUNNAN BAIYAO SZ000538 
CHINA 

UNICOM 
SH600050 BANKCOMM SH601328 SHUANGHUI SZ000895 
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where , ,gt gt gtr µ σ  represent overnight return, average overnight return and 
standard deviation of overnight return before operation. Gtr  is the overnight 
return after operation, σ  is standard deviation of all non-overnight returns 
and µ  is the average of non-overnight return. The weekend effect is removed 
in the same way. 

After getting rid of the effects, we obtain the price and return series, two sam-
ples (CSI300 index, SH60048) is shown as follows. 

Figure 1 shows the index and randomly selected stock had experienced sharp 
price fluctuations in the second half of 2015, and return distribution is found to 
be more of leptokurtosis. The statistics of returns is listed in Table 2. 

Table 2 shows that the index yield and individual stock yields both have a 
peek skewed to the left. And individual stock return’s standard deviation is sig-
nificantly greater than the index yield. 

3.2. Price Jump Self-Motivation Test 

In this section, we test the self-motivation of price jumps of CSI300 index and 

constituent stocks on 5-min price series. Set 10nk = , 1
5

ϖ = , 4p = , 2ω = ,  

 

 
Figure 1. Price series and return distributions of SH00300 and SH60048 in year 2015. 
 
Table 2. Statistics of returns of CSI300 index and SH60048. 

 SH000300 SH000963 

Mean 0.0000286 0.0000368 

Std. 0.0000743 0.002618 

Skew. −0.034909 −0.271355 

Kurt. 11.35313 13.91738 
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1
16

θ = . Function ( )g ⋅  is set in the simple form of Equation (8). CSI300 index  

and 23 constituent stocks all passed the test under the null hypothesis that price 
jump is self-motivated. The p-value for CSI300 index is 0.3879 and p-values of 
23 constituent stocks are showed in Table 3. The result implies the price jump in 
China stock market has significant self-motivation. 

The estimates of jump arrival intensities λ̂ ’s of CSI300 index and constituent 
stocks are critical parameters in self-motivation test. The λ̂ ’s of CSI300 index 
and 3 stocks (SH000963, SH600011 and SH600018) in 2015 is shown as follows 
(the λ̂ ’s of other 20 stocks’ are displayed in Appendix 1). 

In Figure 2, each λ̂  value is a dot. Considering the date time index is too  
 
Table 3. Hurst index of CSI300 index, constituent stocks and MEAN. 

Code Hurst Index Code Hurst Index 

SH000300 0.8710882 SH000963 0.8849673 

SH600011 0.9014997 SH600018 0.8531737 

SH600019 0.8835869 SH600021 0.8617589 

SH600048 0.7457267 SH600050 0.8404174 

SH600068 0.8452361 SH600406 0.8815753 

SH600519 0.877194 SH600549 0.8455916 

SH600583 0.8936722 SH600660 0.8064734 

SH601006 0.8731213 SH601328 0.8386584 

SH601857 0.8339011 SH601958 0.852093 

SZ000001 0.7710014 SZ000100 0.8499707 

SZ000338 0.8469565 SZ000402 0.8098829 

SZ000538 0.858791 SZ000895 0.8585242 

MEAN 0.8892194 
  

 

 

Figure 2. λ̂ ’s of CSI300 index and 3 stocks (SH600011, SH600018, and SH600019) in 
year 2015. 
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long (i.e. 09:35, 2015/01/05), transform the datetime into serial number ranging 
from 1 to 12,000. Since the sampling frequency is 5 minutes, each number on the 
abscissa represents a 5-minute return. From Equation (6), ( )ˆ

n i
kλ  is calculated 

using nk  returns in ith window. Combing Equation (7), ith window and 
(i+1)th window have only one different return value, so it’s probable that 
( ) ( ) 1

ˆ ˆ
n ni i

k kλ λ≈
＋

. For this reason, it’s reasonable to have continuously equal 
λ̂  in Figure 2. 

In Figure 2, each subfigure has a peak at serial number 6000, which is equal to 
early June in 2015. At that time, there was a terrible crash in China’s Stock Mar-
ket with sharp fluctuations. 

3.3. Discussion 

Each λ̂  is an estimate of jump arrival intensity and it’s time-varying. To study 
the nature of λ̂ ’s, we analyzed the distribution characteristics of jump arrival 
intensity of 23 constituent stocks. Frequency histograms of the λ̂ ’s of CSI300 
index and 3 individual stocks (SH600011, SH600018, and SH600019) in 2015 are 
displayed in Figure 3. The other 20 stocks are detailed in Appendix 2. 

In Figure 3, abscissa represents the value of λ̂ ’s and ordinate is the frequen-
cy of λ̂ ’s. It’s shown that the jump intensities of CSI300 index and 3 individual 
stocks have similar density distribution, reflecting that the inherent similarity in 
the intensity of price jumps. By averaging the jump intensity of these 24 index 
and stocks, the robust and common distribution characteristics of jump intensity 
can be obtained. The average jump arrival intensity of 30 stocks and its distribu-
tion figure are shown below. 

In Figure 4, left subfigure is average λ̂ ’s of 24 index and stocks. Similar to 
Figure 2, each λ̂  value is a dot, abscissa value is serial number of λ̂  sequence 
and ordinate value is the frequency of λ̂ ’s. There’s also a peek at serial number  
 

 

Figure 3. Frequency histograms of λ̂ ’s of CSI300 index and 3 individual stocks 
(SH600011, SH600018, and SH600019). 
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Figure 4. Average jump arrival intensity of 30 stocks and its distribution. 
 
