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Abstract 

We study the thermal effect on skin exposed to an electromagnetic beam of 
time-dependent power. We consider two types of beam power time schedules. 
In the controlled temperature exposure, the skin surface temperature is in-
creased quickly to a prescribed level using a high beam power; then the sur-
face temperature is maintained at the prescribed level by adjusting the beam 
power adaptively. In the constant power exposure, the applied beam power is 
relatively low and stays unchanged over the time. We start both types of ex-
posures at the same time and compare their internal temperatures of skin 
when they have the same surface temperature. In a non-dimensionalized 
formulation, we show that at the moment when both exposure types reach 
the same prescribed surface temperature level, the controlled temperature 
exposure has a higher internal temperature at all depths. This conclusion is 
mathematically rigorous and is independent of skin material properties. 
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1. Introduction 

In many medical applications, such as cancer hyperthermia, patients are exposed 
to radiofrequency (RF) radiation [1]. We consider the thermal effect of RF radi-
ation on human skin. The electromagnetic energy deposited by RF radiation in-
creases the skin temperature. The skin surface temperature can be measured in 
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real time by an infrared camera and can be controlled by tuning the power of RF 
radiation. In this study, we examine the skin internal temperature, which is the 
real target of control in medical applications. 

We consider the situation where a test subject’s skin is exposed to an electro-
magnetic beam [2] [3] [4]. We focus on the thermal effect on the skin tissue 
along the beam center line, which has the highest power density depo-
sited/absorbed relative to other lines parallel to the beam center line. On the skin 
surface and at any given depth, the beam center line has the highest temperature. 
In this mathematical study, we allow the beam power to vary with time. We con-
sider two types of beam power time schedules. In the controlled temperature 
exposure, the skin surface temperature (at the beam center) is increased quickly 
to a prescribed level using a high beam power; then the surface temperature is 
maintained at the prescribed level by adjusting the beam power adaptively, 
leading to a time-varying beam power. The second type of exposure is the con-
stant power exposure, in which the applied beam power is relatively low and 
stays unchanged over the time. We study the surface and internal temperatures 
of skin caused by these two types of exposures. We start both types of exposures 
at the same time. Due to its relatively higher initial power level, the controlled 
temperature exposure increases the temperature faster in the initial phase. Upon 
reaching the prescribed surface temperature level, the power is adaptively lo-
wered to maintain the surface temperature. The constant power exposure, on the 
other hand, increases the temperature relatively slower but steadily. Eventually 
exposure types reach the prescribed surface temperature level. The main objec-
tive of this study is to compare the internal temperatures of the two exposures. 

The rest of the article is organized as follows. In Section 2, we discuss the ma-
thematical formulation and solution for the case where the beam power varies 
with time. Based on the solution for time-varying beam power, in Section 3 we 
develop the mathematical scheme for adjusting the beam power to maintain the 
surface temperature at the prescribed level. We run simulations to implement 
the control scheme and to demonstrate numerically that the beam power is a 
decreasing function of time in the controlled temperature exposure. This obser-
vation motivates Theorem 1. The internal temperatures of the two exposures are 
examined numerically in Section 4. A key observation is that when both expo-
sures have the same surface temperature, the controlled temperature exposure 
always has the higher internal temperature at all depths. This finding motivates 
Theorem 2. In Section 5, we prove Theorem 1 and Theorem 2 rigorously in a 
dimensionless formulation. Thus, the main conclusions in this study are inde-
pendent of skin material properties and independent of prescribed temperature 
level. 

2. Mathematical Formulation for an Electromagnetic Beam 
of Time-Dependent Power 

We adopt a formulation similar to the one in our previous studies [5] [6] [7], 
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briefly summarized below. Let ( ),T z t  denote the skin temperature along the 
beam center line as a function of depth z and time t. We assume 1) the electro-
magnetic beam is perpendicular to the skin surface (i.e., beam incident angle = 
0); 2) before the exposure, the skin has a uniform initial temperature baseT  (the 
baseline temperature); and 3) heat conduction is included only in the depth di-
rection [8] (which is justified given the small length scale of electromagnetic 
wave penetrating in the skin depth direction and the much larger length scale of 
beam cross-section, and which allows us to separate z from ( ),x y ). 

