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Abstract 
The purpose of this research is to extend to the functions obtained by mero-
morphic continuation of general Dirichlet series some properties of the func-
tions in the Selberg class, which are all generated by ordinary Dirichlet series. 
We wanted to put to work the powerful tool of the geometry of conformal 
mappings of these functions, which we built in previous research, in order to 
study the location of their non-trivial zeros. A new approach of the concept of 
multiplier in Riemann type of functional equation was necessary and we have 
shown that with this approach the non-trivial zeros of the Dirichlet function 
satisfying a Reimann type of functional equation are either on the critical line, 
or they are two by two symmetric with respect to the critical line. The Euler 
product general Dirichlet series are defined, a wide class of such series is pre-
sented, and finally by using geometric and analytic arguments it is proved 
that for Euler product functions the symmetric zeros with respect to the crit-
ical line must coincide. 
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1. Introduction 

The fundamental domains, as defined by Ahlfors, are for the complex functions 
of one complex variable the similar of the intervals of monotony for the real 
ones, in the sense that in both cases the functions are injective there. However, 
for the analytic functions of one complex variable the concept of fundamental 
domain plays a much deeper role. Such a domain is mapped conformally by the 
function onto the whole complex plane with some slits. The rational functions 
have a finite number of fundamental domains (the same as their degree), while 
the transcendental ones have infinitely many fundamental domains. Their clo-
sure covers the entire complex plane. 

The Dirichlet functions are meromorphic functions in the complex plane 
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having an essential singular point at infinity. We have shown in previous works 
that every neighbourhood of an essential singular point of an analytic function 
contains infinitely many fundamental domains. Therefore a Dirichlet function 
has infinitely many fundamental domains outside any bounded region of com-
plex plane. We found that these domains are infinite strips which can be ob-
tained by using the pre-image of the real axis and the zeros of the derivative of 
the function, necessarily situated on the common boundaries of these domains. 
These are basic knowledge in the study of the location of non-trivial zeros of Di-
richlet functions.  

The symmetric zeros with respect to the critical line are located in adjacent 
fundamental domains, which can be mapped conformally one onto the other 
such that the image of a zero is the other zero. This function can be extended to 
an involution on the union of the two domains and this is instrumental in using 
the Euler product in order to prove RH, which is the final result of this paper. 

2. Meromorphic Continuation of General Dirichlet Series 

The Dirichlet functions are meromorphic continuations into the whole complex 
plane of general Dirichlet series. The study of general Dirichlet series has its ori-
gins in the works of Cahen [1] [2], Hadamard [3], Landau [4] [5], Bohr [6] [7] 
[8], Hardi & Riesz [9], Kojima [10], Valiron [11] etc. 

We are dealing with normalized series defined by using an arbitrary sequence 
of complex numbers ( )1 21 , ,A a a= =  , (the coefficients) and an increasing se-
quence ( )1 20 λ λΛ = = < < , limn nλ→∞ = ∞ , (the exponents) in the following 
way: 

( ), 1 e ns
A nns a λζ ∞ −
Λ =

= ∑                         (1) 

When lnn nλ =  we obtain the ordinary (proprement dites [11]) Dirichlet  

series 1
n
sn

a
n

∞

=∑ . When 1n nλ = − , the series (1) becomes a power series of  

e sz −= . Vice-versa, any power series ( )00
n

n z z∞

=
−∑  can be converted into a 

Dirichlet series 0 e ns
nn a∞ −

=∑  upon the substitution 0 e sz z −− = . The Hadamard  

formula 11 limsup n
nn a

R →∞=  giving the radius of convergence R of that series  

shows also where the corresponding Dirichlet series is convergent, namely for  

e s R− < . If s itσ= + , this means that the series converges for 
1ln
R

σ >  and 

diverges for 
1ln
R

σ < . There is an analog of this formula for arbitrary Dirichlet  

series (see, for example [11]) which says that the series (1) converges into a right 
hand half plane Re cs σ>  and it diverges into the left hand half plane 
Re cs σ< , where cσ−∞ ≤ ≤ +∞ . When (1) does not converge for 0s = , then 
(see [11]): 

1ln
lim 0sup

k
n

k

c
n n

a
σ

λ
=

→→∞
= ≥

∑
                     (2) 
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and when (1) does converge for 0s = , then: 

( ),
1

1

1lim ln 0sup n
c A

n n
k kaσ ζ

λ Λ
→∞ +

=
= −∑                   (3) 

The number cσ  is called the abscissa of convergence of the series. The series 
(1) converges uniformly on compact sets included in the half plane Re cs σ>  
and therefore it is an analytic function there. The abscissa of absolute conver-
gence aσ  of the series (1) is by definition the abscissa of convergence of the se-
ries 1 e ns

nn a λ∞ −
=∑ . The line Re cs σ=  is called the line of convergence of the 

series, although as we will see later, there are Dirichlet series which are divergent 
at every point of that line. Obviously, for those series, there cannot be mero-
morphic continuation across the convergence line and therefore they do not 
generate Dirichlet functions. We deal in this paper only with series generating 
Dirichlet functions. We found in [12] a sufficient condition for the normalized 
Dirichlet series (1) to admit meromorphic continuation into the whole complex 
plane. It is expressed in terms of the associated series 

( ) e
1,e

e n s
nnA

s a
λ

ζ Λ
∞ −
=

= ∑                         (4) 

in which the exponents nλ  are replaced by e nλ . The relationship between 
( ),A sζ Λ  and ( ),eA

sζ Λ  has been studied by Cahen [1] who proved (see also 
[12]): 

Proposition 1: If the series (1) has a finite abscissa of convergence, then the se-
ries (4) has the abscissa of convergence zero.  