6000, showing that China’s stock market has the highest jumping intensity in the 
average sense during this period. It corresponded with the fact that a crash hap-
pened in the middle of 2015 in China’s stock market.  

Right subfigure in Figure 4 is the density distribution of averaging λ̂ ’s. It 
tends to be log-normal. So we use KS test to identify it. The result shows that the 
jump intensities pass log-normal hypothesis and fitting results are displayed in 
Figure 5. 

Figure 5 shows the difference between the fitted empirical distribution and 
the lognormal distribution. The results indicate that the distribution of averag-
ing λ̂ ’s is very similar to that of lognormal distribution. Log-normal distribu-
tion indicates that the distribution of time-varying arrival intensities is asymme-
tric, which is reflected in the market that the higher the frequency of price jump, 
the wider the range of frequency change. This suggests that there may be a long 
memory of the jump intensities. Therefore, we will use the detrended fluctuation 
analysis (DFA) method to study the long memory of intensities’ series. The DFA 
method proposed by Peng (1994) is a nonparametric estimation method of ge-
neralized Hurst index and it can be used to detect the long-range correlation of 
non-stationary time series. 

We calculated the Hurst indices of λ̂ ’s by using DFA. This method can cal-
culate the generalized Hurst index by removing the trend term. If the Hurst ex-
ponent is between 0.5 and 1, we can conclude that the sequence has long memo-
ry, and the closer it is to 1, the stronger the long memory. The results are shown 
in Table 3. 

From Table 3, Hurst indices of λ̂  series are greater than 0.5, and most of 
them are greater than 0.8, very close to 1. This shows that the jump intensities’ 
series of the high-frequency price series in China’s stock market have very strong 
long memory. This not only indicates that there is a correlation between the 
price jumps in China’s stock market, but also present the clustering effect of 
jumps, which is long memory. 

4. Conclusions 
4.1. Empirical Conclusions 

As an emerging market, China’s stock market shows more volatility. The jump-
ing phenomenon in the high-frequency price process is one of the main causes  
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Figure 5. Log-normal fitting curve of λ̂ ’s. 
 
of the market volatility. In this paper, we choose the CSI300 index and 23 stocks 
that are randomly selected in the constituents of CSI300 index as the representa-
tive of China’s stock market, and take the 1-minute high-frequency price data of 
2015, which is highly volatile in China’s stock market, as samples, and then re-
samples into 5-minute return series to conduct empirical analysis such as jump 
test and jump self-motivation test. Our empirical results show that: 

1) It’s clear that the number of jumps of an individual stock is more than the 
one of an index in high-frequency dataset. This is consistent with many studies. 
When individual stocks jump, the index doesn’t jump much, showing that the 
probability that the index resonates with individual stocks is low. When the in-
dex jumps, the proportion of individual stocks that jump is not high, either. 
Within portfolio theory, the jumps of the index could be regarded as a co-jump 
contributed by individual stocks’ heterogeneous jumps after fully smoothing, 
which means the connections between stocks and the index could be implied in 
called co-jumps. However, co-jumps would also be covered by heterogenous 
jumps and random noises of individual stocks. 

2) In the empirical analysis of high-frequency price series of the CSI300 index 
and selected 23 constituent stocks, the index and the stocks all passed the test 
under the null hypothesis that there is a self-motivation jump in the price 
process, indicating that the price jump in China’s stock market is generally 
self-motivated. And the fluctuations of jump intensity estimates used in the 
self-motivation test basically correspond to current situation in last decade. 

3) In the analysis of time-varying jump intensity series, we found that the 
jump intensity series of asset price in China’s stock market is approximately 
lognormal distribution, which indicates that the change of jump intensity is 
asymmetric. At the same time, we also found that the price jump intensity series 
shows strong long-term memory, which indicates that the self-motivation phe-
nomenon of price jump intensity is long-term related. This can provide a new 
perspective for us to understand the risk in China’s stock market. 
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4.2. Future Expectations 

Our work has shown a sound result that self-motivated jumps exist in China’s 
stock market, though we need more precise price stochastic process forms. 
There are still some facts needed focused in future: 

1) How the log-normal distributed price processes interact and contribute to 
the index fluctuations. Reconsidering the price generation tools and theoretical 
derivations is advised. 

2) China’s stock market has been experiencing subtle and swift adjustments in 
many ways in recent years, including new market trade instruments and more 
specific regulatory policies. The uncertainty comes from the structure of market 
and would lead to more unexpected fluctuations or severe changes, though it’s in 
belief that China’s stock market would keep open and integrate more with in-
ternational financial markets. Finding a straightforward toolbox in dealing with 
the more common and frequent jumps is necessary and what we’re devoted to. 

Based on the results of this paper, subsequent research will focus on the gene-
rating mechanism of the price jump process, so as to improve the price process 
and make the jump terms in the price process include the co-jumps and the 
jump self-motivation part. Then we could discuss the jumps and co-jumps in 
more detailed situations and provide a reasonable explanation to our interests. 
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Appendix 1 

 

Figure A1. λ̂  of the index and 3 constituent stocks. 
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Appendix 2 

 

Figure A2. Distribution of λ̂  of the index and 23 constituent stocks. 
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