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Abstract 

With the rapid growth of complexity and functionality of modern electronic 
systems, creating precise behavioral models of nonlinear circuits has become 
an attractive topic. Deep neural networks (DNNs) have been recognized as a 
powerful tool for nonlinear system modeling. To characterize the behavior of 
nonlinear circuits, a DNN based modeling approach is proposed in this pa-
per. The procedure is illustrated by modeling a power amplifier (PA), which 
is a typical nonlinear circuit in electronic systems. The PA model is con-
structed based on a feedforward neural network with three hidden layers, and 
then Multisim circuit simulator is applied to generating the raw training data. 
Training and validation are carried out in Tensorflow deep learning frame-
work. Compared with the commonly used polynomial model, the proposed 
DNN model exhibits a faster convergence rate and improves the mean 
squared error by 13 dB. The results demonstrate that the proposed DNN 
model can accurately depict the input-output characteristics of nonlinear 
circuits in both training and validation data sets. 
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1. Introduction 

Generating accurate circuit models is a common and efficient step towards sys-
tem level design of electronic devices. To meet rigorous requirements for mod-
ern electronic systems, developing efficient modeling method has become an 
important research topic. According to the type of data needed for extraction, 
circuit models are divided into two categories: physical models and behavioral 
models [1]. Physical models are created by analyzing the circuitry of the devices, 
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while behavioral models characterize the devices in terms of input and output 
signals, without resorting to their internal constitution. 

Usually, modeling linear circuits is simple because their parameters are con-
stant and the output is proportional to the input. However, most circuits are 
nonlinear. The nonlinearities contained in transistors or diodes make the mod-
eling process relatively hard. Over the past decades, artificial neural networks 
have been proved to be a powerful tool for nonlinear regression. Neural net-
works trained from measured data can represent the nonlinear behavior of elec-
tronic devices. Several neural network based modeling applications have been 
reported recently. Cao Y. and Zhang Q.J. presented a new approach for devel-
oping recurrent neural network models of nonlinear circuits [2]. Tarver C. et al. 
developed a neural-network method to combat nonlinearities in power amplifi-
ers [3]. Chen Z. et al. proposed a method for data-driven behavioral modeling of 
electronic circuits using recurrent neural networks [4]. 

Theoretically, traditional shallow neural networks with a single hidden layer 
can approximate any nonlinear function with arbitrary accuracy if the number 
of neurons is increased without constraint. However, increasing the hidden node 
number causes exponential increasing on the number of model parameters, and 
also requires much more training examples [5]. In recent years, deep neural 
networks (DNNs) have attracted a lot of researchers. Unlike traditional neural 
networks, deep neural networks possess multiple hidden layers and need fewer 
parameters. It is demonstrated that deeper networks can fit more complex func-
tions by composing the functions learned in earlier layers [6]. 

In this paper, a nonlinear circuit behavioral modeling technique is developed 
on the basis of deep neural networks. The remaining parts of the paper are orga-
nized as follows. Section 2 describes the structure of a deep feedforward neural 
network. In Section 3, a power amplifier circuit is created as the object to be 
modeled. Training and validation are presented in Section 4. 

2. Deep Feedforward Neural Networks 

There is no clear threshold of depth that divides shallow neural networks from 
deep neural networks. But it is mostly agreed that the deep structure of a neural 
network requires two or more hidden layers. The number of neurons may be 
equal or different in each of the hidden layers. These neurons find the mathe-
matical manipulation to obtain output from the input, whether it is a linear or 
nonlinear relationship. 

In this work, a feedforward neural network with multiple hidden layers is 
adopted to model nonlinear circuits. In a multi-layer neural network, the neu-
rons are arranged in layered fashion, in which the input and output layers are 
separated by multiple hidden layers. This layer-wise architecture is referred to as 
feedforward because the information only travels forward in the network, 
through the input nodes then through the hidden layers and finally through the 
output nodes. Although a single hidden layer with enough neurons is sufficient 
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to make the network a universal approximator, there are substantial benefits to 
using many such hidden layers. 

