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Abstract 

There are a few studies that focus on solution methods for finding a Nash 
equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior 
point method to solve the Nash equilibrium problems of a zero-sum game, 
and prove that it is theoretically a polynomial time algorithm. We implement 
the Karmarkar method, and a preliminary computational result shows that it 
performs well for zero-sum games. We also mention an affine scaling method 
that would help us compute Nash equilibria of general zero-sum games effec-
tively. 
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1. Introduction 

It is well known that John von Neumann the existence of Nash equilibria of ze-
ro-sum games in the late 1920s [1].  

Dantzig and Thapa [2] mentioned the linear programming formulation of a 
zero-sum game, and considered reducing linear primal and dual problems to a 
zero-sum game.  

Khachian [3] and Karmarkar’s [4] interior-point methods for solving linear 
programming problems in polynomial time are significant discoveries.  

Khachian’s ellipsoid method [3] is important in that it is a first polynomial 
time algorithm, however, computational results with it have been disappointing.  

Karmarkar’s projective scaling method [4] is considered to be a practical po-
lynomial algorithm. Numerous attempts have been made to refine a variety of 
interior point methods in the late 1980s [5] [6]. There are few studies concerning 
computational methods (e.g., [7]) to solve a Nash equilibrium of a zero-sum 
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game, in spite of those developments in linear programming.  
We discuss the use of the Karmarkar’s method to solve a Nash equilibrium of 

a zero-sum game, which is expressed as linear programming problems derived 
from the original zero-sum game, and prove that it is without doubt a poly-
nomial time algorithm. We implement the Karmarkar method, and apply it for 
solving Rock-Paper-Scissors, of which result seems to be promising. 

Finally, we also mention an affine scaling method that would help us compute 
a Nash equilibrium effectively. 

2. Formulation 

Dantzig and Thapa [2] mentioned that maximin strategy of Player 1 in a ze-
ro-sum game can be formulated as the following linear programming problem: 
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where ( )T, 1, ,1 neξ +∈ = ∈  , n nA ×∈  is a payoff matrix, and nx +∈  is a 
mixed strategy vector of Player 1. 

Likewise, the minimax strategy of Player 2 can be formulated as the following 
linear programming problem: 
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where ny +∈  is a mixed strategy of Player 2, which is, in fact, the linear pro-
gramming dual problem of (1).  

The following result which clarifies the relationship between (1) and (2).  
Theorem 1. There exist solutions { },x ξ  and { },y η  for (1) and (2). 

Moreover, 

ξ η= . 

Proof We let 1 2ξ ξ ξ= − , 1 0ξ ≥ , 2 0ξ ≥ , and rewrite (1) as  
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The dual linear program of (1) is 
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Note that (4) is equivalent to (2) by letting ( )1 2η η η= − − .  

There exists a feasible point for (3), such as 
1x e
n

′ = , 1 min j iji aξ ′ = ∑ ,  

2 0ξ ′ = . We also observe that (3) has a finite solution, as ( )1 2ξ ξ−  should be 
bounded because 1Δnx −∈ , where 1Δn−  is an 1n −  simplex. Therefore, 

( )1 2 1 2ξ ξ ξ η η η− = − − = − = −  because the strong duality theorem [8] holds. □ 
The above result shows that (2) is the linear programming dual problem of 

(1).  
Next, we establish the validity of the above formulation. Let { }1, ,x nS s s=   

and { }1, ,y nS s s=   be sets of pure strategies of Players 1 and 2, respectively. 
Let ( ),E x y  denote the expected payoff value for Player 1 when Player 1 takes x 
and Player 2 takes y as a mixed strategy, that is, 
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Theorem 2.  
( ) ( ) ( ), , ,E x y E x y E x y≤ ≤ .                    (6) 

Proof Because x  and y  are the solutions for (1) and (2), respectively, 
TAy e A xα≤ ≤ , 

where α ξ η= =  from Theorem 1. 
Therefore, 

Tx Ay α≤  and T T Ty A x x Ayα ≤ =  

namely, 
( ) ( ) ( ), , ,E x y E x y E x y≤ ≤ . □ 

The result from Theorem 2 is known as the minimax theorem [1]; however, 
the direct derivation above would be simple and easy to comprehend. 

3. Karmarkar Method 

We can use the simplex method to find a Nash equilibrium from the results of 
Section 2. 

However, the curse of dimensionality may occur if the running time required 
to solve a linear problem using the simplex method may increase rapidly as the 
number of variables increases. 

Therefore, we employ a variation of Karmarkar’s method [9] which belongs to 
an interior point method and assures the polynomial time convergence property. 

The Karmarkar method [9] we adopt deals with the following canonical form: 
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where , nc x∈ , 


T

1, ,1,0, ,0
m

na +

 
= ∈  
 
   , and n nA ×∈ . 

If T 0c x = , where x  is the solution of (7), we refer to (7) as the canonical 
form. 

It should be noted that the original Karmarkar’s method [4] utilizes 
( )T1, ,1 ne += ∈   instead of a. In this study, we utilize a because we can for-

mulate the part of components of x for mixed strategies as T 1a x =  in (14) and 
(15) later. 

The key projective transformation sends x to 
1
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where ( )diag kX x= . We notice that 1Δnx −∈ , where 1Δn−  is ( )1n − -simplex. 
The corresponding inverse transformation is  
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As seen in [9], the problem in (7) is transformed as 
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where c Xc=  and XA A= . We denote the constraint matrix using 

TB
e
A 

=  
 



, 

and the corresponding orthogonal projection matrix is ( ) 1T T
BP I B BB B

−
= − . 