The temperature distribution ( ),T z t  is governed by the heat equation 

( ) ( )

( )

2

m 2

base
0

exp

0, ,0

p

z

T TC k P t z
t z

T T z T
z

ρ µ µ

=

 ∂ ∂
= + − ∂ ∂

∂ = =
 ∂

                (1) 

where  
• mρ  is the mass density of the skin; 
• pC  is the specific heat capacity of the skin; 
• k  is the heat conductivity of the skin; 
• µ  is the absorption coefficient of the skin for the beam frequency; 
• ( )P t  is the beam center power density absorbed into the skin at time t. 

We first non-dimensionalize variables and functions in (1). The depth scale is 
provided by, 1 µ , which describes the characteristic scale of electromagnetic 
energy penetrating in the depth direction. The time scale is derived from the 
length scale and parameters of heat capacity and heat conduction. The tempera-
ture scale is usually set based on the objective of tests. For example, in studying 
heat-induced withdrawal reflex, the temperature scale is set to the difference 
between the activation temperature of nociceptors ( actT ) and the baseline tem-
perature of skin ( baseT ). The power density scale is derived from the temperature 
scale and skin material properties. Below we list these scales and the associated 
non-dimensional quantities. 
• Depth scale and time scale: 

m
s s 2

1 , pC
z t

k
ρ

µ µ
≡ ≡  

• Non-dimensional depth and time: 
2

nd nd
s s m

,
p

z t kz z t t
z t C

µµ
ρ

≡ = ≡ =  

• Temperature scale and power density scale: 

act base s,s sT T T P k Tµ≡ − ≡  

• Non-dimensional temperature as a function of ( )nd nd,z t : 

( ) ( ) base
nd nd nd

,
,

s

T z t T
T z t

T
−

≡  

• Non-dimensional power density as a function of ndt : 
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( ) ( )
nd nd

s

P t
P t

P
≡  

The non-dimensional temperature is governed by 

( ) ( )

( )
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nd nd nd2
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nd

nd 0

exp

0, ,0 0
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t z
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
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                 (2) 

In this study, we analyze the non-dimensional system (2) and its solution. For 
conciseness, we shall drop the subscript “nd” and use the simple notations for all 
non-dimensional quantities. For example, ( ),T z t  means ( )nd nd nd,T z t . The 
solution of initial boundary value problem (2) has the analytical expression 

( ) ( ) ( )

( )

0
, , d

1 2 1 2, erfc e erfc e
2 24 4

t

t z t z

T z t P s G z t s s

t z t zG z t
t t

− +

 = −

 − +   

= +    
    

∫
           (3) 

where ( )erfc u  is the complementary error function defined as 

( ) 22erfc e ds
u

u s
+∞ −≡

π ∫
                      (4) 

Next, we use the temperature solution (3) to design the beam power schedule 
( )P t  for controlling the skin surface temperature. 

3. Surface Temperature Control 

In this section, we study the controlled temperature exposure. Let T∆  be the 
prescribed surface temperature level. The ∆  notation stems from that it is the 
intended non-dimensional surface temperature rise over the non-dimensional 
baseline temperature (0). Based on the temperature solution given in (3), we 
write the surface temperature as 

( ) ( ) ( )
0

0, d
t

T t P s b t s s= −∫                     (5) 

where ( ) ( ) ( )0, e erfc 0tb t G t t≡ = >  
The asymptotic behavior of ( )b t  follows from the asymptotic expansion of 

( )erfc t . 

( )
2

22

e 1erfc 1
2

u

u
uu

−  = − + 
π 

  

( ) ( ) 1 1e erfc 1
2

tb t t
tt

 = = − π
+

 
                 (6) 

When the beam power is kept at any fixed value, ( ) CP t P≡ , the surface tem-
perature is proportional to the beam power and increases monotonically with 
time without bound. 
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( ) ( )0, CT t P tβ=  

( ) ( ) ( )0

2d e erfc 1

2 11 for large .

t tt b s s t t

t t
t

β
π

≡ = − +

≈
π π

− +

∫
              (7) 

In the controlled temperature exposure, we start with a relatively high beam 
power 0P . We keep the beam power at 0P  until time 0t  when the surface 
temperature reaches the prescribed T∆ . Mathematically, 0t  is governed by 
( )00,T t T= ∆ , which gives the equation 

( )0
0 00

d
t

T P b t s s∆ = −∫                       (8) 

For 0t t> , the beam power is adjusted adaptively to maintain the surface 
temperature at the prescribed T∆ . To mimic the realistic experimental situa-
tion, we consider the case of adjusting the beam power in discrete time steps. We 
use a uniform grid for 0t t> . 

