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Abstract 
In this paper we develop modeling techniques for a social partitioning prob-
lem. Different social interaction regulations are imposed during pandemics to 
prevent the spread of diseases. We suggest partitioning a set of company em-
ployees as an effective way to curb the spread, and use integer programming 
techniques to model it. The goal of the model is to maximize the number of 
direct interactions between employees who are essential for company’s work 
subject to the constraint that all employees should be partitioned into com-
ponents of no more than a certain size implied by the regulations. Then we 
further develop the basic model to take into account different restrictions and 
provisions. We also give heuristics for solving the problem. Our computa-
tional results include sensitivity analysis on some of the models and analysis 
of the heuristic performance. 
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1. Introduction 

Background and Problem Statement 
To fight the Covid-19 pandemic, measures restricting social gatherings were 

taken by many countries and states. Many restrictions set limits on the number 
of people allowed in gatherings. For example, Germany and UK at some point 
limited social gatherings of more than 2 people [1] while in many US states that 
number was 10 [2]. While that type of restrictions might help to prevent the 
spread of the disease they have the following shortcoming. A sick but asympto-
matic person could attend several meetings of no more than 10 people (different 
people in each meeting). People from those meetings could get the virus and at-
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tend other meetings of no more than 10 people. It could create a chain reaction 
which will result in many people getting infected.  

In this paper we suggest an alternative approach of limiting interactions to 
prevent the spread of the disease. It is explained on the example of regulating the 
interactions of a small or medium size company since our approach is most 
suitable for that type of organizations. 

Consider a company that has N employees who are supposed to have direct 
interactions with each other in everyday operations of the company. Each direct 
interaction can potentially spread a disease from one person to others. To curb 
the spread of the disease we suggest partitioning the set of N employees into 
smaller groups of at most M people each. (Number M can be determined based 
on state or company regulations.) Employees can have direct interactions only 
with people of the same smaller group. In that case, a person who has the disease 
can potentially infect at most M − 1 people within the same group. Thus, the ef-
fect of chain reaction is limited. 

The set of N employees can be partitioned into smaller groups of at most M 
people in many different ways. What is the best way of partitioning? While li-
miting the spread of the disease during a pandemic is a primary goal, another 
important goal is to keep as much economic activity as possible. Economic ac-
tivity can be promoted by not interrupting essential employee interactions with-
in the company. In the context of our problem, the goal is the following: find a 
partitioning into groups of at most M people that maximizes the number of un-
interrupted employee interactions. 

The corresponding discrete optimization problem is the following. We have a 
graph G with N nodes (employees). The goal is to remove as few arcs (employee 
interactions) as possible such that the graph is partitioned into connected com-
ponents with at most M nodes each. In other words, the number of arcs that re-
main in the graph should be maximized. 

An example with N = 11 employees and M = 4 maximum component size is 
given in Figure 1. The ten bold arcs form an optimal solution for the example. 
The components in the optimal solution are {1, 2, 3, 4}, {5, 7, 8}, {6, 9, 10, 11}. 

Some of the employee interactions might be more important for the company 
than others. Thus, it makes sense to assign weights to the arcs, with higher 
weights assigned to more important arcs. Then the goal is to maximize the total 
weight of the arcs included in the solution. 

Solution methods 
We give an integer linear programming model for solving the problem. The 

main feature of the model is a set of constraints providing that two nodes (em-
ployees) are in the same component. We give several techniques for making the 
model computationally more efficient. The techniques include reducing the 
number of variables and relaxing the integrality requirements of the largest set of 
variables. We also give a heuristic method for solving the problem. The heuristic 
output can also serve as an initial solution for the integer programming model to 
accelerate the solution process. 
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Figure 1. An example of social partitioning problem. 

 
Variations of the main model 
While the main requirement of the Social Partitioning Problem is not exceed-

ing the maximum component size, in real life situations there might be other 
restrictions and provisions that should be taken into account. For example, 
some employees might be required to have direct interaction in the company; 
some specialists doing the same important task for the company might be re-
quired to be in different components; sometimes the maximum component 
size might be violated if it is very important for company’s work but in that 
case a penalty is paid for the violation. We give variations of our main integer 
programming model to take into account each of the above-mentioned restric-
tions and provisions. For each of those cases we also give an extension to the 
heuristic. 

Connection to other graph partitioning problems 
Graph partitioning problems were studied extensively before. [3] gives a 

survey for algorithms and applications of balanced graph partitioning prob-
lems. There are a variety of solution methods for solving the problems, ranging 
from simple heuristics to sophisticated combinatorial optimization methods. 
Some well-known applications are parallel processing, road networks, image 
processing. [4] gives an approximation algorithm for a balanced partitioning 
problem which is the closest to our problem. In most of the related problems in-
cluding [4], the number of components is fixed. In our problem, the number 
of components is not fixed which makes it harder to solve. The main characte-
ristic of our problem is the maximum size of components. This characteristic 
comes from the nature of the main social partitioning application of our prob-
lem. It is also the main distinction from related problems that use different 
criteria for partitioning. Unlike many of the related problems, we consider the 
weighted version of the problem because assigning different weights to the arcs 
is more realistic in the context of the Social Partitioning problem. Our main 
solution method is integer programming while approximation algorithms or 
heuristics are used for many related problems. Integer programming is a suita-
ble method for small companies (up to 50 people) when solving the Social Par-
titioning problem. We also give directions how to make the model more effi-
cient so that it could be applied to bigger problems. Integer programming is 
also a suitable technique for adding different extra requirements to the original 
problem to make it more realistic in the context of the social partitioning ap-
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plication.  
Computational results 
We implemented our models on Optimization Modeling language AMPL (A 

Mathematical Programming Language) [5]. The models were tested for inputs of 
different sizes and nature. Sensitivity analysis was done for the models that allow 
penalty for exceeding the maximum component size. The heuristic was also im-
plemented and tested on AMPL, and its performance was evaluated with respect 
to the optimal solution.  

