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Abstract 
Within the framework of a discrete model of the nuclei of linear and planar 
defects, the variational principles of sliding in translational and rotational 
plasticity, fracture by separation (cleavage) and shear (shearing) in crystalline 
materials are considered. The analysis of mass transfer fluxes near structural 
kinetic transitions of slip bands into cells, cells into fragments of deformation 
origin, destruction by separation and shear for fractal spaces using fractional 
Riemann-Liouville derivatives, local and global criteria of destruction is car-
ried out. One of the possible schemes of the crack initiation and growth me-
chanism in metals is disclosed. It is shown that the discrete model of plasticity 
and fracture does not contradict the known dislocation models of fracture 
and makes it possible to abandon the kinetic concept of thermofluctuation 
rupture of interatomic bonds at low temperatures. 
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1. Introduction 

The analysis of works [1] [2] [3] shows that during the generation of nuclei of 
linear and planar defects, two subsystems of electrons arise: photoelectrons 
knocked out of cations by an intermittent field, and intrinsic electrons of a solid. 
In metals, these are conduction electrons; in dielectrics and semiconductors, 
they are injected into the volumes of shock waves under the influence of external 
strong electric fields, and also arise when impurity donor atoms are introduced 
into the material. Here the subsystem of intrinsic electrons with thermal veloci-
ties ( ),epv p d s=  and matrix cations is a solid-state plasma, and the subsystem 
of photoelectrons is a set of plane beams with velocities pheV , while the subsys-
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tem of pairs of photoelectrons and cations weakly coupled by Coulomb attrac-
tion, of which photoelectrons were knocked out, is a deformation plasma beams. 

At large plastic deformations leading to the formation of stable fragmented 
structures up to critical ones, the average electron densities epn  and phen  and 
the corresponding plasma frequencies epΩ  and pheΩ  are quantities of the same 
order, which leads to a fundamentally new distribution of the dielectric constant 
tensor ( ),αβε ω k  both in space and in time. In this case, a new branch of the 
spectrum associated with the presence of beams is added to the main branch of 
the spectrum of longitudinal oscillations of the intrinsic plasma, where epΩ  re-
flects the collective natural oscillations, and pheΩ -oscillations and rotations in 
the additional potential relief of the nuclei of linear and plane defects. Here it is 
necessary to note the fundamental difference in the nature of the motion of elec-
trons in these subsystems: in their own plasma, the directions of thermal motion 
of electrons are equally distributed in the total solid angle, the values of their ve-
locities in metals are not lower than Fv ; and in dielectrics and semiconductors 
in the volumes of shock waves at electric fields near the breakdown tend to the 
rates of local metallization ,ms mdv v . On the contrary, in the plasma of beams, 
the alternating (intermittent) field creates dynamic anisotropy, while the direc-
tions of the velocities pheV  lie in the slip planes of single crystals, and in poly-
crystals the appearance of a subsystem of beams is possible at threshold values of 
the projections of these velocities on the slip plane in individual crystallites.  

Optical and electronic micro-fractography of the surface of fatigue brittle and 
viscous-plastic fractures of specimens from a wide range of metals and their al-
loys [4] [5], suggests that the geometry of such surfaces can be described by 
fractal functions such as Weerstrass, Takagi, and Riemann [6], while brittle frac-
tures as a combination of terraces and steps are reduced to a superposition of 
saw-tooth functions or condensation of singularities, and viscous-plastic frac-
tures to a countable number of peaks, where the left-side and right-side deriva-
tives of the surface profile tend either to the left to +∞, and to the right to −∞, or 
vice versa. 

It is also known that the macroscopic curves of tension [7] [8] and creep [9] 
have an intermittent jump-like shape and thus reflect the fractal nature of de-
formation processes of plasticity and fracture, where, at small deformations, the 
density of jumps jumpη  and the depth of load decay per jump σ∆  are small, 
and at large deformations jumpη  and σ∆  increase to 1 order.  

Currently, there are several ways to describe the structural kinetic transitions 
“cell-fragment”, “fragment-microcrack”: 1) within the framework of a synergetic 
approach using scale invariance [10] [11], which makes it possible to relate the 
fractal properties of an open system far from equilibrium with deformation pro- 
cesses; 2) with the help of the phase transition of the crystalline state to the amor- 
phous [12] [13], which leads to the appearance of submicrocracks in front of the 
top of the growing crack; 3) the kinetic concept of thermofluctuation rupture of 
interatomic bonds [14]. Here the description of the transitions is made without 
using the discrete model of charged particles that oscillate and rotate in potential 
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valleys of the additional potential relief of the nuclei of linear and planar defects 
arising due to the distribution of conduction electrons [1] [2] [3]. 