Figure 1 shows a feedforward network with two hidden layers. It contains m 
input nodes and one output node. The input data vector is represented by 

[ ]T1 2 mx x x=X  ,                     (1) 

where the superscript T denotes the transpose of the matrix. The first hidden 
layer contains n neurons. The connection weight matrix from the input layer to 
the first hidden layer is 

111 112 11

121 122 12
1

1 1 1 2 1

m

m

n n nm

w w w
w w w

w w w

 
 
 =
 
 
 

W





   



.                  (2) 

The bias of the first hidden layer is 

[ ]T1 11 12 1nb b b=B  .                    (3) 

F(∙) is the activation function in hidden layers. The sigmoid function and the 
hyperbolic tangent function are two classical activation functions used for in-
corporating nonlinearity in neural networks. The sigmoid function outputs a 
value in (0, 1), which is helpful in performing computations that should be in-
terpreted as probabilities. The hyperbolic tangent function has a shape similar to 
that of the sigmoid function, except that it is horizontally rescaled and vertically 
translated to (−1, 1). Since the voltage and the current of electric circuits may be 
both positive and negative, the hyperbolic tangent function is preferable to the 
sigmoid function in this application. Furthermore, its mean-centering and larger 
gradient with respect to sigmoid makes it easier to train. The hyperbolic tangent 
function is given by 

( ) ( )tanh
z z

z z
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So the output of the first hidden layer is calculated by 

( )1 1 1tanh= × +H W X B .                    (5) 

 

 
Figure 1. A feedforward neural network with two hidden layers. 
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The second hidden layer contains p neurons. The connection weight between 
two hidden layers is 
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The bias of the second hidden layer is denoted by 
T

2 21 22 2 pb b b =  B  .                     (7) 

Hence, the output of the second hidden layer is 

( )2 2 1 2tanh= × +H W H B .                     (8) 

The output of the network is 

3 2y = ×W H                            (9) 

where W3 is the connection weight from the second hidden layer to the output 
and is given by 

3 31 32 3 pw w w =  W  .                   (10) 

In neural network training, the loss function is determined as the difference 
between the actual output and the predicted output from the model for one 
training example, while the average of the loss function for all the training ex-
amples is termed as the cost function. Briefly, the loss function is for a single 
training example, while the cost function is the average loss over the complete 
training data set. The loss function, which is sensitive to the application at hand, 
is critical to training and modeling process. A lot of loss functions, such as cross 
entropy and hinge loss, have been adopted in different types of applications. For 
regression problems, the squared error loss is most frequently used. Squared er-
ror loss for each training example is the square of the difference between the ac-
tual and the predicted values. Here, mean squared error (MSE) is determined as 
the cost function. It is computed by 

( ) ( )2

1

1 ˆMSE 10lg dB
K

i i
i

y y
K =

 = −  
∑ ,               (11) 

where K is the number of examples in the data set, ˆiy  is the i-th example out-
put, and iy  is the i-th output value of the model. 

MSE measures the average squared difference between the actual and pre-
dicted values from the model. The aim of training is to minimize MSE. Gradient 
descent is one of the most popular algorithms to optimize neural networks. It 
seeks to determine the steepest descent and reduces the number of iterations and 
time taken to search large quantities of data points [7]. The gradient descent 
continuously updates parameters incrementally when an error calculation is 
completed to improve convergence. Model parameters are updated by 

( )1q q θη+ = − × Jθ θ θ∇                    (12) 
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where θ denotes the parameters to be optimized (namely the connection weight 
W and the bias B in this application), the subscript q stands for the iteration 
number, η is the learning rate, θ∇  is the gradient with respect to θ, and ( )J θ  
is the cost function. 