The structure of the paper 
The paper is structured as follows. Section 2 gives the main integer pro-

gramming model, directions for improving its efficiency and its AMPL im-
plementation. Section 3 discusses different variations and extensions of the 
model. Section 4 gives heuristics for solving the main problem and its varia-
tions. Section 5 discusses computational results. Section 6 gives several future 
directions. 

2. The Main Model 

We develop the basic model in Section 2.1. In Section 2.2, we discuss how the 
model can be refined to make it computationally more efficient. Section 2.3 gives 
the AMPL implementation of the model. 

2.1. The Basic Model 

Let Nodes be a set of N employees within a company. Let Arcs be a set of all 
possible direct interactions (links) between pairs of employees in Nodes. The 
regulations require that Nodes should be partitioned into components such that 
each component has at most M employees. No interactions are allowed between 
employees in different components. Each direct interaction has some value for 
the company. Thus, the company wants to maximize the number of possible in-
teractions while complying with the regulations.  

Variables.  
We have the following set of binary variables. 
Let xij be 1 if the link between employees i and j is included in the solution, 

and 0 otherwise.  
Let yij be 1 if employees i and j are in the same component in the solution, and 

0 otherwise. 
Weighted versus unweighted version of the problem 
In the unweighted version of the problem, the company wants to maximize 

the total number of links included in the solution. But in reality some links are 
more essential and important for the company than others. Thus, we define a 
parameter weight in the range [0, 1] for each link of the set Arcs. A higher 
weight implies that the link has higher importance for the company. For the rest 
of the paper we consider the weighted version of the problem. Note that the un-
weighted version is the special case when all the weights are set to 1. 
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Objective function 
The objective function maximizes the total weight of the arcs included in the 

solution. 

( )( ), Arcsmax weight , iji j i j x
∈

∗∑                    (1) 

Constraints 
We have the following constraints in the model. 
C1) The size of any component should be no more than M. To provide it we 

require that for any node i, the number of nodes that are in the same component 
with i is no more than M − 1. 

Nodes 1ijj y M
∈

≤ −∑                        (2) 

Variables xij and yij should be connected with each other. We need the follow-
ing two sets of constraints to provide it. 

C2) If link (i, j) is included in the solution then nodes i and j should be in the 
same component. 

Symbolically, if xij = 1 then yij = 1. The corresponding linear constraint is  

ij ijy x≥                             (3) 

C3) Transitivity. If nodes i and j are in the same component, and nodes j and 
k are in the same component, then nodes i and k also should be in the same 
component.  

Symbolically, if yij = 1 and yjk = 1 then yik = 1. Equivalently, if yij + yjk = 2 then 
yik = 1. 

The linear constraint that realizes the conditional constraint above is 

1ik ij jky y y≥ + −                         (4) 

The constraint works the following way. If yij + yjk = 2 then the right-hand side 
is 1, and yik is required to be at least 1; since yik is a binary variable it will be 
forced to be exactly 1. On the other hand, if yij + yjk ≤ 1 then the right-hand side 
is ≤0; thus, it is not forcing anything on yik. 

2.2. A Computationally Refined Version of the Basic Model 

In this section, we give several directions on how to refine the model to make it 
computationally more efficient. The main ideas are reducing the number of yij 
variables and relaxing the integrality of yij variables. 

Reducing number of variables by defining symmetric variables only once 
In our model, the nodes are given in lexicographic order: Nodes = 1, …, N. 

For every pair of nodes i and j such that i < j , we define only one link (i, j) and 
corresponding variables xij and yij. Since the relationship between i and j is sym-
metric the opposite link is implicitly in the solution too. This approach signifi-
cantly reduces the number of variables.  

Reducing number of variables by not defining the variables that cannot be 
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1 
Note that in the input of the problem, the nodes might already be partitioned 

into several connected components. Our model intends to divide those compo-
nents into even smaller parts not exceeding size M. We will distinguish those 
components, by calling them input components versus output components. For 
example, consider the unweighted network in Figure 2 with N = 10 and M = 3. 
It has two input components: {1, 2, 3, 6, 7} and {4, 5, 8, 9, 10}. The output com-
ponents in an optimal solution would be {1, 2}, {3, 6, 7}, {4, 5}, {8, 9, 10} with a 
total of 6 arcs included in the solution. 

If nodes i and j are not in the same input component then i and j also cannot 
be in the same output component, and variable yij cannot take value 1 in the op-
timal solution. Thus, there is no point of defining the corresponding variable yij. 
For example, there is no need to define variable y3,8 in the instance of Figure 2 
since nodes 3 and 8 are in different input components. This especially makes 
sense for relatively sparse networks. 

Another consideration for excluding variable yij is the following. Suppose 
nodes i and j are in the same input component but the shortest distance between 
i and j is greater than M − 1. If i and j were also in the same output component 
then that component would include a path with M + 1 nodes connecting i and j 
(including i and j). But an output component cannot have more than M nodes. 
Thus, i and j cannot be in the same output component, and there is no point of 
defining the corresponding variable yij. For example, there is no need to define 
variable y1,6 in the instance of Figure 2 since the distance between nodes 1 and 6 
is 3 which is greater than 2 = M − 1; having 1 and 6 in the same output compo-
nent would imply that all the nodes on the connecting path 1-2-7-6 should be in 
that output component, thus violating M = 3. 