The aim of this work is to build a physical and mathematical discrete model of 
structural kinetic transitions taking into account the fractality of deformation 
processes. 

2. Theoretical Model 

Let us consider variations in the potential relief of a crystal ( ),cV r t�  as a func-
tional of external currents , , ,e e cat cat

osc turn osc turnJ J J J  [15]. When strip, cellular, frag-
mented structures stable at a given level of latent energy are formed, the neces-
sary condition for an extremum is fulfilled 

( ) 0, , ; ,cV J e cat osc turnν
µδ ν µ= = =                  (1) 

On the contrary, the processes of translational, rotational plasticity and de-
struction are transient processes caused by the non-equilibrium of the system 
from the influence of external and internal electromagnetic fields when the thre-
shold values of extraneous currents of photoelectrons (e) and cations (cat) are 
successively reached: ( )thr

eoscJ trpl  and ( )thr
catoscJ trpl -currents of oscillations and 

rotations with translational plasticity; ( )thr
eturnJ rotpl  and ( )thr

catturnJ rotpl -currents 
of oscillations and rotations with rotational plasticity ( )rotpl ; ( )thrJ dstνµ -cur- 
rents of oscillations and rotations during destruction. Here equality (1) turns 
into an inequality, and the variations ( )Jν

µδ η  are connected in pairs 

( ) ( )e cat
osc oscJ trpl J trplδ δ�                    (2.1) 

( ) ( )e cat
turn turnJ trpl J trplδ δ�                    (2.2) 

( ) ( )e cat
osc oscJ rotpl J rotplδ δ�                   (2.3) 

( ) ( )e cat
turn turnJ rotpl J rotplδ δ�                   (2.4) 

( ) ( )e cat
osc oscJ dst J dstδ δ�                     (2.5) 

( ) ( )e cat
turn turnJ dst J dstδ δ�                    (2.6) 

where ; ;trpl rotpl dstη =  and in the region of structural kinetic transitions asym- 
ptotically tend to step functions. A natural question arises: What is the physical 
and mathematical model of such transitions, taking into account the fractality of 
deformation processes? Here we assume that the deformed volume of the ma-
terial is considered as a fractal space, where the equations of mass transfer with 
the help of electron and ion plasma waves ([3], Formulas (20), (21)) are genera-
lized by replacing the usual differentiation operators , jt x∂ ∂ ∂ ∂  to operators 
of fractional derivative (Riemann-Liouville operator) ( ) ( ), jt x

αα∂ ∂ ∂ ∂  with 
fractional exponent 0 1α< <  ([6], p. 75). The fractional Riemann-Liouville de-
rivatives of order α are left-handed 

( )( ) ( )
( )

( )
d1 d

1 d
x

a a

f t t
D f x

x x t
α

αα+ =
Γ − −

∫                  (3) 
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and right-handed operators 

( )( ) ( )
( )

( )
d1 d

1 d
b

b x

f t t
D f x

x t x
α

αα− = −
Γ − −

∫                 (4) 

where , ,inj phe catf f f f≡  are the distribution functions of injected electrons, pho-
toelectrons and cations, respectively; ( )1 αΓ − —Gamma function. The convolu-
tion integral is written on the right-hand sides of (3) and (4); therefore, it is 
more convenient to consider fractional operators in ,ω k —space. If we intro-
duce the linear operator d dx  under the sign of this integral, then its Fourier 
transform as a → −∞  and b → +∞  leads to the product of the Fourier com-
ponents of the function f νµ  and the power hyperbolic function gpF  with frac-
tional exponent. This transformation is applicable only in undeformed dielectrics 
and pure undoped semiconductors, where, due to the low density of free carri-
ers, relaxation processes proceed extremely slowly. At the same time, such pro- 
cesses in metals are fast, spatio-temporal intervals [ ] ( ) 0, , 5 10rea b aτ≈ ÷ , which 
is caused by the equations of selective selection of frequencies pwω  and wave 
vectors pwk  of plasma waves [3]  

0pw pw eω − =k V                         (5) 

( ), 0l pw pwkε ω =
�

                        (6) 

when generating linear defects. The dielectric constant near plane defects has a 
tensor representation ( ),αβε ω k . Here, for the low-angle boundaries of inclina-
tion and rotation in the principal (normal and tangential) axes of the matrix 

αβε , two functions nε  and tε  can be distinguished and, accordingly, two eq-
uations of selective selection. For high-angle “interfragment” boundaries of de-
formation origin, in particular, multi-wall Chalmers boundaries ([16], p. 456), 
the number of iε  and selection equations increases to three. 