Analogously, if the series (1) has a finite abscissa of absolute convergence, 
then the series (4) has the abscissa of absolute convergence zero.  

The sufficient condition found in [12] for the series (1) to admit meromorphic 
continuation into the whole complex plane can be relaxed as follows: 

Theorem 1: Suppose that the series (1) has a finite abscissa of absolute con-
vergence aσ  and the series (4) has a discrete set of singular points on the im-
aginary axis in the neighborhood of the origin. Then the series (1) can be con-
tinued meromorphically into the whole complex plane. 

Proof: We will use the Riemann’s technique of contour integration ([13], page 
214). Namely, in the integral formula of Euler Gamma function, true for 
Re 1s >  

( ) 1
0

e ds xs x x
∞ − −Γ = ∫                          (5) 

we replace x by e n xλ . Then (5) implies: 

( )
1 e

0

1e e dnns s xx x
s

λλ ∞− − −=
Γ ∫                       (6) 

If we multiply here the n-th term by na  and add from 1n =  to ∞  we get  

( ) ( ) ( )1
, ,e0

1 ds
A A

s x x x
s

ζ ζ Λ

∞ −
Λ =

Γ ∫                    (7) 

Indeed, the series ( ),eA
xζ Λ  converges for 0x >  by Proposition 1, hence the 
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integral (7) makes sense. On the other hand, the interchange of summation and 
integration was possible since the integral in (6) is absolutely convergent at both 
ends, the integral in (5) being absolutely convergent at both ends (see [13], page 
214) and (6) is obtained from (5) by a change of variable conserving the limits of 
integration. 

The function ( )sΓ  can be uniquely continued to a meromorphic function 
into the whole complex plane, hence the formula (7) is true for Re cs σ>  even 
if 1cσ < . Yet, the right hand side in (7) has a meaning for all the values of s for 
which the integral in (7) is convergent, given the fact that ( )sΓ  has no zero. 
When that integral is convergent for Re cs σ≤  the formula (7) provides a con-
tinuation of ( ),A sζ Λ . Trying to extend this continuation to the whole complex 
plane by proceeding as Riemann did for ( )sζ  (see [13], page 214) we are con-
fronted with a difficulty, since the integration contour used by Riemann is inap-
propriate in our case, ( ),eA

zζ Λ  not being defined for Re 0z ≤ . We can avoid 
this inconvenience by choosing a different contour of integration completely in-
cluded in the convergence domain of the series (4) (see [12]), namely a contour 
Cr formed with the half circle : e , 2 2i

r z r θγ θ= − ≤ ≤π π , where r is small 
enough such that no divergence point of (4) except the origin is located on the 
diameter of this half circle, and the half lines Im z r= ± , Re 0z ≥  (see Figure 1 
below). 

It can be easily checked that ( ) ( )1

,e
d

r

s

AC
z z zζ Λ

−−∫  does not depend on r and 
the integral on rγ  tends to zero as 0r → . 

Indeed, if 
1r

C  is the red contour, 
2r

C  is the blue one and we form also the 

contour C colored green, then ( ) ( ) ( ) ( )
1 2

1 1

,e ,e
d d

r r

s s

A AC C
z z z z z zζ ζΛ Λ

− −− = −∫ ∫
 

 

 

 
Figure 1. The integral on Cr does not depend on r. 
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since both of these integrals are equal to ( ) ( )1

,e
ds

AC
z z zζ Λ

−−∫ .  

The fact that the integral on rγ  tends to zero as 0r →  can be shown as 
follows:  

( ) ( ) ( )( )

( )( ) ( )( )

e cos1
1,e

2

1

2

2

2

2

d e e d

1e 1 e cos e cos d .
2!

n

r

n n

t rs t
nnA

t
nn

z z z a r

a r t r t r

λθ θσ
γ

λ λσ

ζ θ

θ θ θ θ θ

Λ

− +− ∞−
=

π

−

∞−
=

π

π

ππ

π−

− ≤

 = − + + + +  

∑∫ ∫

∑ ∫ 

 

The series (4) converges absolutely on rγ , hence when evaluating this 
integral we are free to deal separately with different groups of terms. The sum of  

terms under the integral which do not contain r is ( )211 e
2!

tt t θθ θ −− + + =  

and 
2

2

2e d
2

t tsh
t

θ θ
π

π

−

−




π = 
 ∫ , thus 0

2

2
lim e d 0t

r rσ θ θ
π −

→ π−
=∫ . The terms which  

contain r under that integral tend all to zero as 0r → , and therefore their inte-
grals cancel too at the limit. We conclude that: 

( ) ( )1

,e0
lim d 0

r

s

Ar
z z z

γ
ζ Λ

−

→
− =∫                       (8) 

When 0r =  the curve C becomes the positive real half axis traversed back 
and forth. On the upper edge we have ( ) ( )1 11es s isz x− − −− π− =  and on the lower 
edge ( ) ( )1 11es s isz x− −− π− =  and then: 

( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

1
,

1 11 1
,e ,e0 0

1
,,e0

d

e d e d

2 sin 1 d 2 sin

s
AC

s i x is s
A A

s
AA

z z z

x x x x x x

i s x x x i s s

ζ

ζ ζ

ζ ζ

Λ Λ

Λ

−
Λ

∞ ∞− − −− −π π

∞ −
Λπ π

−

= − +

= − = −

∫

∫ ∫

∫

          (9) 

Since ( ) ( ) ( )
1

sin
s s

s
Γ Γ − =

π
π

 the formula (9) becomes: 

( ) ( ) ( ) ( )1
, ,e

1
d

2
s

A AC

s
s z z z

i
ζ ζ Λ

−
Λ

Γ −
= − −

π ∫                 (10) 

The limit (8) guarantees that this integral is convergent no matter if  
( )0 ,e

limx A
xζ Λ



 is finite or not and the theorem is completely proved. Ob-
viously, at a point s where the integral does not cancel, ( ),A sζ Λ  can have a pole 
if ( )1 sΓ −  has a pole. 