To realize the reduction of variables discussed above, we find the input com-
ponent of each node using breadth-first search (BFS). The information from BFS 
computations is used to compute the shortest distance between any two nodes 
from the same input component. Then variable yij is defined only if 1) i and j are 
in the same input component; 2) the shortest distance between i and j is no more 
than M − 1. The AMPL implementation of these computations is given in Sec-
tion 2.3. 

Relaxing the integrality of yij variables 
Theorem 1. Suppose the binary requirements of yij variables are relaxed to 0 ≤ 

yij ≤ 1. Then there will be an optimal solution where yij will take only values 0 or 
1. 

 

 
Figure 2. Example of Input and Output Components. 
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Proof 
Let 1 2, , , mC C C  be the output components formed by including arcs (i, j) 

with xij = 1 in the solution. Suppose nodes u and v are in the same component. 
Then there is a path P between u and v such that for all the arcs (i, j) on P, xij = 1. 
Constraint (C2) yij ≥ xij implies that for all those arcs on P, yij is also 1. Now re-
call the Transitivity constraint (C3): 1ik ij jky y y+ ≥ + . If yij and yjk both are 1 
then the constraint will force yik also to be 1. Applying (C3) repeatedly for the 
arcs on path P, we will get that yuv = 1.  

Summarizing, if nodes u and v are in the same output component then yuv = 1. 
The only remaining question is the following. Suppose nodes u and v are in dif-
ferent output components Cu and Cv. Is it possible that yuv > 0 in the optimal so-
lution?  

Note that yuv > 0 cannot improve the objective function value since the objec-
tive function has only xij variables. Having yuv > 0 will make all yij variables be-
tween Cu and Cv positive (based on transitivity constraint (C3)), thus making the 
constraint (C1) for any node from Cu and Cv less likely to be satisfied. Even if 
some of those yuv variables are positive they will not affect optimal xij variables 
and the optimal value. In other words, there might be multiple optimal solu-
tions, and even if some of them could have fractional yij variables there is always 
an optimal solution with no fractional yij variables. Thus, by postprocessing the 
solution based on xij variables one can get rid of the fractional values by setting 
them to 0 and get the actual output components.  
� 
To illustrate the result of Theorem 1, consider the example in Figure 3. The 

numbers on the arcs are the arc weights, and the maximum component size is M 
= 4. When the integrality of yij variables is relaxed, the model returns the fol-
lowing optimal solution. 1,2 1,3 2,3 4,5 1x x x x= = = =  which means arcs (1, 2), (1, 
3), (2, 3), (4, 5) are included in the solution (are bold in the figure), creating 
components {1, 2, 3} and {4, 5}. The optimal value is 4 × 0.9 = 3.6. Also, 

1,2 1,3 2,3 4,5 1y y y y= = = =  indicating the connectivity of corresponding node 
pairs. But the model also returned positive fractional values for other node pairs: 

1,4 1,5 2,4 2,5 3,4 3,5 0.5y y y y y y= = = = = = . Note that these fractional values make 
the (C1) constraints for nodes 1, 2, and 3 satisfied at equality: 2 × 1 + 2 × 0.5 = 3. 
Thus, the corresponding optimal solution is likely to be a basic solution returned 
by the solver. But we can obtain another optimal solution by setting all fractional  

 

 
Figure 3. Example with fractional solution. 
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yij values to 0: 1,4 1,5 2,4 2,5 3,4 3,5 0y y y y y y= = = = = = . As argued above, all the 
constraints still will be satisfied, and the objective function value will stay at the 
optimal value 3.6 since the values of xij variables are not changed. Thus, this new 
solution without any fractional values is also optimal. 

2.3. The AMPL Implementation 

The AMPL implementation of the basic model is given below. 
######################## PARAMETERS and SETS  

############################## 
param N; 
set Nodes: = 1,...,N; 
param M; 
# maximum component size 
############# ARCS WITH WEIGHTS ############### 
set Arcs within {i in Nodes, j in Nodes: i<j}; 
# set of original input arcs; can have just one direction 
param weight{(i,j) in Arcs}; 
######### INPUT COMPONENTS AND NODE DISTANCES ########## 
set BFS{i in Nodes, k in 1,...,N-1} : =  
if k = = 1 then {j in Nodes: (i,j) in Arcs or (j,i) in Arcs} else 
{j in Nodes: exists {l in BFS[i,k-1]} ( (l,j) in Arcs or (j,l) in Arcs ) } ; 
# the set of nodes that have a path with length k from node i 
set component{i in Nodes} : = union{k in 1,...,N-1} BFS[i,k]; 
# the set of all nodes that are in the same input component with node i 
param distance{i in Nodes, j in Nodes: i! = j and j in component[i]} : = min{k 

in 1,...,N-1: j in BFS[i,k]}k; 
# shortest distance between nodes i and j 
############################# VARIABLES  

########################### 
var incl{(i,j) in Arcs} binary; 
# is 1 if the arc is included in the solution 
var connected{i in Nodes, j in Nodes: i < j and j in component[i] and 

distance[i,j] < = M-1} binary; 
# is 1 if nodes i and j are connected in the solution 
# if the distance is > = M then cannot be in the same selected component, thus 

no need to define a variable 
######################## OBJECTIVE FUNCTION  

############################## 
maximize Total_weight_of_included_arcs: sum{(i,j) in Arcs}weight[i,j]*incl[i,j]; 
# the goal is to maximize the total weight of the arcs 
###################### CONSTRAINTS ####################### 
############ Max_component_size ############# 
s.t. Max_component_size{i in Nodes}: 
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sum{j in Nodes: i<j and j in component[i] and distance[i,j] < = M-1} 
connected[i,j] + 

sum{j in Nodes: i>j and i in component[j] and distance[j,i] < = M-1} 
connected[j,i] 