3. Power Amplifiers 

The parameters of linear circuits are constant. Their output response is directly 
proportional to the input. Contrary to linear circuits, the parameters of nonli-
near circuits vary with current and voltage. Only a few simple nonlinear circuits 
are adequately described by equations that have a closed form solution. Most of 
them may possess multiple solutions or may not possess a solution at all [8]. 
Therefore, analyzing nonlinear circuits is usually difficult and we often charac-
terize them by means of models. 

Nonlinear circuit models are categorized into physical models and behavioral 
models. Physical models are generated according to the internal circuitry of the 
devices, while behavioral models are established by means of input-output sig-
nals. For a complicated electronic system, acquiring its precise physical model is 
impractical. So the behavioral model is a better choice. In behavioral modeling, 
the electronic system is treated as a black box, whose internal constitution is 
unknown. The aim of behavioral modeling is to depict the system’s input-output 
relation in a mathematical form [9]. 

In nonlinear circuits, the superposition principle does not hold and there is a 
natural generation of harmonic frequencies. The nonlinear circuits are also ca-
pable of exhibiting a self-sustained oscillation, which may be desired, as in the 
case of frequency dividers and free-running oscillators, or undesired, as in the 
case of power amplifiers (PAs) [10]. 

The power amplifier is a typical nonlinear device, which is widely used in 
electronic systems. It receives an electrical signal and reprocesses it to amplify or 
increase its power. The main features of a power amplifier are the circuit’s power 
efficiency and the maximum amount of power that the circuit is capable of han-
dling. To attain large output power and high energy efficiency, power amplifiers 
are often driven to maximum ratings, which results in serious nonlinear distor-
tion. 

Next, we take a push-pull PA as an example to illustrate the proposed model-
ing techniques. The schematic of the power amplifier is shown as Figure 2. The 
circuit simulation is performed in Multisim. There are two stages in the amplifi-
er circuit. The first stage is a small-signal amplifier and the second stage is an 
output transformerless complementary-symmetry amplifier [11]. The input sig-
nal is provided by a function generator XFG1, the output signal is observed by 
an oscilloscope XSC1, and the distortion of the output signal is measured by a 
distortion analyzer XDA1. 

An ideal amplifier is capable of amplifying a pure sinusoidal signal to provide 
a larger version and the resulting waveform is a pure single-frequency sinusoidal 
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signal. When the device works at nonlinear regions, distortion occurs and the 
output will not be an exact duplicate of the input signal [12]. The distortion of 
the output signal is measured by total harmonic distortion (THD), which is de-
fined as 

2 2 2
1 2THD 100%Nd d d= + + × .                 (13) 

In Equation (13), ( )1,2, ,id i N=   is the i-th harmonic distortion determined by 

1

100%i
i

A
d

A
= × .                       (14) 

where A1 is the fundamental amplitude and Ai is the i-th harmonic amplitude. 
When the frequency f and the amplitude of the input signal VAin are 1 KHz and 
0.2V respectively, the output waveform is a magnified replica of the input signal, 
as shown in Figure 3. When the input signal’s amplitude rises to 1.8V, the out-
put signal is seriously distorted, as shown in Figure 4, because the transistors are 
driven to nonlinear region. 

Besides linearity, power efficiency is also an important consideration. The 
power efficiency of an amplifier is defined as the ratio of the output power Pout to 
the input power Pin. The power efficiency and the THD with different amplitude 
of the input signal VAin are listed in Table 1. The power and the THD data are 
acquired by the wattmeter and the distortion analyzer in Multisim respectively. 
When the input signal is small, the linearity of the device is good but the power 
efficiency is poor. As the input increases, the linearity descends but the power 
efficiency ascends. For a practical PA, there must be a compromise between its 
linearity and power efficiency. 
 

 
Figure 2. The schematic of the PA to be modeled. 
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input output

 
Figure 3. Input signal vs. output signal (VAin = 0.2 V and f = 1 KHz). 

 

input output

 
Figure 4. Input signal vs. output signal (VAin = 1.8 V and f = 1 KHz). 

 
Table 1. Testing results of the power amplifier in Figure 2. 