Let us examine some Dirichlet series which do not admit meromorphic  

continuation across the convergence line. The series 
( )1

1
! sn n

∞

=∑  has been  

suggested by Dan Asimov in a private communication. This is an ordinary  

Dirichlet series, i.e. a series of the form 1
m
sm

a
m

∞

=∑ , where 1ma =  if !m n=  for  

some n and 0ma =  otherwise. Let A be this sequence of coefficients and let 
Λ  the sequence of exponents be defined by ( )ln !n nλ = . Then 

https://doi.org/10.4236/apm.2021.113014


D. Ghisa 
 

 

DOI: 10.4236/apm.2021.113014 192 Advances in Pure Mathematics 
 

( )
( ) ( )ln !

,1 1

1 e
!

n s
Asn n s

n
ζ∞ ∞ −

Λ= =
= =∑ ∑                   (11) 

and 

( ) ( )!
1,e
e n s

nA
sζ Λ

∞ −
=

= ∑                       (12) 

Using the formula (2) it can be easily checked that both of these series have 
the abscissa of convergence 0, which agrees with the Proposition 1. A result of 
Tanaka ([14], Corollary VI) tells us that the series (1) has the imaginary axis as 
natural boundary if: 0cσ = , ( )1liminf 0n n nλ λ→∞ + − >  and lim 0n nn λ→∞ = . It 
is easy to check that these series have both the imaginary axis as natural boun-
dary, hence they cannot be meromorphically continued across the imaginary 
axis. We can give a direct proof for the series (12), as an easy exercise. 

Theorem 2. The series (12) diverges at every point of the imaginary axis. 
Proof: Let us notice that ( ) ( ) !

1,e
e

ns
nA

sζ Λ
∞ −
=

= ∑ , which is a power series of 
the form 1

m
mm a w∞

=∑ , where 1ma =  if !m n=  for some n and 0ma =  oth-
erwise, and e sw −= . 

The Hadamard’s formula shows that the radius of convergence of this series is 
1, i.e. the series converges for 1w <  and it diverges for 1w > . Let us show 
that the series diverges at every point of the unit circle. Since the set of points 

eiw θ=  with the argument θ  rational multiple of 2π  is dense in the unit cir-
cle, it will be enough to show that the series diverges at every one of these points. 
Suppose 2e ip qw π= , where p and q are integers. 

Then, for 0 1ρ< <  we have ( ) ( ) ( )! ! !1
1 1

n n nq
n n q nw w wρ ρ ρ∞ ∞ −

= = =
≥ −∑ ∑ ∑ . Let  

us notice that ( ) ! ! 2 !en n in p qwρ ρ π= , thus for n q≥  we have ( ) ! !n nwρ ρ= , since 
!n  is a multiple of q and therefore 2 !in p qπ  is an integer multiple of 2 iπ , 

hence ! 1nw = . For n q<  we have ( ) ! ! 1n nwρ ρ= < , thus  
( ) !1 1 !

1 1
nq q n

n nw qρ ρ− −

= =
= <∑ ∑ , therefore ( ) ! !

1
n n

n n qw qρ ρ∞ ∞

= =
≥ − → ∞∑ ∑  as 

1ρ → , which means that !
1

n
n w∞

=∑  diverges for 1w = . Yet,  
( )1 e eitw σ σ− + −= = =  implies 0σ = , hence the series (12) diverges at every 

point of the imaginary axis. This means that Theorem 2 cannot be used in this 
case in order to prove that the series (11) admits a meromorphic continuation 
into the whole complex plane. However, Tanaka’s result confirms that this is not 
the case. 

Numerous other examples can be given of Dirichlet series having the imagi-
nary axis as their natural boundary. If in the formula (11) we take instead of the 
sequence A a sequence mA  depending on an integer 2m ≥  such that 1na =  
if kn m=  for some integer 1k ≥  and 0na =  otherwise, and we chose the  

exponents ( )lnn nλ =  then ( )
( )

( ), 1 1

1 1
mA s msn nm

s ms
nn

ζ ζ∞ ∞
Λ = =

= = =∑ ∑  and 

( ) ( )1 1,e
e e

mm

m

nn s s
n nA

sζ Λ
∞ ∞− −
= =

= =∑ ∑ , for which, by Tanaka’s theorem, the  

imaginary axis is the natural boundary. However, the associated series ( ),A sζ Λ  
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admits meromorphic continuation into the whole complex plane.  

3. The Geometry of Mappings by Dirichlet Functions 

We dealt in [15] with different classes of Dirichlet series, all admitting mero-
morphic continuation into the whole complex plane and we found that the re-
spective Dirichlet functions displayed strong similarities regarding the geometry 
of their conformal mappings. We will list here those properties for a generic Di-
richlet function. 

Theorem 3. For any Dirichlet function ( ),A sζ Λ  generated by a general Di-
richlet series with aσ < ∞  we have ( ),lim 1A itσ ζ σ→+∞ Λ + =  uniformly with 
respect to t.  

