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Abstract 
Often in longitudinal studies, some subjects complete their follow-up visits, 
but others miss their visits due to various reasons. For those who miss fol-
low-up visits, some of them might learn that the event of interest has already 
happened when they come back. In this case, not only are their event times 
interval-censored, but also their time-dependent measurements are incom-
plete. This problem was motivated by a national longitudinal survey of youth 
data. Maximum likelihood estimation (MLE) method based on expecta-
tion-maximization (EM) algorithm is used for parameter estimation. Then 
missing information principle is applied to estimate the variance-covariance 
matrix of the MLEs. Simulation studies demonstrate that the proposed me-
thod works well in terms of bias, standard error, and power for samples of 
moderate size. The national longitudinal survey of youth 1997 (NLSY97) data 
is analyzed for illustration. 
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1. Introduction 

In longitudinal studies, subjects who are likely to progress to a new state during 
the study are monitored over time. For example, in clinical trials, subjects who 
are at high risk of a certain disease are monitored and have follow-up visits. 
Some subjects complete all of their follow-up visits and their failure times are 
recorded. However, others miss their follow-up visits, and they may learn that 
the event of interest had already occurred when they came back. The event times 
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for these patients are censored within the corresponding person-specific time 
intervals. Although there are multiple follow-up visiting intervals for each sub-
ject, researchers often use one particular interval that contains the true unknown 
failure time unless they had accurately determined the failure time. This is 
known as “partly interval-censored failure time data”. There are quite a few re-
search works based on partly interval-censored data such as [1] [2] [3] and [4] 
among others. 

Another commonly available data type in longitudinal studies is called pooled 
repeated observations. Subjects have multiple follow-up visits as usual. From 
every visit, a subject obtains a binary outcome for the event of interest. All those 
repeated binary outcomes are pooled together to develop a model to analyze the 
effects of time-dependent covariates on the occurrence of the event. [5] and [6] 
pooled such repeated observations with binary outcomes for the event of interest 
into a single sample. Then they used logistic regression model to estimate the ef-
fects of the risk factors on the occurrence of the event. Each observation interval 
is considered a mini follow-up study in which the current risk factors are up-
dated to predict events in the interval. Once an individual has an event in a par-
ticular interval, all subsequent intervals from that individual are excluded from 
the analysis. 

Now, we define pooled repeated partly interval-censored data. We have pooled 
repeated observations, but some binary outcomes and covariates are incomplete. 
They can only be determined with certain unknown probabilities within the cor-
responding specific follow-up visits. In this case, the analysis of such data requires 
a new method that combines a model that handles pooled repeated observations 
without censoring and a method that deals with partly or completely inter-
val-censored data. 

The main goal of this study is to estimate the effects of the time-dependent 
covariates on the occurrence of the event of interest (e.g., progression to a dis-
ease, becoming a frequent smoker, etc.). We extend the work of [7], who em-
ployed conditional expected score test (CEST) to determine the presence of as-
sociation of a longitudinal marker and an event with missing binary outcomes to 
the estimation problem when the event of interest has a single progression state 
and the response is pooled, repeated, and partly interval-censored. We assume 
that the missing data is missing at random (MAR). In MAR data, there might be 
systematic differences between the observed and missing data, but the differenc-
es can be explained by the observed data. EM algorithm was originally developed 
to handle MAR data. 

The organization of this paper is as follows. In Section 2, we present a logistic 
regression model for pooled repeated partly interval-censored data. In Section 3, 
we provide the details of computation of the MLEs of the regression parameter 
via EM algorithm and the variance estimation through the missing information 
principle. Section 4 displays the simulation study results. Section 5 illustrates an 
application to a real data set. Finally, Section 6 briefly summarizes what we have 
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achieved and also discusses potential extensions of our work. 

2. Model 

We consider a case of longitudinal studies, where subjects are at risk of an event 
of interest and have follow-up visits. Some subjects make complete follow-up 
visits, but others miss some of their follow-up appointments and come back after 
the event of interest has occurred. Whenever they miss a visit, both their binary 
outcome of the event of the interest and covariates are missing. Our proposed 
model estimates the effects of time-dependent covariates on the event of interest. 