< = M − 1; 
# each node can be connected to at most M-1 other nodes, making its 

component size at most M 
######## Included implies Connected ######### 
s.t. Included_is_Connected{(i,j) in Arcs: j in component[i] and distance[i,j] < 

= M-1}: connected[i,j] > = incl[i,j] ; 
# if arc i-j is included in the solution then nodes i and j are connected 
############ Transitivity ############ 
s.t. Transitivity{i in Nodes, j in Nodes, k in Nodes: i! = j and i! = k and j! = k 
and j in component[i] and k in component[j] and k in component[i] 
and distance[i,k] < = M-1 and distance[i,j] < = M-1 and distance[j,k] < = M-1 
and distance[i,k] < = distance[i,j] + distance[j,k] }: 
(if i<k then connected[i,k] else connected[k,i]) + 1  
> = (if i<j then connected[i,j] else connected[j,i]) +  
(if j<k then connected[j,k] else connected[k,j]); 
# if (i is connected to j) and (j is connected to k) then (i is connected to k). 

3. Variations of the Model 

In real-life situations there might be other requirements that should be taken 
into account when building the model. Below we list several possible restric-
tions and provisions and then show how to incorporate each of them in the 
model. 

1) Some links might be very important for company’s work and cannot be 
removed. 

2) The company might want to have several employees (specialized in the same 
type of important task) in different components.  

3) Sometimes the maximum component size might be exceeded if it is very 
important for company’s work. But in that case some penalty must be paid. 

Restrictions 1, 2, and 3 are discussed in Sections 3.1, 3.2, and 3.3 correspon-
dingly. 

3.1. Models with Required Connections  
3.1.1. Model with Required Arcs 
A natural requirement is that some links are so essential to company’s work that 
they cannot be removed. 

This restriction is not hard to model. But the problem is that the required 
arcs might not allow to have the maximum component size restriction to be 
satisfied. Even if the number of required connections for each node is no more 
than M, transitivity might force to have more than M nodes in some compo-
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nents, thus making the problem infeasible. For example, consider the unweighted 
network of Figure 1 with N = 11, M = 3. Suppose arcs (3, 5), (4, 5), and (4, 6) are 
required to be in the solution. Then based on transitivity, nodes 3, 4, 5, 6 will be 
in the same component, thus violating the maximum component size 3. 

We suggest several ways of dealing with the problem. 
1) Instead of requiring the arcs to be in the solution give those arcs the highest 

possible weight in the weighted version of the problem.  
2) Pay penalty for exceeding M. This solution idea is discussed in Section 3.3. 
3) Have required interaction between subsets instead of nodes. This method is 

discussed in Section 3.1.2 below. 

3.1.2. Model with Required Interactions between Subsets 
The strict requirement of having a direct interaction between two employees 
might be too restrictive and has a good chance of making the problem infeasible. 
A relaxed version of the requirement could be the following. Given two disjoint 
subsets E1 and E2 of employees it is required to have at least one direct interac-
tion between an employee from E1 and an employee from E2. Note that when 
each of the two subsets has only one element then it becomes the original re-
striction of Section 3.1.1. But the subset requirement is less restrictive, especially 
if the subset sizes are relatively big, and it could be a realistic restriction in many 
situations. 

To illustrate the idea, we reconsider the example of Figure 1 (N = 11, M = 4, 
unweighted arcs) with the following modification: it is required to have at least 
one arc between subsets { }E1 1, 2,3, 4=  and { }E2 5,6,7,8= . The original op-
timal solution with 10 arcs given in Figure 1 does not satisfy this new require-
ment. A new optimal solution which includes 9 arcs is given in Figure 4. The 
arcs included in the solution are in bold, and they create the following four 
components: {1, 2}, {3, 4, 5}, {7, 8}, {6, 9, 10, 11}. 

The requirement is modelled the following way. Let R be the number of all 
required subset interactions. For each r in 1, …, R, there is a pair of disjoint sub-
sets E1 and E2 such that there should be at least one arc between the two subsets 
in the solution.  

E1, E2
1ij

i j
x

∈ ∈

≥∑  

 

 
Figure 4. Example with Subset Interaction Requirement. 
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The complete AMPL implementation of the required subset interactions is 
given below. 

############# REQUIRED SUBSET INTERACTIONS  
#################### 

param R; 
# number of required interactions 
set empl_subset1{r in 1,...,R} within Nodes; 
# the employee subset 1 in interaction r 
set empl_subset2{r in 1,...,R} within Nodes; 
# the employee subset 2 in interaction r 
check {r in 1,...,R, j in Nodes}: if j in empl_subset1[r] then j not in 

empl_subset2[r]; 
# check that empl_subset1[r] and empl_subset2[r] are disjoint 
check {r in 1,...,R}: exists {i in empl_subset1[r], j in empl_subset2[r]} ( (i,j) in 

Arcs or (j,i) in Arcs ); 
# check that there is at least one arc between empl_subset1[r] and 

empl_subset2[r]  
s.t. Required_interaction{r in 1,...,R}: 
sum{i in empl_subset1[r], j in empl_subset2[r]: (i,j) in Arcs}incl[i,j] + 
sum{i in empl_subset2[r], j in empl_subset1[r]: (i,j) in Arcs}incl[i,j] 
> = 1; 
# there should be at least one interaction between subsets empl_subset1[r] and 

empl_subset2[r]. 