Proof: Let aσ  be the abscissa of absolute convergence of ( ),A sζ Λ . For any 

0 aσ σ>  and 0σ σ>  we have:  
( )

( ) ( )( )

0 0

2 0 2 0 0 2

2 2

2

e e e

e e e e 0

nn n

n n

s
n nn n

nn

a a

a K

λ σ σλ λ σ

λ σ σ λ λ σ σ λ σ λ σ

∞ ∞ − −− −
= =

∞− − − − − − −
=

≤

= ≤ →

∑ ∑

∑
 as σ → +∞ . Here K is a  

constant (not depending on σ ) given the fact that ( )( )2 0e 1nλ λ σ σ− − − ≤ , 2 0eλ σ  is 
a constant and 0

2 e n
nn a λ σ∞ −

=∑  is convergent. Hence ( )
2 e n it

nn a λ σ∞ − +
=∑  con-

verges to zero uniformly with respect to t when σ → +∞ , thus 
( ),lim 1A itσ ζ σ→+∞ Λ + =  uniformly with respect to t. This means that given 

0ε > , there is εσ  such that for εσ σ>  we have ( ), 1A itζ σ εΛ + − <  i.e. the 
whole half plane Re s εσ>  is mapped by ( ),Az sζ Λ=  into the disc centered at 

1z =  and having the radius ε .  
In what follows we will deal only with Dirichlet functions satisfying the condi-

tion of Theorem 3. It is obvious that the zeros of such a function are isolated 
points, since otherwise the function would be identically zero. This implies that 
for any bounded domain D the components of the pre-image of a circle z r=  
included in D are disjoint closed curves if r is small enough. For such an r the 
domains bounded by those curves are mapped by ( ),A sζ Λ  onto the disc 
z r< . The mapping is conformal for those domains containing a simple zero. If 

the zero is multiple of order m, then the pre-image of the radius 0 Re 1z≤ ≤  
partitions D into m sets whose interior are mapped conformally by ( ),A sζ Λ  
onto 0 1z< <  (see [13], page 133). When increasing r, these components ex-
pand and some of them can touch each other at points ks  or they become dis-
joint infinite curves. At the points ks  we have ( ), 0A ksζ Λ′ = . Moreover, if 

( ), 0 0A sζ Λ′ = , then 0s  is either a multiple zero of ( ),A sζ Λ  or one of the points 

ks . Figure 2(a) below exhibits two disjoint components of the pre-image by the 
Riemann Zeta function of a circle 1z r= < . The little one contains one zero of 
( )sζ  and the other one contains two zeros. For a bigger value of r those ex-

panded components have met into a point 0s  where ( )0 0sζ ′ =  as shown in 
Figure 2(b). Increasing r even more, the component obtained turns around all 
three zeros of ( )sζ , Figure 2(c). When 1r =  some components must become 
unbounded, as stated in the following theorem see also ([16]): 
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Figure 2. (a): Components around one zeros and two zeros; (b): The 
components touch each other; (c): An unique component containing the 
three zeros; (d): Color visualization of the mapping; (e): The evolution 
the pre-image of a ray approaching the real axis. 

 
Theorem 4: For every Dirichlet function ( ),A sζ Λ  defined by a normalized 

series (1) the pre-image of the unit disc has at least one unbounded component. 
Proof: Assume that all the components of the pre-image of the closed unit disc 

were bounded. By Theorem 3, for every 0ε > , there is εσ  such that the half 
plane { }|U itε εσ σ σ= + >  is mapped by ( ),A sζ Λ  into the disc 1z ε− < . 
For arbitrary 0δ > , let us denote by V a δ -neighborhood of the pre-image of 
the closed unit disc .  The components of V are bounded connected open sets. 
Due to the fact that ( ),A sζ Λ  is an open mapping, V is mapped by ( ),A sζ Λ  
onto an open set containing the closed unit disc. If 0ε >  is small enough, the 
closed disc centered at the origin and of radius 1 ε+  is included in that open 
set, hence its pre-image is included in V. Therefore it can have only bounded 
connected components. Since 1z ε− <  implies 1z ε< −  one of these com-
ponents should contain the half plane Uε , which is a contradiction. Thus the 
pre-image of the unit disc must contain at least one unbounded component.  

Starting with Speiser’s work [17] the pre-image of the real axis has been used 
in order to describe the geometry of mappings by the Riemann Zeta function.  

A historic account of this technique can be found in [16], Section 3. In our 
works ([12] [15] [16] [18]) we have used a better way to visualize the conformal 
mapping by an analytic function ( )z f s= , namely by taking the pre-image of 
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an orthogonal mesh from the z-plane formed with rays issuing from the origin 
and circles centered at the origin. A spectre of colors can be superposed to this 
mesh and care can be taken that every point s in the pre-image plane has the 
same color as its image ( )f s . Given a fundamental domain we are then able to 
see the one-to-one correspondence between the points in the domain and their 
images. However, distinguishing the fundamental domains of a function is not 
an easy task, since the partition of the complex plane into fundamental domains 
is not unique. An illustration of this technique is exhibited in Figure 3 below 
where ( )f s  is the Riemann Zeta function. 

Given such a partition, a slight deformation of one fundamental domain im-
plies different deformations of all the other domains. The only points which 
must remain unchanged are the branch points, which are common boundary 
points of different fundamental domains. They are the zeros of ( )f z′ , the mul-
tiple poles, as well as the essential singular points. By Big Picard Theorem, every 
neighborhood of an essential singular point of ( )f s  intersects infinitely many 
fundamental domains and it is mapped (not necessarily one-to-one) onto the 
whole complex plane with one possible point removed. 