0 , 1, 2,3,jt t j t j= + ∆ =   

In each small time interval ( 1,j jt t−  , we use a constant beam power jP . The 
discrete-time beam power schedule has the form 

( ) (
0 0

1

, 0

, , , 1, 2,3,j j j

P t t
P t

P t t t j−

≤ ≤=  ∈ =  

               (9) 

In the controlled temperature exposure, the initial beam power 0P  and the 
target temperature level T∆  are prescribed as the specified parameters. In 
comparison, the initial exposure period 0t  and the subsequent beam power le-
vels { }, 1, 2,3,jP j =   are the derived parameters: they are calculated from the 
given parameters. 0t  is determined from ( )00,T t T= ∆ . For each 1j ≥ , we set 
beam power jP  to maintain ( )0, jT t T= ∆ . The beam power jP  for time in-
terval ( 1,j jt t−   depends on the power levels for all preceding time intervals. 
First, we solve for 1P  in equation ( )10,T T t∆ = : 

( ) ( )0 1

0
0 1 1 10

d d
t t

t
T P b t s s P b t s s∆ = − + −∫ ∫                (10) 

Once 1P  is determined, we solve for 2P  in equation ( )20,T T t∆ = : 

( ) ( ) ( )0 1 2

0 1
0 2 1 2 2 20

d d d
t t t

t t
T P b t s s P b t s s P b t s s∆ = − + − + −∫ ∫ ∫        (11) 

In general, when all preceding power levels { }0 1, , , jP P P  are known, we 
solve for 1jP +  in equation ( )10, jT T t +∆ = : 

( ) ( ) ( )0 1

1
0 1 1 1 10

1
d d dk j

k j

jt t t
j k j j jt t

k
T P b t s s P b t s s P b t s s+

−
+ + + +

=

∆ = − + − + −∑∫ ∫ ∫    (12) 

It is worthwhile to compare the mathematical control described above and the 
feedback control implemented in real tests. In experiments, the skin material 
properties are unknown; the skin surface temperature is monitored in real time 
using an IR camera connected to a computer; and the computer switches the 
beam power on/off depending on the current surface temperature reading. At 
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the beginning of each test, the high beam power 0P  is kept on until the pre-
scribed temperature level T∆  is reached. Then beam power 0P  is switched on 
and off rapidly using the feedback control to maintain the surface temperature at 

T∆ . When averaged over a time interval, the rapid on/off cycling of high beam 
power 0P  gives an effective constant (low) beam power over that time interval, 
which corresponds to beam power jP  for time interval ( 1,j jt t−   in our ma-
thematical formulation (9). 

We first explore numerically the behavior of the beam power time schedule 
( )P t , constructed above for maintaining the surface temperature at T∆ . Fig-

ure 1 plots ( )P t  (left panel) and the associated surface temperature ( )0,T t  
(right panel). The calculation is based on non-dimensional parameters 0 8P =  
and 2T∆ = . The initial exposure period is 0 0.3691t = . All quantities are 
non-dimensional. The beam power drops to 3.1575P =  at 0t  and from there 
it continues a gradual downward trend over the time. At 4.5t = , the beam 
power is below 0.55P = . Figure 1 suggests a key result regarding the beam 
power schedule calculated from our mathematical model for controlling surface 
temperature. 

Theorem 1 Beam power levels { }jP  calculated based on ( ){ }0, jT t T= ∆  
satisfy 

0 1 2 1j jP P P P P +> > > > > >  . 

In other words, in the controlled temperature exposure, the beam power sche-
dule ( )P t  is a decreasing function of time. 