The projected steepest-descent direction is 
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At each step, the next point 1kx +
  is given by  

1 Δk ex x
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so that 1kx +
  will be an inner point in 1Δn− . 

The next point 1kx +  in x-space is obtained by 
1
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Finally, we define the optimality criterion as  
T T 02k qc x c x−< ,                      (12) 

where 2 q−  is a prescribed precision. 
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Next, we describe the Karmarkar method as follows: 
Algorithm 1. 
Input: n nA ×∈ , nc∈ , a feasible point 0x  for (7) 
Output: *x  such that T * 0c x = , * 0Ax = , T * 1a x = , * 0x ≥ . 
1: Compute Δx  by (9).  
2: Determine 1kx +

  by (10).  
3: Obtain 1kx +  using (11). Check the optimality criterion using (12). 
4: 1k k← + . Go to Step 1. 
Karmarkar defined a potential function as follows: 

( )
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j

c xf x n c x x
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He proved that Algorithm 1 generates, { }kx , which reduces ( )kf x  by 
γ  > 0 at each iteration. 

In fact, the following result follows for original Karmarkar’s algorithm [4]. 
Theorem 3. Let { }kx  be the sequence generated by Karmarkar’s algorithm 

[4] applied to (3). Then, (3) can be solved in polynomial time. 
Proof We can transform (3) to original Karmarkar’s original canonical form 

[4] in pol-ynomial time in the manner of [4]. Then the result follows since the 
original canonical form can be solved in at most (𝑛𝑛(𝑞𝑞 + log2 𝑛𝑛)) iterations from 
Theorem 1 [4].  □ 

We can establish the following result. 
Theorem 4. A Nash equilibrium of zero-sum games can be found in poly-

nomial time. 
Proof Nash equilibria of zero-sum games can be formulated as (1) and (2), 

even if the value of the game is not necessarily 0. We can rewrite (1) and (2) as 
(3) and (4) respectively. (3) (and (4)) can be solved in polynomial time from 
Theorem 3. □ 

We should observe that the transformation in the above proof is used only for 
the proof itself. When 0ξ ≠ , we can employ the dual problem scheme [9, 
Chapter 17.5] to update an estimated lower bound to, *z , which is used to 
transform (3) into the canonical form (7).  

4. Computational Results 

In this section, we employ the Karmarkar method described in the previous sec-
tion.  

The zero-sum game (1) and (2) can be rewritten as: 
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and 
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where nx∈ , n nA ×∈ , ( )T1, ,1 ne = ∈  , ny∈ . 
These problems belong to the canonical form (7), which can be solved by Al-

gorithm 1. 
Rock-Paper-Scissors is used as a test problem of zero-sum games. Its payoff 

matrix for Player 1 (gain) and Player 2 (loss) is shown in Table 1.  
The Nash equilibrium of Rock-Paper-Scissors is 

{ } 1 1 1 1 1 1, , , , , ,
3 3 3 3 3 3

x y     =     
    

 

and the value of the game is 0. 
It should be noted that (14) and (15) are exactly the same because TA A= −  

in this case. Thus, we have only the results of (14) to demonstrate, namely, the 
problem is: 
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The Karmarkar method was coded in Python, and run on a Windows PC 
(Core i7 8550U, RAM 16GB). 

Table 2 summarizes the sequence generated by the Karmarkar method ap-
plied to (16) from ( )0 0.8,0.1,0.1x = , 0

1 0.1ξ = , 0
2 0.9ξ = , ( )0 0.8,0.1,1.5s = . 

We can see that the objective value decreases by half in each iteration, which 
with (12) validates Theorem 3. 

Figure 1 shows the sequences generated by the Karmarkar method from three 
different starting points 

 

 
Figure 1. Sequences for different starting points. 
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Table 1. Payoff matrix of rock-paper-scissors for player 1 (P1) and player 2 (P2). 

P1 
P2 

Rock Paper Scissors 

Rock 0 −1 1 

Paper 1 0 −1 

Scissors −1 1 0 

 
Table 2. Details for x0 = (0.8, 0.1, 0.1). 

iteration x1 x2 x3 objective value 

0 0.8 0.1 0.1 0.8 

1 0.66527 0.16691 0.16782 0.64421 

2 0.51157 0.24279 0.24565 0.43445 

3 0.39292 0.30417 0.30291 0.23486 

4 0.33965 0.33292 0.32742 0.10883 

5 0.33317 0.33338 0.33345 0.04942 

6 0.33335 0.33333 0.33332 0.02240 

7 0.33333 0.33333 0.33333 0.01014 

8 0.33333 0.33333 0.33333 4.59E-3 

 

( ) ( ) ( )0 0.8,0.1,0.1 , 0.1,0.8,0.1 and 0.1,0.1,0.8x = . 

It seems that each sequence tends linearly to the Nash equilibrium from an 
arbitrary interior point. 

Table 2 and Figure 1 show that the Karmarkar method is effective and effi-
cient even for small-size problems. 

5. Concluding Remarks 

Linear programming formulations can represent the minimax principle for ze-
ro-sum games. 

We have proved that the Karmarkar’s algorithm solves the linear program-
ming problems in polynomial time. 

The Karmarkar method performs well when the value of the game is 0. If the value 
of the game is not 0, we can utilize the dual problem scheme ([9], Chapter 17.5). 

We can resort to an affine scaling algorithm [10] because, either (1) or (2) is 
the linear programming standard form generated by introducing slack variables, 
regardless of whether or not the value of the game is 0. The affine scaling algo-
rithm for solving equilibria of zero-sum games would be practically effective; how-
ever, there is no proof that it has a polynomial time convergence property [11]. 
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