Let iT  be the time subject i experiences the event of interest, 1, ,i n=  . At 
the beginning of the study, every subject is assigned to the same follow-up visits, 

jt , 1, ,j M=  . Let ijy  be the indicator of whether or not subject i has had 
the event of interest in the jth interval given a subject was event-free through 

1jt −  and ijx , the covariate at time 1jt − . Since we are interested in modeling a 
binary outcome, we use a logit link to model the probability of event as in [7]. 

( ) ( )( )logit log 1 ,ij ij ij ijp p p xα β ′= − = +               (1) 

where 

( )11 | , .ij ij ij i jp P y x T t −= = >                    (2) 

We construct the full (complete) log-likelihood, assuming as if there were no 
missing visits while subjects are in the study. 

( )( ) ( )
1 1

log 1 exp ,
iMn

ij ij ij
i j

l x y xα β α β
= =

 ′ ′= − + + + + ∑∑          (3) 

where iM  is the index of the last time subject i was in the study. 

3. Methods 
3.1. Parameter Estimation 

Assume that the ith subject missed visits after time 
iLt  and came back at 

iRt . 

iL  is the index of the last time subject i made the visit and was event-free. iR  
is the index of the first time subject i was observed with the event of interest. 
Then 0

iiLy = , 1
iiRy = , and ijy  is missing for 1 1i iL j R+ ≤ ≤ − . For the sub-

jects who do not miss visits, 1i iL R+ = . Whenever subjects miss visits, their co-
variate value, ijx , is also missing. We use the EM algorithm ([8]) to estimate the 
parameters. 

E-step: For individuals whose failure times are interval-censored, we need to 
estimate both ijy  and ijx  in the expression (3) for { }1, , 1i ij L R∈ + − . 

ijx  could be continuous or categorical ([9]). We assume that ijx  has a linear 
growth curve with fixed effects to incorporate a real data, NLSY97. That is, 

0 1 1 ,ij i i j ijx tθ θ ε−= + +                       (4) 

where ( )20,ij N εε σ
, ( ), 0,ij ijcov j jε ε ′ ′= ≠ . We estimate ijx  by  

0 1 1
ˆ ˆˆij i i jx tθ θ −= +  for 1 1i iL j R+ ≤ ≤ − , where 0̂iθ  and 1̂iθ  are least squares es-
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timators. 
If ijx  is ordinal, we assign numbers to corresponding categories. Then we 

again assume linear growth curve with fixed effects to estimate the missing ijx ’s. 
Let cn  be the number of categories for this ordinal variable. For each individual 
i, the observed ijx ’s are used in model (4) to compute 0̂iθ  and 1̂iθ . Then we 
compute 0 1 1

ˆ ˆˆij i i jx tθ θ −= +  as usual. 
Next, we create 1cn −  thresholds in order to uniquely assign ˆijx  into one of 

the cn  categories. Note that ( )2
ˆ0 1 1ˆ ,
iij i i j xx N tθ θ σ−+  and  

{ }, 1 , 1 ,ˆ ˆ ˆ, , ,
i i ii i L i R i Rx x x x+ −=  . We use the quantiles of this normal distribution to 

define the thresholds. Since we need to compute 2
ˆˆ
ixσ  to define thresholds, we 

need at least three distinct observed covariate values, ijx ’s for each subject, oth-
erwise, 2

ˆˆ
ixσ  would be undefined due to the zero degrees of freedom. 

The observed ordinal covariates for some subjects do not include the entire 
ordinal categories. Therefore, the ordinal logistic regression model does not 
work for estimating ordinal covariates. In Appendix 2, we provide a detailed ra-
tionale for choosing fixed effects model, its extension in a general setting, and 
challenges with random effects model. 

( ) ( )

( )
( )

1

1 11
, 1 2 1 1

1
1

1
, 1 2 1

ˆ ˆ| , , , ,
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where 

( )
( )

ˆexp
ˆ

ˆ1 exp
ij

ij
ij

x
p

x

α β

α β

′+
=

′+ +
                     (6) 

This is an extension of a geometric-type experiment, where the probability of 
success (progression) changes at each follow-up visit, jt , 1i iL j R+ ≤ ≤ . 