This theorem is a key analytical tool when we compare the skin internal tem-
perature for the two types of exposures: controlled temperature exposure vs 
constant beam power exposure. Although Theorem 1 is confirmed numerically 
in Figure 1 for 2T∆ =  and 0 8P = , we will prove it rigorously in Section 5 for 
all values of T∆  and 0P . In Section 4, we compare the skin internal tempera-
ture of the two exposure types and summarize the key result in Theorem 2, 
which is also proved rigorously in Section 5. 

 

 
Figure 1. The controlled temperature exposure. Left panel: beam power time schedule for maintaining surface 
temperature. Right panel: surface temperature vs time. 
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4. Skin Internal Temperature of Controlled Temperature  
Exposure vs Constant Power Exposure 

In the constant power exposure [9], a relatively low beam power LP  is applied 
over the time without any change in power level. To distinguish these two types 
of exposures, we use ( )TP t∆  and ( )LP t  to denote the beam power time sche-
dule of respectively the controlled temperature exposure and the constant (low) 
power exposure. 

( ) (
0 0

1

, 0

, , , 1,2,3,T
j j j

P t t
P t

P t t t j∆
−

≤ ≤=  ∈ =  

             (13) 

where jP  is solved sequentially from 

( ) ( ) ( )1

10
d dj j

j

t t
T j j jt

P s b t s s P b t s s T−

−
∆ − + − = ∆∫ ∫  

( ) 0L LP t P P≡ < , independent of t                 (14) 

Accordingly, the corresponding skin internal temperature of these two exposure 
types are denoted respectively by ( ),TT z t∆  and ( ),LT z t . 

( ) ( ) ( )
0

, , d
t

T TT z t P s G z t s s∆ ∆= −∫  

( ) ( )
0

, , d
t

L LT z t P G z t s s= −∫  

Let Lt  be the time when the surface temperature of constant power exposure 
reaches the prescribed level. Lt  is governed by ( )0,L LT t T= ∆ , which via (7) 
becomes 

( )L LT P tβ∆ =                         (15) 

( )Ltβ  increases monotonically with Lt  without bound. It follows that for any 
0T∆ >  and 0LP > , Equation (15) has a unique solution of Lt . When T∆  is 

fixed, Lt  is a decreasing function of LP . Since 0LP P< , we have 0Lt t> . That 
is, in the controlled temperature exposure, the surface temperature reaches T∆  
earlier than it does in the constant power exposure. At time Lt , both the con-
trolled temperature exposure and the constant power exposure have the same 
surface temperature ( T∆ ). 

( ) ( )0, 0,T L L LT t T t T∆ = = ∆ . 

We are interested in comparing the skin internal temperature for the two ex-
posure types at time Lt . 

Again, we first explore it numerically. We use 0 8P =  and 2T∆ =  for the 
controlled temperature exposure (the same parameters used in Figure 1). For 
the constant power exposure, we examine two power levels below 0P : 0.8LP =  
and 1.6LP = . The internal temperatures at time Lt  are shown in Figure 2 for 
the two exposure types and for the two values of LP . Figure 2 suggests a key 
result regarding the internal temperatures of the two exposure types. 
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Figure 2. Comparison of internal temperatures ( ),T LT z t∆  (controlled temperature exposure) and ( ),L LT z t  

(constant power exposure) at time Lt  when ( )0,LT t  reaches T∆  and ( )0,TT t∆  is maintained at T∆ . Left 

panel: 0.8LP = . Right panel: 1.6LP = . 

 
Theorem 2 When the surface temperature of the constant (low) power expo-

sure reaches the prescribed ΔT, both exposure types have the same surface tem-
perature and the controlled temperature exposure always has a higher internal 
temperature. 

( ) ( ), , for 0T L L LT z t T z t z∆ > > . 

We will prove Theorems 1 and 2 rigorously in the next section. 

5. Proof of Theorems 1 and 2 

An analytical expression of ( ),T z t  is given in (3). We rewrite it as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

0
, , d

,
0, e erfc , ,

t

t

T z t P s b t s g z t s s

G z t
b t G t t g z t

b t

= − −

≡ = ≡

∫
           (16) 

where ( ),G z t  is defined in (3). As mathematical preparation for the proof of 
Theorems 1 and 2, we study the properties of functions ( ),G z t , ( )b t , and 
( ),g z t . 

5.1. Properties of ( )G z t, , ( )b t , and ( )g z t,  

Property 1 Function ( ),G z t  satisfies 

( ) ( )
2

4, 0, e for 0
z
tG z t G t z

−

> > . 