In ,ω k —space near the regions of structural kinetic transitions, by analogy 
with [17], there is a spectrum of threshold values of frequencies iω  and wave 
vectors jk , relative to which, both on the left and on the right, the dependence 

( ),gpF ω k  is completely determined by the fractional exponent α . We represent 
α  as a power series 

1 1pheili i i
i ni Vi

gli gli gli gli

Vn n V
A A

n n V V

β β

ν ν

ν ν

δ δ
α

          
   = ⋅ − + ⋅ −                           

, ,e catν =     (7) 

where the distribution functions of photoelectrons phef  and cations catf , from 
which the photoelectrons were knocked out, are averaged over the local test (vo-
lumes near slip bands, boundaries of blocks, grains, fragments) volume lV  and 
global (fragment, grain, crystal) volume glV : 

l gli i i li gliV Vn f f n nν ν ν ν νδ = − ≡ − ; 
variations in the velocities of propagation of charged particles  

l gli i i li gliV VV V V V Vν ν ν ν νδ = − ≡ −  for the i-th structural kinetic transition. Here, 
the numerical coefficients are 0 , 1ni ViA A< < , and the power exponent β  de-
pends primarily on the density of conduction electrons ecn . On the other hand, 
β  plays the role of the Hausdorff-Besicovich fractal dimension ([6], pp. 15-56), 
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therefore 1 3β = ÷ . Hence, in dielectrics in the absence of shock waves and 
strong external fields, the ( )ecnβ  dependence is linear, in semiconductors, it is 
weakly nonlinear: 1 2β = ÷ , and in metals it goes from a quadratic to a cubic 
parabola: 2 3β = ÷ . 

2.1. Borders of Deformation Origin 

At the first stage of the theory, let us return to the well-known island model of 
the hereditary boundaries of a polycrystal in metals [18], where a periodic se-
quence of regions of good and bad conjugation of bicrystal atoms is considered. 
Following the adiabaticity of the model, periodic thickening and rarefaction of 
cations lead to corresponding variations in the density of conduction electrons. 
On the contrary, when boundaries of deformation origin appear according to 
[3], electron plasma waves are first formed according to the rules for selecting 
frequencies and wave vectors, to which their ionic plasma waves are shifted and 
stabilized. The process of redistribution of dislocations occurs in two directions: 
an increase in the density of such boundaries and the appearance of multi-wall 
boundaries, which leads to crystal fragmentation. The main feature of these 
boundaries is the fulfillment of the condition 

( )
clb

ec phe lec lphe gl ec VV
f f n n n f+ ≡ + > ≡              (8) 

where lbV  and cV  are the volumes adjacent to the interfragment boundary 
with the average fragment diameter 100 200 nmfrL ≈ ÷  [5] [19] and the entire 
crystal, respectively. 

Hence, the mechanism of motion of the boundary separating fragment 1 and 
fragment 2 is clear, if the average density of electrons in the first 1 2gl gln n<  is 
the same density in the second, parallel to itself towards the first fragment. Ad-
jacent fragments form edges and junctions, at which the selective frequencies 
and wave vectors of plasma waves must be matched with similar values at inter-
secting boundaries. It should be noted that the interaction of the deformation 
plasma of the beams and the intrinsic plasma of a solid at large plastic deforma-
tions leads to a significant increase in the large-scale correlation energy of the 
relative rotation of injected electrons and photoelectrons with respect to the dis-
tribution of conduction electrons. Here, in the region of the volume of fragment 
boundaries, the sizes of vacancy volumes and trajectories of rotation of injected 
electrons and photoelectrons are of the same order [2], the moduli ,phe injV V  
approach and coincide with Fv  of conduction electrons, and in critical frag-
mented structures they exceed it. During the transition “slip band—cell”, the 
dislocations interact and group into rows chaotically distributed within the cell 
wall, where dislocations of different signs annihilate, and each of them having 
the same sign, according to the AFM surface profile ([3], Figure 1, two extreme 
sections), is central the valley and two protrusions along its edges interact in 
such a way that at first the overlapping protrusions of the harmonics of plasma 
electron waves of the nuclei of these dislocations merge into one protrusion- 
peak, and then their ionic plasma waves shift to this peak and stabilize it, form-

https://doi.org/10.4236/am.2021.123010


V. L. Busov 
 

 

DOI: 10.4236/am.2021.123010 152 Applied Mathematics 
 

ing a powerful linear ridge of cations substances, while the neighboring valleys 
deepen significantly. 