M-step: We find the values of α  and β  that maximize the expected value 
of log-likelihood in Equation (3), conditioned on the observed data. Therefore, 
we have 

( ) ,
ˆˆ ˆ ˆ, arg max | , ,ij ijl y xα βα β =                    (7) 

where ˆ ˆ,ij ij ij ijy y x x= = , if uncensored. 
Expressions (5)-(7) are repeated until convergence. As there are no closed 

forms for α̂  and β̂ , we used an optimization package optim in R to obtain 

( )ˆˆ ,α β . 
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3.2. Variance Estimation 

We apply Louis’ method for variance estimation using the notation in [10]. Fol-
lowing the missing information principle, we compute the observed information 
by subtracting the missing information from the complete information. 

( ) ( ) ( )

( )

2 2

2 2

log | log | ,
| , d

log | ,
,

v

P W P W V
P V W V

P W V
Var

θ θ
θ

θ θ
θ
θ

−∂ ∂
= −

∂ ∂
−∂ 

−  
∂ 

∫
        (8) 

where W is observed data, i.e., partly interval-censored pooled repeated observa-
tions. V is latent data, the true unknown counterpart of the interval-censored 
portion of W. |Wθ  is the observed posterior and | ,W Vθ  is the augmented 
posterior. 

The details of the expression (8) are provided in Appendix 3. 

4. Simulation Study 
4.1. Data Simulation 

We considered 300n =  subjects who have 7M =  follow-up visits each. We 
generated covariates as follows: 

( )11 5.8 0.3 ,0.1 .ij jx N t −+

 

( )12  0.4 0.15 ,0.1 .ij jx N t −+

 
1ijx  represents a continuous covariate with larger values and faster growth 

rate over time, while 2ijx  represents one with smaller values and slower growth 
rate over time. 

First, we generate 300n =  subjects who have complete follow-up visits. This 
makes the original complete data (OC), pooled repeated data. We randomly 
choose 1n  subjects out of these. This makes the exact data (E), a proper subset 
of the OC. For the remaining 2 1n n n= −  subjects, we randomly designate some 
of their follow-up visits missing. This makes the pooled repeated interval-censored 
observations. The observed data (O), which is the pooled repeated partly inter-
val-censored data, is the mix of pooled repeated data (E) and pooled repeated 
interval-censored data. We considered several values for 1n  and 2n  to cover 
different proportions of exact data. 

We randomly sampled iL  and iR  for each patient. Note that for the exact 
data, we have 1i iR L= +  and for the pooled repeated interval-censored data, 

2i iR L≥ + . Then for 1, , ij L=  , we have 0ijy =  and for , ,ij R M=  , we 
have 1ijy = . ijy  is missing for 1, , 1i ij L R= + −  in the pooled repeated in-
terval-censored data. ijy  is 1 when the ith subject at risk at the jth visit expe-
riences the event of interest in the jth interval. 

We computed the bias and variance for original complete data, exact data, and 
observed data based on 1500B =  replications. In addition, we investigated the 
power of our test. 

https://doi.org/10.4236/ojs.2021.111012


N. Daneshi, J. S. Kim 
 

 

DOI: 10.4236/ojs.2021.111012 235 Open Journal of Statistics 
 

4.2. Results 

We first considered the case where there was only one attribute in the model. The 
EM algorithm (Section 3.1) was used for the parameter estimation. The variance of 
the parameter estimator was calculated using Louis’ method (Section 3.2). 

The results are shown in Table 1. For all the different combinations of 1n  
and 2n , the proposed estimator based on the observed data produces a smaller 
bias and a smaller variance than that based on the exact data alone. In particular, 
for the case of (250, 50), containing E 84% (250) and only 16% (50) pooled-repeated 
interval-censored data, the proposed estimator produces a smaller bias and a 
smaller variance than that based on E alone. We also notice that the more exact 
data we have, the smaller bias and variance we get. These results have a quite 
similar pattern to those in [3], who employed a proportional hazards model with 
partly interval-censored data. [6] notes that pooled repeated observations logistic 
regression is close to the time-dependent covariate Cox regression analysis. 
Therefore, this simulation result coincides with what we expected. In order to 
see if bootstrap would be of help, we also ran simulations with various pairs of 

1n  and 2n  to compare the bootstrap variance with the variances for the O, E, 
and OC. We considered two covariates; one is continuous and the other is or-
dinal. Table 2 shows the results. For all pairs of 1n  and 2n , the bootstrap va-
riance for the O is smaller than that for OC, which is supposed to be the smallest. 
This is, bootstrapping suffers from substantial underestimation. Therefore, we do 
not recommend it for this setting. Another issue is that it is time-consuming. 