In what follows we will use the concept of continuation above a curve (see 
[19], page 28). The Dirichlet functions ( ),A sζ Λ  are transcendental functions 
for which s = ∞  is an essential singular point. Let 0 1x >  be an arbitrary positive 
number 0s ∈  such that ( ), 0 0A s xζ Λ = . The continuation by ( ),A sζ Λ  from 
s0 along the interval ( )1,+∞  is a curve Γ  such that when ( ), 1Ax itζ σΛ= + →   
 

 
Figure 3. Color visualization of the conformal mapping by the ( )sζ . 

https://doi.org/10.4236/apm.2021.113014


D. Ghisa 
 

 

DOI: 10.4236/apm.2021.113014 196 Advances in Pure Mathematics 
 

we have that σ → +∞  with s itσ= +  on Γ , or there is a point u∈Γ  such 
that ( ), 1A uζ Λ =  and the continuation can be carried along the real axis for 
values less than 1. When s does not meet any pole in its way, we have that 
s →∞  on Γ  when x → −∞ , i.e. Γ  is unbounded at both ends and it is 
mapped one-to-one onto the whole real axis. If s meets a pole, the continuation 
stops there in the sense that when x → −∞ , s approaches that pole.  

Let us take a ray αη  making a small angle 0α >  with the positive real half 
axis in the z-plane and let zα  be the intersection of this ray with the unit circle. 
The pre-image of zα  by ( ),A sζ Λ  is a set of points belonging each one to a 
component of the pre-image of the unit circle. One of them s itα α ασ= +  be-
longs to the unbounded component. The continuation over αη  from sα  is an 
unbounded curve αΓ  starting at a zero of ( ),A sζ Λ  and such that when 
s it ασ= + ∈Γ  we have that σ +∞ , since ( ), 1Az sα ζ Λ=   (see Figure 
2(d) and Figure 2(e)). Yet, ασ → +∞  when 0α → . The curve αΓ  has a part 

α′Γ  above that unbounded component and another part α′′Γ  inside it. The first 
one is unbounded. At the limit, when 0α = , α′′Γ  becomes also unbounded 
and it is a part of a component ,0kΓ  of the pre-image of the real axis which is 
mapped one-to-one by ( ),A sζ Λ  onto the interval ( ),1−∞ . 

By taking 0α <  we conclude again that α′′Γ  is a part of ,0kΓ , while α′Γ  is 
below that unbounded component of the pre-image of the unit circle. 

We summarize by saying (see [16]) that there can be three types of connected 
components of the pre-image of the real axis by ( ),A sζ Λ , namely those which 
are mapped one-to-one onto the interval ( )1,+∞ , denoted k′Γ , those which are 
mapped one-to-one onto the interval ( ),1−∞  denoted ,0kΓ  and finally those 
which are mapped one-to-one onto the whole real axis, denoted , , 0k j jΓ ≠ . 

Proposition 2: There are infinitely many connected components ,k k′Γ ∈  
of the pre-image of the real axis by ( ),A sζ Λ . No two such components can in-
tersect each other and consecutive ones k′Γ  and 1k+′Γ  form infinite strips kS , 

00 S∈  extending for σ  from −∞  to +∞  (see [16], Theorem 5), which are 
mapped by ( ),A sζ Λ  (not necessarily one-to-one) onto the whole complex 
plane. The strips kS  cover entirely the complex plane. Every strip , 0kS k ≠  
contains a unique unbounded component of the pre-image of the unit circle and 
a unique component ,0kΓ  of the pre-image of the real axis which is mapped by 

( ),A sζ ∆  one-to-one onto the interval ( ),1−∞ . There are in general several 
components , , 0k j jΓ ≠  in every strip kS  which are mapped one-to-one onto 
the whole real axis. Obviously, every ,k jΓ  must contain a zero of ( ),A sζ Λ . The 
strip 0S  can contain infinitely many curves 0, jΓ . 

All these affirmations are proved in Section 3 of [13]. An illustration of them 
is provided in Figure 4 below for two Dirichlet L-functions, one defined by a 
real Dirichlet character and the other by a complex one. 

Every strip kS  can be partitioned into sub-strips, which are fundamental 
domains of ( ),A sζ Λ , i.e. which are mapped conformally by ( ),A sζ Λ  onto the 
whole complex plane with some slits. For example, if the strip kS  contains a  
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Figure 4. The pre-image of the real axis by two Dirichlet 
L-functions. 

 
zero ,k jv  of ( ),A sζ Λ′ , then the pre-image of the segment ,k jI  from 1z =  to 

( ), ,A k jz vζ Λ=  included in kS  is formed with either disjoint arcs ,k jη  origi-
nating in points ,k ju  on curves ,k jΓ  with ( ), , 1A k juζ Λ =  and ending in some 
points kju ′  on ,k j′Γ  such that ( ), , 1A k juζ ′Λ = , or with disjoint unbounded 
curves ,k jη  originating in ,k ju  and such that when z on ,k jI  approaches 1, 
the corresponding point ,k js itσ η= + ∈  is such that σ → +∞ . These arcs or 
unbounded curves are mapped two to one onto the segment ,k jI . Together with 
the pre-image of the interval ( )1,+∞  they bound domains which are mapped 
conformally by ( ),A sζ Λ  onto the whole complex plane with a slit alongside the 
interval [ )1,+∞  followed by ,k jI . We get arcs ,k jη  in the case of embraced 
curves as shown in Figure 5 below, and also in the case of 0S  where any two 
consecutive curves 0, jΓ  and 0, 1j+Γ  are embraced (see Figure 4 above). In all 
the other cases the curves ,k jη  are unbounded. There is a one-to-one corres-
pondence between the curves , , 0k j jΓ ≠  from every strip kS  and the zeros of 

( ),A sζ Λ′  from that strip (see [16], Theorem 6), which makes possible the con-
struction of the arcs and curves ,k jη  and, as a result, that of the fundamental 
domains of ( ),A sζ Λ  included in that strip. 