3.2. Model with Restricted Connections 

If there is a group of employees specialized to do the same kind of important 
task for the company, then the company might want to make sure that they do 
not get sick at the same time. Thus, those employees should be in different 
components. More specifically, we require that there should be at least two dif-
ferent output components having employees from the group. 

To illustrate the idea, we reconsider the example of Figure 1 (N = 11, M = 4, 
unweighted arcs) with the following modification: employees 3 and 4 should be in 
different components. The original optimal solution with 10 arcs given in Figure 
1 does not satisfy this new requirement. A new optimal solution which includes 9 
arcs is given in Figure 5. The arcs included in the solution are in bold, and they 
create the following three components: {1, 2, 4, 9}, {3, 5, 7}, {6, 8, 10, 11}. 

We give the following implementation to the restriction. Let G be the number 
of different specialist groups. For each g in 1, …, G, we require that not all 
members of Specialist_Group[g] are in the same component. Let k the cardinal-
ity of Specialist_Group[g]. Note that if all members of Specialist_Group[g] were 
in the same component then variable yij would be 1 for any i, j ∈ Special-
ist_Group[g]. Since there are ( )1 2k k −  such variables the sum of all those va-
riables would be ( )1 2k k − . Thus, to make sure that not all members of  
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Figure 5. Example with Restricted Connections. 

 
Specialist_Group[g] are in the same component we require that the sum is no 
more than ( )1 2 1k k − − . 

Note that if there are only 2 members i, j in the group then the corresponding 
constraint is ( )2 2 1 2 1 0ijy ≤ − − = ; that is, i and j are required to be in 
different components.  

The AMPL implementation of the constraint is given below. 
s.t. Cannot_be_in_the_same_component{g in 1,...,G}: 
sum{i in Specialist_Group[g], j in Specialist_Group[g]: i<j and j in compo-

nent[i] and distance[i,j] < = M-1} 
connected[i,j] < = (card(Specialist_Group[g])-1)*card(Specialist_Group[g])/2 

- 1; 
# for each Specialist_Group[g], at least 2 members of the group are in differ-

ent components. 

3.3. Models with Penalties for Exceeding the Maximum  
Component Size 

In some situations the maximum component size M might be exceeded if it is 
very important for company’s work. But in that case a penalty must be paid: it 
could be a fine paid to the government, potential extra health costs, etc. 

To illustrate the idea, consider the example of Figure 6(a) (unweighted arcs, 
N = 12, M = 3). The arcs included in the optimal solution are in bold, and they 
create the following four components: {1, 3, 4}, {5, 7, 8}, {9, 11, 12}, {2, 6, 10}.  

The optimal solution in Figure 6(a) includes 11 out of 20 possible arcs in the 
original network which means that the company has to cut almost half of the 
personal interactions among employees, and it can significantly affect the effec-
tiveness of company’s operations. Now suppose the company can exceed the 
maximum component size M = 3 but has to pay penalty for it. The penalty size 
depends on the extent M is exceeded. Exceeding M just by 1 results in a solution 
given in Figure 6(b). The new solution has 18 arcs (bold in figure) that form 
three components: {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}.  

Summarizing, by slightly exceeding the maximum component size and paying 
corresponding penalty the company was able to increase the number of personal 
interactions significantly, from 11 to 18. Thus, in some situations it might make 
sense to pay penalty if it significantly improves the effectiveness of company’s 
operations.  

In the rest of this subsection we discuss how to incorporate penalty in the  
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(a) 

 
(b) 

Figure 6. (a) Example with No Penalties; (b) Example with Penalties Allowed. 
 

model. Penalty can be handled in two different ways. 
1) Including the penalty in the objective function. In that case the goal is to 

minimize the total penalty.  
2) Having a constraint for the total penalty, requiring that it cannot exceed a 

certain number. 
Below are the modifications in the model for methods (i) and (ii) with cor-

responding AMPL implementations. 
Modifications that are common for Methods (i) and (ii). 
For both methods, we need a new penalty variable and a modified version of 

the constraint for maximum component size.  
In our model, we define a penalty variable for each node. If a node ends up in 

an output component that exceeds M then the penalty for the node is defined to 
be the amount by which M is exceeded. Larger violations are penalized more. In 
reality, the way of defining penalty could be modified to reflect the government 
regulations of defining the fine levels. 

Let pi be the penalty for exceeding M by the component of node i. Then con-
straint (C1) is modified to include the new penalty variable: 

Nodes
1ij i

j
y M p

∈

≤ − +∑
 

Note that the right-hand side of the constraint now includes a variable pi, al-
lowing the component size to be exceeded by pi.  

Another minor change from the basic model is the following. Recall that in 
Section 2.2 we argued that there is no point of defining variable yij if the shortest 
distance between i and j is greater than M − 1. While it worked in the basic 
model we have to define this type of variables in this section; penalties allow to 
have two nodes in the same output component even if the distance between 
them is greater than M-1 since component sizes can exceed M. 
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Modifications for Method (i): changes in objective function. 
We have two conflicting objectives in this case: maximizing the total weight of 

included arcs, and minimizing the total penalty. Both parts can be included in 
the objective function by giving them weights that add up to 1. Let wp be the 
weight of total penalty in the objective function which takes a value between 0 
and 1. Then we have the following modified objective function. 

( )
( )

( )
,  in Nodes

max 1 weight ,p ij p i
i j Arcs i

w i j x w p
∈

− ⋅ ∗ − ⋅∑ ∑
 

The penalty weight wp is an input parameter that can be controlled by the user 
of the model. The lower the weight of the total penalty the more likely that M 
will be exceeded for some components. 