Proof. We rewrite the integral in ( )erfc u  using a change of variables 
s u w= + : 

( ) 2 2 22
0

2 2erfc e d e e ds u uw w
u

u s w
+∞ +∞− − − −= =

π π∫ ∫ . 

We apply this expression of ( )erfc ⋅  to rewrite the two terms in (3). 
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π
+ 

= 
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Substituting these two terms back into (3), we get 

( )

( )

2 2

2 22

2
4

0

2

2
4 4

0

1, e e e e d

1 e e 2d 0, e

t z zz w w w w
t t tt

tz zw w
tt t

G z t w

w G t

− − − −+∞

>

− −− −+∞

 
=

π

π

+  
 

> =

∫

∫

 . 

Here we have used ( )e e 2u u−+ >  for 0u ≠ . 
Property 2 ( ),g z t  is an increasing function of t at any fixed 0z > . 
Proof. We first calculate the time derivative of ( ),G z t . Differentiating (3) 

yields. 

( )

( )
2

4

, 1 2 1 2erfc e erfc e
2 24 4

1 1, e

t z t z

z
t

G z t t z t z
t t t t
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− +

−

∂  ∂ − +   
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π

 

= −

       (17) 

Using (17) at z and at z = 0, we calculate the time derivative of ( ) ( )
( )

,
,

0,
G z t

g z t
G t

= . 

( ) ( )
( )

( ) ( ) ( ) ( )

( )

( ) ( )

( )

2
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0
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−
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∂ ∂
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 
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 
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π


. 

Here we have used Property 1 to conclude that the term over the underbrace 
is positive. 

Property 3 Let ( ) ( )
( )

, 0
b t a

f t a
b t
−

≡ > . Then ( )f t  is a decreasing function 

of t for t a≥ . 
Proof. We first show several items about function ( )b t . 

1) ( ) ( ) 22
0

2e erfc e dt tw wb t t w
+∞ − −= =

π ∫
 decreases with t. 

2) ( )
2

22 4
0 0

2 1e d e d
uutw w tttb t w u

− −+∞ +∞− −=
π

=
π∫ ∫  increases with t. 
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3) ( ) ( )( ) ( ) 1e erfctb t t b t
t

′ = = −
π

. 

Graphs of ( )b t  and ( )tb t  are illustrated in the left panel of Figure 3. The 
right panel of Figure 3 compares ( ),g z t  vs z for several values of t (Property 
2). With the results itemized above, we examine the derivative of ( )f t . 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

( )
( ) ( ) ( )

( )

2

2

2

1 1 1

0

b t a b t b t a b t
f t

b t

b t b t a
t a t

b t

t a b t a tb t

t a tb t

′ ′− − −
′ =

 
− + − π − =

− − −
= <

π −

 

Here we have used items 3 and 2 above. 
Property 4 Suppose ( )1h t  and ( )2h t  are positive and decreasing functions 

of t, Let 

( )
( ) ( )

( )
1 2

2

d
, 0

d

t t

t
t t

t

h s h s s
f t t

h s s

+∆

+∆≡ ∆ >∫
∫

 

Then ( )f t  is a decreasing function of t. 
Proof. We examine the derivative of ( )f t . 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )

( )( )
1 2 1 2 2 2 2 1 2

2

2

d d

d

t t t t

t t

t t

t

h t h t h t t h t t h s s h t h t t h s h s s
f t

h s s

+∆ +∆

+∆

− − + ∆ + ∆ + − + ∆
′ = ∫ ∫

∫
. 

Since both ( )1h t  and ( )2h t  are positive and decreasing, we have 

( ) ( ) ( ) ( )1 2 1 2d d
t t t t

t t
h s h s s h t h s s

+∆ +∆
<∫ ∫  

( ) ( )2 2 0h t h t t− + ∆ >  

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( )( )

1 2 1 2

1 2 2 1 1 2

1 2 2

h t h t h t t h t t

h t h t h t t h t h t t h t t

h t h t h t t

− + ∆ + ∆

= − + ∆ + − + ∆ + ∆

> − + ∆

. 