4. The Zeros of Dirichlet Functions 

It is obvious that every curve ,k jΓ  contains a unique zero, since ,k jΓ  is projected  
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Figure 5. Embraced curves for ζ  function in the range of 

61.00002 10t = × . 
 
one to one onto the real axis if 0j ≠  and onto the interval ( ),1−∞  if 0j = . 
Moreover, no zero can exist outside these curves and if a zero 0s  has the order 
of multiplicity m then m curves ,k jΓ  must pass through 0s . We have shown 
(see [15], Theorem 3) that 2m ≤  and every strip kS  can contain at most one 
double zero. When such a zero exists it must be at the intersection of ,0kΓ  with 

, 1k −Γ  or with ,1kΓ . Examples of double zeros have been obtained in [15] by 
taking linear combinations of Dirichlet L-functions and by using the fact that 
those functions satisfy Riemann type of functional equations. There are a lot of 
other classes of Dirichlet functions satisfying Riemann type of functional equa-
tions and Selberg [20] revealed their connection with the Riemann Hypothesis. 
In his axiomatic approach, dealing with ordinary Dirichlet series, another prop-
erty that those series can have has been taken into account, namely of being ex-
pressible as an Euler product. We continue to deal with general Dirichlet series 
which admit meromorphic extensions into the whole complex plane and look 
for properties of the respective functions similar to those postulated by Selberg.  

Let us notice first that the functional equation Riemann has found for the ζ - 
function has been a by-product of the continuation process of the ζ -series 
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through contour integration (see [13], page 216). By a happy coincidence, the 
sum of residues of the integrand has as a factor ( )1 sζ − . The other factor is a 
trigonometric function whose zeros are easily computed. They are trivial in 
Riemann’s view. The Riemann Hypothesis (RH) concerns the other zeros, the 
non trivial ones. For them ( )0 0sζ =  if and only if ( )01 0sζ − = , which means 
that either ( )0 01 2Re Re 1s s= = − , hence we have a unique zero on the critical 
line Re 1 2s = , or we have two zeros symmetric with respect to the critical line. 
The RH says that for every non trivial zero 0s  of ( )sζ  we have 0 01s s= −  
i.e. 0Re 1 2s = . We will assume that ( ),A sζ Λ  satisfies a Riemann type of func-
tional equation, i.e. ( ) ( ) ( ), , 1A As M s sζ ζΛ Λ= − , where the multiplier ( )M s  is 
a meromorphic function in the complex plane whose zeros can be trivially 
computed. We will call the zeros of ( )M s  trivial zeros of ( ),A sζ Λ  and we no-
tice that the off critical line non trivial zeros of ( ),A sζ Λ  are symmetric with re-
spect to the critical line. All the functions of the Selberg class satisfy this proper-
ty. However there are a lot of other functions satisfying a similar property. For 
example, it is known that for the Riemann alternate Zeta function  

( ) 1 1 2 1 3s s
a sζ = − + −  we have ( ) ( ) ( )11 1 2s

a s sζ ζ−= −  and since  

( ) ( ) ( )12 sin 1 1
2

s s ss s sζ ζ− π π  
 

= Γ − −  we obtain  

( ) ( ) ( ) ( ) ( )12 2 1 1 2 sin 1 1
2

s s s
a a

ss s sζ ζ− π = − − Γ π  −
 

−  . It is obvious that  

besides the trivial zeros of ( )sζ , the function ( )a sζ  has the trivial zeros 
( )1 2 ln 2,k i k+ π ∈ . The non-trivial zeros of ( )sζ  and ( )a sζ  coincide. 
Analogously (see [16]), for any modulus 1q >  the Dirichlet L-function defined 
by the principal character modulo q, which is ( ) ( ) ( ),1, 1 sL q s q sζ−= −  has as 
trivial zeros besides those of ( )sζ  the points 2 ln ,k i q kπ ∈ . Also, if χ  is 
an imprimitive Dirichlet character modulo q induced by a primitive Dirichlet 
character 1χ  modulo 1q , then ( ) ( ) ( )1 | 1, , 1 s

p qL s L s p pχ χ χ − = Π −   and we 
see that the non-trivial zeros of ( ),L s χ  and ( )1,L s χ  are the same, since the 
zeros of the product are trivial. We believe that this is what Riemann meant by 
trivial zeros of ( )sζ  and not the fact that they are real zeros. It is just a coinci-
dence that in the particular case of ( )sζ  they are the same. This is a crucial 
fact to be settled, since the extension of RH depends essentially on it. We have 
proved in [16]: 

Proposition 3: If ( ),A sζ Λ  satisfies a Riemann type of functional equation, 
but does not satisfy the RH, then: 

(a) The off critical line non-trivial zeros appear in couples of the form  

1 1s itσ= +  and 2 2 11s it itσ σ= + = − + , where 1 1 2σ > . There is  

0 0,0 1τ τ< <  such that ( )( ), 0 0A sζ τΛ′ = , where ( ) ( ) 1 21s s sτ τ τ= − +  
(b) ( )0Re 1 2s τ <  
This affirmation is illustrated in Figure 6 below. Here ( )0 0s s τ=  is a branch 

point for ( ),A sζ Λ . Two orthogonal curves intersecting at 0s  are mapped one 
to one by ( ),A sζ Λ  onto the ray issuing from the origin and passing through 