Next, we computed the power of the test 0 0:H β β=  vs. 1 0:H β β≠ . We 
considered both one-dimensional covariate and two-dimensional covariates. We 
considered 3 sample sizes (100, 200, and 300), and for each of these sample sizes 
we ran 1000B =  replications of the test. The power was calculated as the pro-
portion of times 0H  was rejected at 5% level of significance. Both Figure 1 and 
Figure 2 show the powers for different values of 0β  and different sample sizes. 
The power curves are symmetric for all the different sample sizes. As a sample 
size increases or the parameter values are farther apart from the true parameter 
value (i.e., an effect size increases), the corresponding power increases. From 
Figure 1, with a sample of size 300n = , one can achieve 80% power for the ef-
fect size of 0.45. Moreover, for the effect size of 0.55, a sample of size 200n =  is 
enough to achieve 80% power. [11] achieved approximately 80% power in 

 
Table 1. Results for 1-dimensional β , 3.6trueβ = , B: Bias, 2σ : variance. 

( )1 2,n n  EB  OB  OCB  
2
Eσ  

2
Oσ  

2
OCσ  

(250, 50) 0.559 0.241 0.021 0.043 0.028 0.017 

(200, 100) 0.624 0.326 0.023 0.056 0.031 0.022 

(150, 150) 0.769 0.457 0.025 0.059 0.034 0.022 

(100, 200) 0.812 0.608 0.022 0.065 0.038 0.023 

(50, 250) 0.838 0.809 0.023 0.078 0.044 0.026 
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Table 2. Estimated variance, boot: bootstrap. 

( )1 2,n n  Parameter 2
Oσ  

2
OCσ  

2
Eσ  

2
Bootσ  

(50, 250) 1β  0.7312 0.1514 1.2726 0.1244 

 2β  0.0152 0.0049 0.0287 0.0035 

(100 ,200) 1β  0.4723 0.1617 0.5491 0.1157 

 2β  0.0108 0.0050 0.0160 0.0022 

(150, 150) 1β  0.2765 0.1463 0.3130 0.1175 

 2β  0.0076 0.0043 0.0087 0.0025 

(200, 100) 1β  0.1848 0.1442 0.2153 0.1391 

 2β  0.0064 0.0049 0.0077 0.0028 

(250, 50) 1β  0.1522 0.1342 0.1604 0.1274 

 2β  0.0053 0.0050 0.0059 0.0039 

(270, 30) 1β  0.1677 0.1621 0.1696 0.1497 

 2β  0.0052 0.0049 0.0055 0.0026 

(290, 10) 1β  0.1483 0.1461 0.1509 0.1321 

 2β  0.0047 0.0046 0.0048 0.0029 

 

 
Figure 1. Power of the test for one-dimensional β . 

 
detecting the effect size of 0.75 for the proportional hazards model with a sample 
of size 300 using current status data. Considering that pooled repeated partly in-
terval-censored data has more information than current status data, we fully  
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Figure 2. Power of the test for multidimensional β . 
 

Table 3. The 95% coverage probabilities. 

( )1 2,n n  1β  2β  Joint 

(50, 250) 0.878 0.853 0.835 

(100, 200) 0.883 0.874 0.866 

(150, 150) 0.899 0.886 0.881 

(200, 100) 0.910 0.906 0.903 

(250, 50) 0.947 0.931 0.936 

 
agree with this better power result. The 95% coverage probabilities for different 
proportions of pooled repeated partly interval-censored data are shown in Table 
3. 

In summary, even a small amount of pooled repeated interval-censored data 
within O does make our statistical inference more accurate and more powerful. 