At high dislocation densities 10 11 210 10 cmρ −= ÷  [5] [20], this process can 
occur many times. As a result, we arrive at the “cell-fragment” transition. Near 
this transition on the left, the density and velocity of mobile dislocations gener-
ated both upon impact and under static loading change abruptly, which means 
that the variations ,, ,inj phe inj phen n V Vδ δ δ δ  are jumps, and from expression (7) it 
follows that the exponent 0α →  and reaches values of 0.1 - 0.2, confirmed by 
experiment [17]. To the right of the transition, the decisive role is played by re-
laxation processes, where variations ,inj phen nδ δ  change signs, and in metals, 
both on the left and on the right, the values of α  are close or practically the 
same, in dielectrics on the right they are close to unity, and in semiconductors 
they have intermediate values. 

2.2. Destruction of Crystalline Materials 

The most general global criteria for the destruction of crystalline materials by 
detachment and shearing are  

gll
inj phe inj phe ec ec VV

f f n n n f+ ≡ + > ≡                (9) 

inj phe effn n n+ >                         (10) 

, , ,phe inj F ms mdV V v v v> , jx S∈                  (11) 

for a part of the surface of the interfragment boundary, the cleavage plane. Here 

effn  is the limiting density of the electronic subsystem including photoelectrons, 
injected electrons, conduction electrons, reflecting the small-scale correlation 
energy due to the Pauli principle; at interelectronic distances ( )0.1 0.2 nmeffr ≤ ÷  
[2], the potential of interelectronic repulsion eeU  corresponds to the power 
function ( )6 9mr m− = ÷ ; in semiconductors and dielectrics, injected electrons 
with velocities injV , first appear, and then, as the deformations grow, photoelec-
trons with pheV ; also, the velocity Fv  of conduction electrons must be replaced 
by the velocity of injected electrons at the rates of local metallization ,ms mdv v . 

In dielectrics, when fractured by cleavage along the cleavage planes, criteria 
(10) and (11) are satisfied. Similarly, in metals, the same criteria take place dur-
ing the initiation of microcracks at interfragment boundaries ([5], p. 118). Here, 
microcracks even in very plastic metals (Al, Ag) appear explosively—brittle. With 
the growth of a crack, a so-called plastic zone is formed in front of its tip ([4], p. 
272), where the same sequence of deformation processes is repeated, proceeding 
from the beginning of the application of the load to the opening of a new section 
of the crack across the plastic zone. This is precisely the self-similarity of plasticity 
and fracture, or the scaling inherent in fractal structures. It should be noted here 
that the fulfillment of fracture criteria (9) - (11) in itself does not automatically 
mean crack opening. The opening time intervals opt∆  caused by the interelec-
tronic repulsive potential eeU  should be rather small compared to the time of 
approach of photoelectrons, injected electrons and cations from the influence of 
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the potential of electrostatic attraction ecatU  for their stabilization. In other 
words, the forces from eeU  must be large enough compared to the forces from 

ecatU  to prevent the incipient crack from collapsing and forming internal free 
surfaces with an electric double layer and surface (Tamm) states of electrons. On 
the other hand consider the process of forming a new section of a growing crack, 
which consists of two stages. At the first stage, in metals, electrons concentrated 
within the sharp peak of electron plasma waves phe injf f+  at the interfrag-
ment boundary are accelerated under the influence of eeU  to velocities  