( ), 0A sζ Λ . If we ignore the parts of these curves which are projected onto the  
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Figure 6. The non-trivial zeros of a Dirichlet function satisfying a Riemann type of 
functional equation are symmetric with respect to the critical line. 
 
interval from 0 to ( ), 0A sζ Λ  (the yellow parts), what remains is an unbounded 
curve γ  separating 1s  and 2s . This curve is mapped two-to-one onto the 
part of the ray from ( ), 0A sζ Λ  (marked ( )0f s  on Figure 6) to infinite and 
therefore it is a part of the boundaries of the fundamental domains 1Ω  and 

2Ω  which contain respectively 1s  and 2s . The conformal mapping 

( ) ( )
2

1
, ,A As sϕ ζ ζ−
Λ ΛΩ

=                        (13) 

of 1Ω  onto 2Ω  can be extended to an involution of 1 2 γΩ Ω   in which 
γ  is mapped one to one onto itself with the fix point 0s . 

In what follows we will deal with general Dirichlet series whose coefficients 
and exponents satisfy some special conditions. We consider the coefficients as 
being the values of arithmetic functions: :χ →   defined by ( ) nn aχ = . We 
say that the function χ  is totally multiplicative if ( )1 1χ =  and for every m 
and n we have ( ) ( ) ( )mn m nχ χ χ= . The Dirichlet characters are totally mul-
tiplicative arithmetic functions defined on   for which there exists a positive 
integer m such that ( ) ( )n m nχ χ+ =  for all n∈ . We say that χ  is a Di-
richlet character modulo m. The ordinary Dirichlet series defined by such coef-
ficients are called Dirichlet L-series. We notice that if χ  is totally multiplica-
tive and n has the prime decomposition 1 2

1 2
k

kn p p pαα α=   then 

( ) ( ) ( ) ( )1 2
1 2

k
kn p p p αα αχ χ χ χ=            (*) 

The exponents can be considered also as generated by an arithmetic function 
:λ +→   by ( ) nnλ λ=  We say that λ  is an additive function if  
( ) ( ) ( )mn m nλ λ λ= +  for every m and n. It can be easily checked that if λ  is 
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additive then for any n with prime decomposition 1 2
1 2

k
kn p p pαα α=   we have 

( ) ( ) ( ) ( )1 1 2 2 .k kn a p p pλ λ α λ α λ= + + +               (**) 

Theorem 5. Suppose that the general Dirichlet series  

( ) ( ) ( ) ( ) ( ) ( ) ( )) 2 3
, 1 e 1 2 e 3 en s s s

A ns n λ λ λζ χ χ χ∞ − − −
Λ =

= = + + +∑       (14) 

converges absolutely for some s and is such that ( )nχ  is totally multiplicative 
and ( )nλ  is additive. Then 

( ) ( ) ( ) 1

, 1 e p s
A ps p λζ χ

−−
Λ ∈℘

 = − ∏                  (15) 

where ℘  is the set of prime numbers. 
Proof: On multiplying both terms in (14) by ( ) ( )21 2 e sλχ −−  we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 5
,1 2 e 1 3 e 5 es s s

A sλ λ λχ ζ χ χ− − −
Λ

 − = + + +           (16) 

where in the right hand side all the terms with even arguments have cancelled 
since ( ) ( ) ( )2 2k kχ χ χ=  and ( ) ( ) ( ) ( ) ( )22 2e e e el k ss k s k sλλ λ λ− + − − − = = . If we now 
multiply in (16) by ( ) ( )31 3 e sλχ −−  we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 5 7
,1 2 e 1 3 e 1 5 e 7 es s s s

A sλ λ λ λχ χ ζ χ χ− − − −
Λ

   − − = + + +      (17) 

where in the right hand side all the terms with arguments multiple of 2 and 3 
have cancelled. After 1n −  steps in which we have used consecutive primes 

1 2 1, , , np p p −  the right hand side becomes ( ) ( )1 e np s
np λχ −+ +  all the other 

coefficients and exponents depending on arguments which are not multiple of 

1 2 1, , , np p p − . 
Let us take 0Re asσ σ σ= > >  where aσ  is the abscissa of absolute con-

vergence of the series (14). By using the notation ′Σ  for the summation of 
terms with arguments not multiple of 1 2 1, , , np p p −  we have: 

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0

00 0

0

e e

e e

e e e

e 0

n n

n

nn
n

n

k s k
k p k p

k k
k p

k pp k
k p

k s
k p

k k

k

k

k

λ λ σ

λ σ σ λ σ

λ λ σ σλ σ σ λ σ

λ

χ χ

χ

χ

χ

− −
≥ ≥

− − −
≥

 − − −− − − 
≥

∞ −
=

′ ′Σ ≤ Σ

′= Σ

′= Σ

≤ →∑

 

as n →∞ , since the series ( ) ( ) 0
1 e k

k k λ σχ∞ −
=∑  is convergent. The last inequa-

lity is true because ( )( )0e 1npλ σ σ− − <  and ( ) ( ) ( )0e 1nk pλ λ σ σ − − −  ≤  for nk p≥ . This 
shows that the formula (15) is true. 