5. Analysis of NLSY97 Data 

For more than 4 decades, the National Longitudinal Surveys (NLS) data have 
served as an important tool for economists, sociologists, and other researchers. 
The NLSY97 is a nationally representative sample of approximately 9000 youths 
who were 12 to 18 years old as of December 31, 1996. The NLSY97 is designed to 
document the transition from school to work and into adulthood. It collects ex-
tensive information about youths’ labor market behavior and educational expe-
riences over time. In addition to educational and labor market experiences, the 
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NLSY97 contains detailed information on many other topics. Some of the areas 
included in the data are criminal behavior, alcohol, and drug use. For the pur-
pose of illustration of our methods, we use the NLSY97 data from 1997 to 2013 
([12]). We illustrate how to analyze the effects of covariates that may affect an 
adolescent’s smoking behavior. 

There are 8984 subjects in the data set. We analyze the 1822 subjects who did 
not smoke at the beginning of the study in 1997, but by the end of 2013 became 
frequent smokers (smoking for more than 10 days in a month). That is O. The 
response variable is defined as 

1, a frequent smoker
0, not a frequent smoker.ijy 

= 


                 (9) 

Exact observations (E) are available in approximately 87.5% of those analyzed. 
The 1st covariate, 1ijx , is the number of days an individual drank alcohol in the 
last 30 days. The 2nd covariate, 2ijx , is an individual’s self-evaluation of “general 
state of health”. 2ijx  is defined as: 1 = excellent, 2 = very good, 3 = good, 4 = 
fair, and 5 = poor. The covariate effects are estimated by the EM algorithm in 
Section 0. The standard errors of these estimators are computed by Louis’ me-
thod in Section 0. The results are shown in Table 4. Fixing an individual’s 
self-evaluated health level as the subject drinks alcohol one more day during the 
past 30 days, the log of odds of becoming a frequent smoker increases by 0.1 (s.e. 
= 0.002). Furthermore, by fixing an individual’s amount of drink as the subject’s 
health level rises (i.e., gets worse) by one unit, the log of odds of becoming a 
frequent smoker increases by 0.19 (s.e. = 0.015). 

Additionally, we analyzed only E from O in order to see how much smaller 
the pooled repeated interval-censored data can help make the analysis more ac-
curate. Another rationale for this is some practitioners often analyze only E due 
to the unavailability of software. The results are shown in Table 5. The parame-
ter estimates are very close to those from O. However, the estimated standard 
errors are much larger than those from O. This is consistent with the simulation 
results in Section 3.2. The Wald test statistic for testing ( ) ( )1 2, 0,0β β =  is quite 
large for both E alone and O. Therefore, the p-values are nearly 0. Though both 
tests tell us that the covariates have a statistically significant effect on adoles-
cent’s smoking behavior, O provides us with much stronger evidence for the  

 
Table 4. The results of NLSY97 analysis using the observed data. 

α̂  ( )ˆse α  1̂β  ( )1̂se β
 2β̂  ( )2

ˆse β
 

−2.36 0.041 0.103 0.002 0.19 0.015 

 
Table 5. The results of NLSY97 analysis using only the exact data. 

α̂  ( )ˆse α  1̂β  ( )1̂se β
 2β̂  ( )2

ˆse β
 

−2.35 0.067 0.102 0.004 0.18 0.028 
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effect. Therefore, this data analysis reaffirms that even a small amount of pooled 
repeated interval-censored portion of O increases the sensitivity of the test. 

6. Discussion 

We focused on developing a method to estimate the regression parameters and 
the variance-covariance matrix of those estimators for the pooled repeated partly 
interval-censored data logistic regression model. We employed the EM algo-
rithm to estimate the parameters and missing information principle to estimate 
the variance-covariance matrix of those estimators. 

Monte Carlo simulation demonstrates acceptable levels of bias, standard error, 
and power. To our knowledge, this is the first extensive power study for the 
pooled repeated partly interval-censored data logistic regression model. The si-
mulation results suggest that in practice, one needs a sample of size around 300 
to achieve an 80% power of the test to detect a very small effect size (0.45) for the 
regression parameter of interest. However, one needs a much smaller size, only 
around 200, for a bit larger effect size (0.55). 

There are several potential extensions of our methods. Our methods can also 
be used when the predetermined follow-up visits were person-dependent. Our 
methods can be extended to handle correlated covariates by employing a ridge 
regression model ([13]), variable selections by lasso regression ([14]), and mul-
tiple progression states due to the fact that the likelihood factors into a distinct 
term for each interval ([15]). 