It follows that 

( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

( )( )
2 2 1 2 1 2

2

2

d d
0

d

t t t t

t t

t t

t

h t h t t h t h s s h s h s s
f t

h s s

+∆ +∆

+∆

− + ∆ − +
′ < <

∫ ∫

∫
. 

Property 5 Let 

( )
( )
( )

0

0

d
, 0, 0

d

t

t

b t a s s
f t t a

b t s s

∆

∆

− +
≡ ∆ > >

+

∫
∫

. 

Then ( )f t  is a decreasing function of t for t a≥ . 
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Figure 3. Left panel: graphs of ( )b t  and ( )tb t . Right panel: ( ),g z t  vs z. 

 
Proof. We cast ( )f t  into the form of Property 4 

( )
( ) ( )

( )
1 2

2

d

d

t t

t
t t

t

h s h s s
f t

h s s

+∆

+∆= ∫
∫

 

( ) ( ) ( ) ( )
( )2 1,

b s a
h s b s h s

b s
−

= = . 

Property 3 gives that both ( )1h s  and ( )2h s  are positive and decreasing 
functions of s. Consequently the decreasing of ( )f t  follows directly from 
Property 4. 

Property 6 Let 

( )
( ) ( )

( )
0

d d
; , 0, 0

d

a t t

a
a t

a

b t s s b t s s
t a a t

b t s s
φ

+∆ ∆

+∆

− − −
≡ > ∆ >

−

∫ ∫
∫

       (18) 

Then ( ); 1t aφ <  and ( );t aφ  is a decreasing function of t for ( )t a t≥ + ∆ . 
Proof. We cast ( );t aφ  into the form of Property 5 

( ) ( ) ( )
( )( )
( )

0

0

d1; 1 ,
d

t

t

b t a t s s
t a f t

f t b t t s s
φ

∆

∆

− + ∆ +
= − =

− ∆ +

∫
∫

 

( ); 1t aφ <  follows from that ( )f t  is positive. Property 5 tells us that ( )f t  
decreases with t, which implies that ( );t aφ  is a decreasing function of t. 

5.2. Proof of Theorem 1 

We need to show 0 1 2P P P< < < . Since our main focus is on the relation 
among { }jP , we like to write 1jP +  in terms of the preceding power levels. For 

1P , we take the difference between (10) and (8) to obtain 

( ) ( ) ( )( )
( ) ( )( )

1 0 0

0

0

0

1 1 0 0 10 0

0 1 10

d d d

d d

t t t

t

t t t

t

P b t s s P b t s s b t s s

P b t s s b t s s
+∆ ∆

− = − − −

= − − −

∫ ∫ ∫

∫ ∫
. 
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It follows that 
( )1 0 1 0 0;P P t t Pφ= <                       (19) 

where ( );t aφ  is defined in (18). For 2P , we take the difference between (11) 
and (10). 

( ) ( ) ( )( )
( ) ( )( )

2 1 1

1 0 0

0 0

2 2 1 1 2

0 1 20 0

d d d

d d

t t t

t t t

t t

P b t s s P b t s s b t s s

P b t s s b t s s

− = − − −

+ − − −

∫ ∫ ∫

∫ ∫
 

which leads to 
( ) ( )( ) ( )

( )( ) ( )( )
2 1 0 2 0

1 1 0 2 0 1

0

2 ; 1 2 ; ;

1 2 ; ;

P P t t t t P t t

P t t P P t t P

φ φ φ

φ φ
<

= ∆ ∆ + − ∆ ∆

= + − ∆ ∆ − + <


           (20) 

Here we have used Property 6 and Equation (19) to conclude  
( ) ( )0 2 0 0 1 0 1; ;P t t P t t Pφ φ< = . For P3, we take the difference between (12) and (11), 

( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

3 2 2

2 1 1

1 1

0 0

0 0

3 3 2 2 3

1 2 3

0 2 30 0

d d d

d d

d d

t t t

t t t

t t

t t

t t

P b t s s P b t s s b t s s

P b t s s b t s s

P b t s s b t s s

− = − − −

+ − − −

+ − − −

∫ ∫ ∫

∫ ∫

∫ ∫

 

We introduce short notation ( );k k t tφ φ≡ ∆ ∆  and write 3P  as 

( ) ( )( ) ( )
( ) ( ) ( )( )