We say that the series (14) is an Euler product series. When it can be contin-
ued as a meromorphic function into the whole complex plane we will say that 
the respective function is an Euler product function. It can be easily checked that 
the Dirichlet L-functions are Euler product functions. On the other hand, totally 
multiplicative functions can be built by taking :χ ℘→   arbitrary and ex-
tending it to   by the formula (*). Obviously, any logarithm function is an ad-
ditive function, yet the class of additive functions is much larger. Indeed, we can 
define an arbitrary additive function as follows. Take :λ +℘→   and extend it 
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to   by the formula (**) in the following way. First, 1 0λ =  and then 2λ  and  

3λ  are arbitrary subject to the conditions 2 3 2
30 2
2
λ λ λ< < < . Then set  

4 22λ λ= . Next, take 5λ  arbitrary, subject to the only condition 4 5 2 3λ λ λ λ< < +  
and set 6 2 3λ λ λ= + . Then take 7λ  arbitrary subject to the condition  

6 7 23λ λ λ< <  and set 8 23λ λ= , and 9 32λ λ= . By the initial inequalities we 
made sure that 8 9λ λ< , etc. We can do the same for any two consecutive sub-
scripts and then the function :λ +→   is increasing and the equation (**) is 
satisfied. With the two functions χ  and λ  we build arbitrary Euler product 
general Dirichlet series. 

Let us denote by L  the class of functions obtained by meromorphic con-
tinuation to the whole complex plane of the series (1) which satisfy a Riemann 
type of functional equation and are Euler product functions. We suppose also 
that the series (1) has the abscissa of convergence 0cσ ≤ . The off critical line 
non-trivial zeros of these functions come in couples 1 1 0s itσ= +  and  

2 2 0s itσ= + , where 2 11σ σ= −  and 1 1 2σ ≥ . 
What follows is a new approach to the problem of the location of non-trivial 

zeros of functions of the class L  undertaken in [21], Theorem 3 and [16], 
Theorem 13. 

Theorem 6: The functions of the class L  satisfy the Riemann Hypothesis, 
i.e. for every non-trivial zero s itσ= +  we have 1 2σ = . 

Proof: Let us denote for the n-th prime number np  and any p∈℘: 

( ) 1 e p

n

s
n pp pf s a λ−

≤
 = − ∏                     (18) 

and notice that ( )nf s  are integer functions with ( ) ( ),lim 1n n Af s sζ→∞ Λ=  
uniformly on compact sets of the half plane of convergence. Since 0cσ ≤ , a 
neighborhood of the fix point 0s  from Figure 5 is mapped onto itself by the 
function ( )sϕ  given by the formula (13) such that for every s in that neigh-
borhood ( )( ) ( ), ,A As sζ ϕ ζΛ Λ= . Then 

( )( ) ( ) ( ) ( )( ), ,lim 1n n A An
f s f s s sϕ ζ ζ ϕΛ Λ→∞

= ≡            (19) 

in that neighborhood. There is a unique extension of this last ratio to an analytic 
function in the domain 1 2 γΩ Ω   of the Proposition 3. The functions 

( )( )nf sϕ  and ( )nf s  are also defined in that domain. By the permanence of 
functional equations (see [19], page 288), the Equality (19) must be valid also in 

1 2 γΩ Ω  , in particular at 1 0itσ +  and 2 0itσ + . 
However, ( ) ( ), 1 0 , 2 0 0A Ait itζ σ ζ σΛ Λ+ = + =  and therefore their ratio is not 

defined. Yet, the two zeros have the same order of multiplicity and the l’Hospital 
rule applies. 

The conclusion is that ( ) ( )( ), ,A As sζ ζ ϕΛ Λ  is identically equal to 1 in 

1 2 γΩ Ω  . In particular  
( )( ) ( ) ( ) ( )1 0 1 0 , 1 0 , 2 0lim 1n n n A Af it f it it itϕ σ σ ζ σ ζ σ→∞ Λ Λ+ + = = + + . By (18), 

this limit is: 
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( )( ) ( )( )
( )( ){ }

( )( ){ }

1 0 1 0

1 2 1 2

1 2 1 2

1

1 0

1 0

lim 1 e 1 e

lim exp 1

exp

p p

n

n n

n n

it it
n p pp p

n p p p p p p

p p p p p p

a a

a a a it

a a a it

λ σ λ σ

λ λ λ σ

λ λ λ σ

− − + − +
→∞ ≤

→∞

 − −  

 = − + + + − + + 

 − + + + + + 

∏

  

  

 

The ratio of the leading terms is  

( )( )
1 2 1exp 2 1

np p pλ λ λ σ + + + −   and at the limit as n →∞  it should be 
(19). Yet the limit is ∞  if 1 1 2σ > . Therefore, since (19) is true, we must have 

1 1 2σ = , in which case the ratio of the leading terms in (19) is 1 and therefore 
the limit is 1, as expected. Then we have also 2 1 21 1σ σ= − = . This doesn't 
mean that we have necessarily a double zero. However, if a double zero exists, it 
should be on the critical line, which agrees with Theorem 6. On the other hand, 
since simple zeros off critical line cannot exist, RH for the class L  is com-
pletely proved. 

5. Conclusion 

In order to properly tackle the extension of the Riemann Hypothesis to a class of 
functions generated by general Dirichlet series, we needed to reformulate the 
concept of trivial and non-trivial zeros. This fact required to redefine the con-
cept of multiplier in a Riemann type of functional equation as a meromorphic 
function in the complex plane whose zeros can be trivially found. Therefore the 
multiplier is not necessarily a real function, as usually thought of, and a Riemann 
type of functional equation in our meaning is more general. What remains the 
same is the fact that the off critical line non-trivial zeros of a Dirichlet function 
satisfying a Riemann type of functional equation appear in couples symmetric 
with respect to the critical line Re 1 2s = . For the functions derived from Euler 
product series, it is shown that those zeros must coincide. We used as a tool in 
proving this assertion known facts about the geometry of mappings by Dirichlet 
functions, as well as the classic theorem of permanence of functional equations. 
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