Modifications for Method (ii): adding a constraint for the total penalty. 
In this case we define a new input parameter P for the total allowed penalty 

level. Then we need the following constraint which says that the total penalty 
cannot exceed P. 

 in Nodes
i

i
p P≤∑

 
The company can decide what level of total penalty is acceptable for it. We 

suggest setting a level proportional to N: bigger companies can afford larger pe-
nalties.  

Comparison of Methods (i) and (ii). 
Each method has its advantages and disadvantages. Method (i) allows the us-

er to find a right balance between two important factors: the total weight of in-
cluded arcs and the total penalty. But it does not limit the total penalty, and a 
lower value for wp might result in unacceptably large penalty. To illustrate it, we 
reconsider the example of Figure 1 (N = 11, M = 4, unweighted arcs) when a 
penalty component is added to the objective function with weight wp = 0.05. The 
model returned a solution that included all 16 arcs of the network; but the total 
penalty was 11 × 7 = 77 (for each of the 11 nodes its component size is exceeded 
by 7). Having a reasonable limit on the total penalty as in Method (ii) would not 
allow to have such a large penalty for a small example with 11 nodes. 

Method (ii) puts a limit on the total penalty. But not having any penalty 
component in the objective function might result in the following situation. The 
company might end up paying a significant penalty (still below the penalty limit) 
but gain very little in the total weight of included arcs. To illustrate it, we recon-
sider the example of Figure 1 (N = 11, M = 4, unweighted arcs) with the following 
modification: the total allowed penalty level is P = 5. A new optimal solution is 
given in Figure 7. It has three components; one of them, {1, 2, 3, 4, 5} exceeds the 
maximum component size by 1, thus creating a penalty of 5. But paying the signif-
icant penalty allows to increase the number of included arcs only by one: those are 
the 11 bold arcs in Figure 7 versus 10 arcs in the original solution of Figure 1. On 
the other hand, Method (i) returns the original optimal solution of Figure 1 for 
wp = 0.5 (equal weights for number of included arcs and total penalty).  
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Figure 7. Example with a limit on total penalty. 

 
Based on the discussion above, a better way to handle the penalty situation is 

to combine methods (i) and (ii). We suggest including both the constraint from 
method (ii) and the penalty component of the objective function from method 
(i) in the model.  

An alternative way could be the following: run the model of method (i) for 
different values of weight wp, consider those solutions that keep the penalty un-
der the maximum allowed level P, and pick the solution that has the maximum 
weight of included arcs. We give more details about this approach in the com-
putational results of Section 5. 

4. Heuristics 

The integer programming models in Sections 2 and 3 guarantee to return op-
timal solutions for the problem. But for a large problem size, the IP models 
might be slow in practice (see Section 5 for more discussion on computational 
efficiency). In this section, we give heuristic algorithms for solving the basic 
problem and its variations. Note that the heuristics do not guarantee to return 
optimal solutions. But they might return pretty good solutions that might serve 
as initial solutions for the integer programming solvers and thus accelerate the 
solution process. 

The section is organized as follows. In Section 4.1 we give a heuristic for the 
basic problem given in Section 2. In Sections 4.2-4.4, the heuristic is extended to 
the three variations of Section 3. 

4.1. A Heuristic for the Main Problem 

Highest Weight First (HWF) 
1) Sort the arcs in decreasing order of their weights (break ties arbitrarily);  
2) Consider the arcs (one at a time) in the order given in Step 1. Include the arc 

in the solution if the maximum component size M is not violated in the result.  
To illustrate how the heuristic works consider the example in Figure 8. The 

arc weights are given on the arcs, and the maximum component size is M = 4. 
The heuristic first includes all four arcs with the highest weight 0.8: (1, 2), (2, 
3), (5, 6), (6, 7). At this point two components with size 3 are created: {1, 2, 3} 
and {5, 6, 7}. The heuristic next considers the only arc with weight 0.7: arc (2, 
6). But adding it to the solution would create component {1, 2, 3, 5, 6, 7} with 
size 6, thus exceeding M = 4. So (2, 6) is not included in the solution. Then the 

https://doi.org/10.4236/ajcm.2021.111001


V. Melkonian 
 

 

DOI: 10.4236/ajcm.2021.111001 16 American Journal of Computational Mathematics 
 

heuristic includes all other remaining arcs with weight 0.6 without exceeding M 
= 4. In the result, there are two components in the solution: {1, 2, 3, 4} and {5, 6, 
7, 8}. 

For the example of Figure 8, the output of the heuristic happens to be the op-
timal solution. But the heuristic might also return a solution far from the optim-
al as shown in the next bad-case example. Consider the network in Figure 9. The 
arc weights are given on the arcs, and the maximum component size is M = 4. 
The heuristic first includes all three arcs with the highest weight 1: (1, 2), (2, 6), 
(6, 7). At this point one component with size 4 is created: {1, 2, 6, 7}, and no 
other arc can be added to this component since M = 4 will be exceeded. Thus, 
the only other arcs that can be included are (3, 4) and (5, 8), creating two more 
components {3, 4} and {5, 8}.  

The total weight of the arcs included by the heuristic is 3 × 1 + 2 × 0.9 = 4.8. 
But the heuristic output is not optimal. The optimal solution is given in Figure 10.  

 

 
Figure 8. Example illustrating how the heuristic works.  

 

 
Figure 9. A bad-case example for the heuristic.  