VAin (V) 0.2 0.6 1.0 1.4 1.8 

Pout (mW) 12 105 239 302 327 

Pin (mW) 486 482 519 524 520 

Power efficiency 2.45% 21.78% 46.05% 57.63% 62.88% 

THD 0.97% 1.88% 7.40% 20.84% 30.34% 

4. Training and Validation 

The proposed DNN model is trained and validated in Tensorflow, which is a 
popular machine learning framework developed by Google. Tensorflow is an 
open-source framework used in conjunction with Python to implement algo-
rithms, deep learning applications, and much more. It contains a symbolic math 
library which is specially developed for machine learning applications such as 
deep neural networks. 

To model the power amplifier discussed in Section 3, a neural network with 
three hidden layers is constructed. There are 25 neurons in each hidden layer. A 
part of Python code is as follows. 
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importtensorflow as tf 
importnumpy as np 
importmatplotlib.pyplot as plt 
PA_dat = np.loadtxt('E:\deep\PA_dat.txt')  # load raw data generated by 

Multisim simulator 
a=25  # number of neurons in each hidden layer 
... 
W1=tf.Variable(tf.random_normal([1,a]), name="weight1")  # weights 

between input and 1st hidden layer 
B1=tf.Variable(tf.random_normal([1,a]), name="bias1")  # bias of 1st 

hidden layer 
S1=tf.nn.tanh(tf.add(tf.matmul(XX,W1),tf.matmul(tf.ones([c,1]),B1))) # 

output of 1st hidden layer 
... 
init=tf.global_variables_initializer()  # initialize network parameters 
cost=tf.reduce_mean(tf.square(Y-Z))  # cost function: MSE 
learning_rate=0.05  # learning rate 
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)  

# gradient descent 
training_epochs=1000  # epoch number 
withtf.Session() as sess:  # train the model 
sess.run(init) 
for epoch in range(training_epochs): 
sess.run(optimizer, feed_dict={X:train_X, Y:train_Y}) 

For the purpose of comparison, a five-order polynomial model trained by the 
same data set is utilized as a reference model. The learning curves of two models 
are shown in Figure 5. After 1000 training epochs, the MSE of the DNN model 
is about −126 dB, while the MSE of the polynomial model is around −113 dB. 
Apart from higher accuracy, the DNN model also exhibits a faster convergence 
rate than the polynomial model does. However, it should be noticed that the 
DNN model uses more parameters and is more complicated. 

The validation data set is generated by Multisim circuit simulator too. The 
frequency of validation signals ranges from 0.1 KHz to 1 MHz. One of the in-
put-output waveform pairs is shown in Figure 6. The input signal consists of 
three frequency components, whose mathematical expression is 

( ) ( ) ( ) ( )in 1 2 30.8sin 2π 0.5sin 2π 0.4sin 2π Vv f t f t f t= + +         (15) 

where f1 = 10 KHz, f2 = 20 KHz, and f3 = 30 KHz. The validation result is shown 
in Figure 7. It illustrates that the model precisely fits the output data in valida-
tion set. In the validation set, the MSE of the DNN model is about −123 dB, 
while the MSE of the polynomial model is −112 dB. Therefore, compared with 
the commonly used polynomial model, the proposed DNN model improves ac-
curacy in both training and validation data sets. 
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Figure 5. Learning curves of DNN model and polynomial model. 

 

input output

 
Figure 6. One of input-output waveforms used for validation. 

 

 
Figure 7. Model validation. 

5. Conclusion 

This paper presented a DNN based behavioral modeling approach for nonlinear 
circuits. A power amplifier was taken as an example to illustrate the proposed 
modeling method. A feedforward deep neural network with three hidden layers 
was adopted to model the amplifier. The results show that compared with the 
commonly used polynomial model, the proposed model not only improves pre-
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cision but also provides a faster convergence rate. Applying other newly devel-
oped neural networks to modeling nonlinear circuits is an obvious future exten-
sion of this work. 
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