,phe inj FV V v≥  along the normal to this boundary. Here the conduction electrons, 
although they create an additional potential relief, but it does not allow to com-
pletely limit and stabilize the emerging electron fluxes near the boundary, but ei-
ther slows them down to zero at distances of the order of 70 1200 nmeeL∆ ≈ ÷  
from the boundary, or they, decelerating, are reflected back from an adjacent in-
terfragment boundary parallel to the original boundary ([5], Figure 32). At the 
second stage, an accumulation of cations arises near the interfragment boun-
dary, in which the electroneutrality condition is violated, which leads to the ap-
pearance of a repulsive potential catcatU  inside this cluster, where the corres-
ponding ion fluxes appear, directed from the boundary into the fragment with 
velocities ,cat phe injv V V� . As a result, an internal cavity appears, the opening 

crl∆  of which should be sufficient to return the hindered electron beams with 
subsequent stabilization of the generated ion beams for the formation of an elec-
tric double layer of the inner free surface. If the dependencies ( ),ee eeU r t  and 

( ),catcat catcatU r t  remain similar in the process of crack opening, then the condi-
tion for the stability of the emerging crack section is maximally simplified  

( ) ( )
cr ee

cat e

l L
v t V t
∆ ∆

≥ , ,e phe inj≡                    (12) 

where ( ) ( )
0

,1 dopt catcat
cat

cat catcat

U r t
v t t

M r
∆ ∂

=
∂∫ ; ( ) ( )

0

,1 dopt ee
e

e ee

U r t
V t t

m r
∆ ∂

=
∂∫ ; opt∆  is  

time interval of crack opening. Analysis (12) shows that at 0,7 12 nmcrl∆ ≈ ÷  
([5], Figure 31), the cations should move with supersonic speeds 410 m scatv ≈ . 

The fractal shape of the emerging crack surfaces is the most acceptable for its 
stabilization ([4], Figure 5.47 - 5.59; [5], Figure 34, Figure 35). 

3. Discussion of Results 

At first glance, the huge variety of structures and associated deformation and re-
laxation processes, which take place in a wide range of loads, deformations, up 
to destruction, seems absolutely amazing. 

To date, there is no unified theory in the literature for their description with a 
seemingly rather simple combination of electronic and cationic subsystems for a 
metal bond, semiconductor atoms for a covalent bond, cations and anions of di-
electrics for an ionic bond. Nevertheless, the nature of plasticity and fracture in 
crystalline materials still remains completely undisclosed.  

In this work, only a qualitative description of deformation processes is pre-
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sented. For a quantitative consideration, it will be necessary to solve systems of 
equations by numerical methods.  

A fundamental question arises: Is a fragment of deformation origin a quan-
tum dot [21] [22]? First of all, we note that a quantum dot consists of a core in 
the form of a semiconductor (or conductor) three-dimensional microcrystal 
with a diameter of 2 -10 nmcpd =  inside a thin shell with a significantly larger 
energy gap than that of its core. The energy spectrum of electrons in the nucleus 
of this point is discrete with an interval between neighboring levels 2~cp cpdε −∆ , 
which is characteristic of a three-dimensional potential well at 0cpε < . 

On the contrary, the distribution of injected, photo and conductivity electrons 
inside a fragment with 100 300 nmfrL = ÷  has a continuous spectrum, while 
the interfragment boundary, in contrast to the free (impenetrable) surface, is 
partially permeable to these electrons. The ratio of the reflection coefficients ref  
and transmission trm  of electrons in the beams, and separately, depending on 
the misorientation angle for low-angle and high-angle boundaries of deforma-
tion origin, has yet to be found. 

The scheme of the crack initiation and growth mechanism contains a number 
of fundamental differences: 
 Based on a discrete model of charged particles; 
 Reflects the interatomic potential and the type of bond between particles in-

herent in a given material; 
 Does not contradict the well-known dislocation models of brittle fracture by 

Zener, Straw, Cottrell [23] and the model of dislocation replenishment by 
AN Orlov [24]; 

 Allows abandoning the kinetic concept of thermal fluctuation rupture of in-
teratomic bonds [14], at least at low and room temperatures. 

The model of plasticity and fracture presented in this work shows that the 
pumping energy under shock loads is redistributed as follows: the generalized 
space of rectangular pulses along the lines is replaced by a similar space along 
planes and curved surfaces, and the superposition of step functions in the form 
of terraces and steps is replaced by a superposition of undifferentiated peaks and 
ridges in the form of grooved and pit relief of fractures , at the same time, in real 
conditions, most often there are mixed structures from both types of relief; with 
the growth of cracks, exactly self-similarity of deformation processes appears. As 
a result, according to the destruction criteria (9) - (11), material objects are di-
vided into separate fragments, the properties inside which are preserved. This is 
precisely the fractality of these objects under deformation. 
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