 

 
Figure 10. Optimal solution for the bad-case example. 
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The total weight of the arcs in the optimal solution is 2 × 1 + 10 × 0.9 = 11. Thus, 
for this example the heuristic returns a solution far from the optimal. More dis-
cussion about the heuristic performance is given in Section 5. 

Here is the AMPL implementation of the heuristic. 
################# HEURISTIC ################### 
set ordered_weights ordered by reversed Reals : = setof{(i,j) in Arcs} 

weight[i,j]; 
# ordering the arc weights in decreasing order 
param heur_incl{(k,l) in Arcs} binary; 
for{(k,l) in Arcs} let heur_incl[k,l] : = 0; 
# is 1 if the arc is included in the heuristic solution before the heuristic starts, 

all values are 0 
set heur_component{k in Nodes}; 
for{k in Nodes} let heur_component[k] : = {k}; 
# the heuristic component of each node originally, it consists of the node itself 
for{s in 1..card(Arcs)} 
 for{(k,l) in Arcs: weight[k,l] = member(s,ordered_weights)} 
# go through the arcs in decreasing order of their weights 
  if card(heur_component[k] union heur_component[l]) < = M 
# if including the arc does not violate M for the resulting component 
   then  
    { 
    let heur_incl[k,l] : = 1; 
# include the arc in the solution 
    for {m in Nodes:  
     m in heur_component[k] or m in heur_component[l]} 
    let heur_component[m] : = heur_component[k] union 

heur_component[l]; 
# update the component for all the nodes in the resulting bigger component 
    } 
; 
################################################# 

4.2. The Heuristic Applied to the Variation with Subset  
Interaction Requirements 

The original heuristic is modified by including an extra stage as follows. In the 
first stage (step 2 below), arcs are included in the solution to satisfy the subset 
requirements. The second stage (step 3 below) includes arcs in the same way as 
the original heuristic. 

Highest Weight First with Subset Interaction Requirements (HWF_SIR) 
1) Sort the arcs in decreasing order of their weights (break ties arbitrarily);  
2) Consider the arcs (one at a time) in the order given in Step (1). Include the 

arc in the solution if it satisfies a subset requirement not satisfied yet with pre-
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vious arcs. Repeat until all subset requirements are satisfied. 
3) Consider the arcs not included in the solution in Step 2, again in the order 

given in Step (1). Include the arc in the solution if the maximum component size 
M is not violated in the result.  

4.3. The Heuristic Applied to the Model with Restricted  
Connections  

A new provision is added to the original heuristic to make sure that not all spe-
cialists of a group end up in the same component.  

Highest Weight First with Restricted Connections (HWF_RC) 
1) Sort the arcs in decreasing order of their weights (break ties arbitrarily);  
2) Consider the arcs (one at a time) in the order given in Step (1). Include the 

arc in the solution if the following two conditions are satisfied: 
a) the maximum component size M is not violated in the result;  
b) including the arc does not create a component that includes all the special-

ists of a group. 

4.4. The Heuristic Applied to the Models with Penalties 

We give a modified heuristic for the version when the model has a constraint 
which puts an upper bound on the total penalty.  

Highest Weight First with Penalties (HWF_P) 
1) Sort the arcs in decreasing order of their weights (break ties arbitrarily);  
2) Consider the arcs (one at a time) in the order given in Step (1). Include 

the arc in the solution if including the arc does not exceed the total allowed 
penalty (note that the maximum component size M might be violated in this 
version). 

5. Computational Results 

The AMPL models for the integer programs were run on the NEOS server using 
the solver CPLEX [6]. The running time for randomly created instances was 22 
seconds for N = 30, 300 seconds for N = 40, and 7094 seconds for N = 50. Thus, 
the integer programming model is efficient enough for small and medium size 
companies with number of employees up to 50. For larger companies, more effi-
cient solution methods should be used.  

Next we discuss some computational results for the penalty models and the 
heuristic. 

Computational results with sensitivity analysis for penalty models 
In Section 3.3, we discussed two methods for handling penalty, the first one 

including a penalty component with weight wp in the objective function, and the 
second one putting an upper bound P on the total penalty allowed. But as was 
discussed at the end of that section, a better way to handle penalty would be to 
combine the two methods. Below we illustrate it based on our computational 
results. 
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Computations were run for a randomly created instance with N = 30, M = 4, 
unweighted arcs (which allows to better understand the results). The basic mod-
el when no penalty is allowed returned the following output: 37 arcs were in-
cluded in the solution (out of total possible 139); the solution had two output 
components of size 3 and six output components of size 4. 

Then we tried the model with different weights wp of penalty in objective 
function. For each wp, the model was run for two different scenarios: 1) when 
there was no restriction on total penalty, 2) with a limit P = 30 on total penalty. 
Note that the first scenario is method (i) of Section 3.3 while the second scenario 
represents the combined version of methods (i) and (ii). Pure method (ii) is also 
represented by the second scenario when wp = 0. The results are summarized in 
Table 1. The values of wp are in increments of 0.05 in the range from 0 to 0.95. 
The results in the range from 0.3 to 0.9 are identical and thus are not included in 
the table for a more compact presentation. 

Below is an analysis of the results given in Table 1 with some conclusions. 
Scenario 1: No penalty restriction. The general trend is clear and intuitive: as 

wp increases, the total penalty as well as the number of included arcs decrease. 
For small or no penalty weights wp = 0.05 and wp = 0, the model includes all 
possible 139 arcs in the solution, resulting in one output component of size 30 
and incurring large total penalty of 780. For wp = 0.1 and wp = 0.15, the total pe-
nalty is still unacceptably high (above 100) for a small company with 30 em-
ployees. For wp ≥ 0.3, M = 4 is not violated and thus no penalty is occurred; the 
solution is the same as the output of the basic model.  