Last but not least, we note that there are challenges in including either 
left-censoring or right-censoring. Refer to Appendix 1 for details. 
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Appendix 1. Right and Left Censoring in the Model 

In some special cases, the visiting time of some subjects in the data may have ei-
ther right or left censoring. If a subject has not failed at the last visit ( 0

iiLy = ) 
and does not come back for the proceeding interview visits, then the subject’s 
time to the event of interest is right-censored. In this case i iL M=  and  

iR M= . As NLSY predetermined M for all subjects, M plays the role of ∞ . 
One may want to impute the covariate, ijx  and reponse, ijy  according to 

the procedures in Section 3.1. Unfortunately, extrapolating the covariates ijx  
for ij L>  using the linear growth curve in Section 3.1 may well increase bias 
and variance. 

If a subject’s first visit is at time k and the subject shows the symptoms of the 
event of interest, then both ijy  and ijx  are missing for 1, , 1j k= − , and 

1iky = . Therefore, the covariate, ijx  and response, ijy  should be estimated for 
1j k≤ −  at E-step. We merely have 0iL = , iR k= , and two observed cova-

riate values 0ix  and ikx . Therefore, we cannot fit the subject-dependent 
growth curve to estimate the covariates at the missed visits. 

In summary, there is no merit to include individuals whose event-times are 
either left-censored or right-censored when fitting a logistic regression model 
with pooled repeated observations. 

Appendix 2. Imputation of Covariates 

In Section 3.1, we assumed that covariates have a linear growth curve with fixed 
effects. This was motivated by NLSY97 data. In NLSY97, follow-up interviews 
were relatively far apart (1 year). Additionally, some individuals had no change 
in their covariate values, e.g., some individuals had no drinking throughout the 
study. This motivated us to assume that for a given individual, the covariate val-
ues are uncorrelated at different follow-up visits, i.e., ( ), 0,ij ijcov j jε ε ′ ′= ≠ . 

If the follow-up time intervals are relatively short and there are no constant 
covariate values for any individual over time, one may adopt a linear growth 
curve with fixed effects and autocorrelated errors. That is, 

0 1 1 ,ij i i j ijx tθ θ ε−= + +                      (10) 

where ijε  is an autoregressive process with lag 1, AR (1), ( )20,ij N εε σ
, 

( ), , 1, , 0i j i jcov ε ε ρ ρ+ = ≠ . 
[7] and [16] assumed random effects. In a linear growth curve with random 

effects, all subjects have the same growth curve distribution, which depends on 
time points and it is correlated within the same subject. The least squares esti-
mators for this model are the same for all subjects. For example, assume that we 
get 0̂θ  and 1̂θ  for a random effect model. If two subjects *i  and **i  have 
missing covariates at a given time point j, then they will have the same estimated 
covariate 0 1

ˆ ˆˆij jx tθ θ= +  for * **,i i i= . This may cause a substantial amount of 
bias. 
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Appendix 3. Formulas for Computing the Variance  
in Section 3.2 

The variance estimation is based on iY , the observed binary outcomes for sub-
ject i and the variability of missing response, ijy  conditioned on ix , where 

{ }1 2 , , 1 , 1 ,ˆ ˆ, , , , , , ,
i i i ii i i i L i L i R i Rx x x x x x x+ −=   . Let ( ),θ α β=



, and ( )1,i iz x= . 
Then the complete information matrix in (8) can be computed by 

( )
( )( )

T
T

2T

exp
.

1 exp

i
i i

i
i

z
z z

z

θ

θ+
∑                     (11) 

The missing information in (8) is computed by Monte Carlo simulations. 

( )

( ) ( )
22

log | ,

log | , log | ,
,

P W V
Var

P W V P W V
E E

θ
θ

θ θ
θ θ

−∂ 
 

∂ 

 −∂ −∂   
= −     

∂ ∂     

       (12) 

where 

( ) ( )
1

log | ,log | , 1 B b
b

P W VP W V
E

B
θθ

θ θ=

   −∂−∂
≈   ∂ ∂   

∑
 

and 

( ) ( ) 22

1

log | ,log | , 1 .B b
b

P W VP W V
E

B
θθ

θ θ=

   −∂−∂
≈   ∂ ∂   

∑
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