( )( ) ( )( )

3 2 2 2 1 3 2 3 0 3 0

2 2 2 1 2 2 0 3 0

0

2 2 3 1 0 3 0 2

0

1 1 1 ) ;

1 1 ;

1 ;

P P P P t t

P P P P t t

P P t t P

φ φ φ φ φ φ

φ φ φ φ

φ φ φ φ
<

<

= + − + − −

= + − − + + −

+ − − − + <





          (21) 

Here we have used ( )2 3 0φ φ− >  and ( ) ( ) ( )3 0 2 0 1 0; ; ;t t t t t tφ φ φ< <  from 
Property 6. Continuing in this way, we can show 1j jP P+ <  by induction. In 
summary, in the controlled temperature exposure, the beam power time sche-
dule is a decreasing function of time. 

5.3. Proof of Theorem 2 

We need to show ( ) ( ), ,T L L LT z t T z t∆ >  for 0z > . Here the time instance Lt  
is defined by ( ),L LT z t T= ∆ , which leads to 

( ) ( ) ( )( ) ( )
0

0 0, 0, dLt
T L L L T L LT t T t P s P b t s s∆ ∆= − = − −∫          (22) 

From Theorem 1, ( )TP t∆ , the beam power schedule of controlled tempera-
ture exposure, is a decreasing function of t. Since ( )Lb t s−  is positive, for the 
integral in (22) to be zero, there must be a unique ( )* 0, Lt t∈  such that 

( )
( )

*

*

for

for
T L

T L

P t P t t

P t P t t
∆

∆

 > <


< >
                      (23) 

Equation (22) is based on the difference in the surface temperature ( 0z = ) 
between the two exposure types. For the difference in the internal temperature of 
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skin ( 0z > ), we use the expression of ( ),T z t  given in terms of ( ) ( ),b t g z t  in 
(16). 

( ) ( ) ( )( ) ( ) ( )
( )

( )( ) ( ) ( )
( )

*

*

*

*

0
0 ,

0 ,

, , , d

, d

L

L

L

t
T L L L T L L L

g z t t

t
T L L Lt

g z t t

T z t T z t P s P b t s g z t s s

P s P b t s g z t s s

∆ ∆

> > −

∆

< < −

− = − − −

+ − − −

∫

∫









     (24) 

Property 2 tells us that ( ),g z t  is an increasing function of t. 

( ) ( )
( ) ( )

* *

* *

, , for

, , for

L L

L L

g z t s g z t t s t

g z t s g z t t s t

 − > − <


− < − >
                (25) 

Substituting (23) and (25) into (24), we obtain 

( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )

*

*

*
0

*

*
0

0, 0,

, ,

, d

, d

, d 0

L

L

T L L L

T L L L

t
L T L L

t
L T L Lt

t
L T L L

T t T t

T z t T z t

g z t t P s P b t s s

g z t t P s P b t s s

g z t t P s P b t s s

∆

∆

∆

∆

∆

= −

−

> − − −

+ − − −

= − − − =

∫

∫

∫


            (26) 

In conclusion, when both exposure types reach the same surface temperature, 
the controlled temperature exposure always has a higher internal temperature. 

6. Concluding Remarks 

In this study, we considered the thermal effect on skin exposed to an electro-
magnetic beam. We investigated the skin surface temperature and internal tem-
perature caused by the beam. Specifically, two exposure types were examined. In 
the controlled temperature exposure, a high beam power is used to increase the 
skin surface temperature quickly to a prescribed level. Then the beam power is 
adjusted adaptively to maintain the surface temperature at the prescribed level. 
In the constant power exposure, a relatively low beam power is applied without 
any change in power level over the time. We start both types of exposures at the 
same time. The controlled temperature exposure will reach the prescribed sur-
face temperature level first since it has a higher initial beam power. To maintain 
the surface temperature once the prescribed level is attained, beam power drops 
significantly and keeps declining gradually over the time. When both types of 
exposures reach the same surface temperature, the controlled temperature ex-
posure always has a higher internal temperature at all depths of skin. We proved 
this conclusion rigorously in a dimensionless formulation. This conclusion is 
independent of skin material properties, initial beam power levels and the pre-
scribed surface temperature level. 
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