The most sensible wp values are in the range from 0.2 to 0.25. When wp = 0.25, 
41 arcs can be included by paying penalty of 10. But if the company is willing to 
pay more penalty then a solution found for wp = 0.2 allows 50 arcs by paying 
penalty of 44. We also tried the model for different values of wp between 0.2 and  

 
Table 1. Computational results for penalty models. 

 no penalty restriction total penalty at most P = 30 

penalty  
weight, wp 

arcs  
included 

total  
penalty 

component  
sizes 

arcs  
included 

total 
penalty 

component  
sizes 

0 139 780 30 45 29 6, 6, 5, 4, 4, 4, 1 

0.05 139 780 30 45 26 7, 5, 2, 4, 4, 4, 4 

0.1 93 317 17,12,1 45 26 7, 5, 2, 4, 4, 4, 4 

0.15 63 109 11,8,4,4,3 45 26 7, 5, 2, 4, 4, 4, 4 

0.2 50 44 8,6,4,4,4,4 44 21 7, 3, 4, 4, 4, 4, 4 

0.25 41 10 5,5,4,4,4,4,4 41 10 5, 5, 4, 4, 4, 4, 4 

0.3 37 0 3,3,4,4,4,4,4,4 37 0 2, 4, 4, 4, 4, 4, 4, 4 

0.9 37 0 3,3,4,4,4,4,4,4 37 0 2, 4, 4, 4, 4, 4, 4, 4 

0.95 37 0 2,4,4,4,4,4,4,4 37 0 2, 4, 4, 4, 4, 4, 4, 4 
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0.25, and another intermediate solution was obtained with 43 arcs and penalty of 
17. The company can pick one of the last three solutions with 41, 43, and 50 arcs 
based on a more careful cost-benefit analysis more specific to the company’s 
needs. 

Scenario 2: Total penalty restricted. The upper limit is set to P = 30 which 
corresponds to one unit of penalty per employee. Of course, different upper lim-
its can be tried; we just picked a sensible value to illustrate how the combined 
version of Methods (i) and (ii) of Section 3.3 would work.  

For wp ≥ 0.3, as in Scenario 1 the solution is the same as the output of the ba-
sic model: M = 4 is not violated and thus no penalty is occurred. For wp = 0.25, 
the solution again is the same as in Scenario 1: 41 arcs can be included by paying 
penalty of 10. But for wp = 0.2, a new solution is found with 44 arcs and a penalty 
of 21. When wp is between 0.05 to 0.15, the solution includes 45 arcs by paying 
penalty of 26. If not exceeding the penalty limit P = 30 is very important then the 
last two solutions with 44 and 45 arcs are the best ones. Note that those solutions 
could not be obtained in Scenario 1 because for the same values of wp the solu-
tions violated the penalty limit P = 30.  

Note also that for wp = 0, Scenario 2 is simply the Method (ii) and it returns a 
solution with 45 arcs but with penalty 29. The reason for higher penalty with the 
same number of arcs is that Method (ii) does not have any penalty component in 
the objective function, and thus any solution with a penalty under P = 30 can be 
optimal.  

Thus, our conclusion is that Scenario 2 with wp > 0 (combining Methods (i) 
and (ii)) is a better way to proceed if the penalty limit P cannot be violated. 

Heuristic performance 
We tested the main heuristic of Section 4.1 for different combinations of M 

and graph densities. Five instances were randomly created for each combination. 
N = 30 for all instances. We compared the heuristic output with the optimal so-
lution returned by the integer program in terms of number of included arcs. The 
numerical results that represent the ratios of the number of arcs returned by the 
heuristic and the integer program are summarized in Table 2. 

The heuristic performance gets slightly worse for larger M. It also gets slightly 
worse for graphs with higher density. On average, the heuristic output is within 
0.8142 of the optimal value. 

 
Table 2. Computational results for heuristic performance. 

 dens = 0.2 dens = 0.4 dens = 0.6 average 

M = 3 0.893 0.801 0.787 0.827 

M = 4 0.876 0.803 0.805 0.828 

M = 5 0.82 0.785 0.758 0.7877 

average 0.863 0.79633 0.78333 0.8142 
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6. Future Directions 

Below we discuss several future directions. 
In Section 2 and 3 we developed the main model and its variations to take 

into account some reasonable restrictions that can be common for most com-
panies. The models can be further developed to incorporate other government 
regulations and company-specific restrictions. For example, one can do more 
careful analysis with the penalty models by defining the penalties in monetary 
terms. 

The integer program is a reasonably efficient technique for solving the 
problem for companies with up to 50 employees. For bigger problems, more 
time-efficient techniques are required. One direction is further refining the in-
teger programming model to make it computationally more efficient. The oth-
er direction is developing other heuristics and approximation algorithms that 
are time-efficient and return close to optimal solutions in practice. 

In this paper we consider how direct interactions between employees can be 
affected by social distancing regulations. An extension would be to model how 
the scheduling of more complex operations in companies can be affected by 
those regulations. 

In our models, we assigned weights to employee links to characterize their 
relative importance to the company. But the weights might not be the only 
relevant link characteristics. Recall that the main intent of partitioning is to 
limit the spread of the disease. Some links might be more infectious than oth-
ers. There might be different reasons for that: the closeness of the employees 
during the interaction, the duration of the interaction, some employees being 
more likely to get infected than others (different age groups), etc. Thus, one 
could introduce a probability indicating how infectious the link is. The result-
ing model will be stochastic, and more complex techniques would be needed to 
solve it.  
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