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Abstract 
The unit root can lead to major problems in economic time series analyses. I 
obtain the asymptotic distributions of the ordinary least squares (OLS) esti-
mator when the true model is trend stationary for the following three cases: 
1) the null model is a random walk without drift, and the auxiliary regression 
model does not contain a constant; 2) the null model is a random walk with 
drift, and the auxiliary regression model contains a constant; and 3) the null 
model is a random walk with drift, and the auxiliary regression model con-
tains both a constant and a time trend. In the third case, the asymptotic dis-
tribution of the OLS estimator is determined by the first order of the auto-
correlation, and we can distinguish between the random walk and trend sta-
tionary models, unlike in previous studies. Based on these results, the real US 
gross domestic product is analyzed. A time trend model with autoregressive 
error terms is chosen. The results suggest that the impacts of a shock can be-
come larger than the original shock in some periods and then gradually de-
cline. However, the impacts continue for a long period, and policy makers 
should account for this to design better economic policies. 
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1. Introduction 

The unit root can lead to major problems in economic time series analyses. The 
Dickey-Fuller (DF) test [1] is one of the most widely used unit root tests. Vari-
ous models, alternatives, and testing procedures for both the DF and the aug-
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mented DF (ADF) [2] tests have been studied [3]-[10]. It has been reported that 
the power of the DF test is low when the alternative model is the trend stationary 
model, which is one of the most important alternatives to the random walk 
model. As Enders [[11], p. 235] wrote, “[t]he problem is that, in finite samples, 
any trend stationary process can be arbitrarily well approximated by a unit root 
process, and a unit root process can be arbitrarily approximated by a trend sta-
tionary process”. In addition, as Haldrup and Jansen [[12], p. 261] wrote, “[f]or 
instance, failure to include a time trend regressor in auxiliary regression when 
power against the trend stationary alternative is wanted will lead to a test with 
zero asymptotic power”. However, neither of these studies expressly show the 
asymptotic distributions of the ordinary least squares (OLS) estimator in the 
trend stationary case. West [13] considered the asymptotic distributions of OLS 
estimator and concluded that the asymptotic power of the DF test is zero when 
the alternative model is trend stationary. However, his results were rather in-
complete. The asymptotic distributions of the OLS estimator and the behavior of 
the DF test depend on the true, null, alternative, and auxiliary regression models 
used in the test. To improve the tests, it is necessary to obtain the asymptotic 
distributions of the OLS estimator when the true model is trend stationary and 
combine them with the results of the traditional DF tests. 

In this paper, following Schmidt and Phillips [14], I consider the asymptotic 
distributions of the OLS estimator when the true model is trend stationary in the 
following three cases: 1) the null model is a random walk without drift, and the 
auxiliary regression model does not contain a constant; 2) the null model is a 
random walk with drift, and the auxiliary regression model contains a constant; 
and 3) the null model is a random walk with drift and the auxiliary regression 
model contains both a constant and a time trend. 

Based on these results, I analyze the real US gross domestic product (GDP). 
The problem of whether GDP is a random walk or trend stationary has been 
studied by various authors [15]-[23]. The results have been mixed; some found 
that GDP was a random walk (nonstationary) and others found that GDP was 
(trend) stationary. The real US GDP data from the first quarter of 1948 to the 
fourth quarter of 2019, i.e., 280 quarters or 70 years, are analyzed in the present 
study. Finally, I simulate the impacts of economic shocks using the obtained 
trend stationary model with autoregressive (AR) process errors. 

2. Models and Asymptotic Distributions of the OLS Estimator 

In this section, I obtained the asymptotic distributions of the OLS estimator for 
the three cases when the true model is the trend stationary model, given by 

0 1 1 2 2 , 1, 2, ,, .t t t t t t q t qy y t u u t Tα ε φ ε φ ε φ ε− − −= + + = + + + + =      (1) 

where 1 2 , ,, Tε ε ε  are independent and identically distributed (i.i.d.) random 
variables following ( )20,N σ . Let ( ) 2

1s t t s k k sk
qm E u u φ φ σ− −=

= = ∑  where 

0 1φ =  and 0jφ =  if 0j < . Then ( )0 tm V u= . The value of q may be infinite, 
but the following conditions are satisfied: 

https://doi.org/10.4236/ojs.2021.111011


K. Nawata 
 

 

DOI: 10.4236/ojs.2021.111011 215 Open Journal of Statistics 
 

2
1

q
ss m s

=
< ∞∑  and                      (2) 

( )1
q

i jj E ξ ξ
=

< ∞∑  for any i, where 1 1i i iu u mξ −= − . 
These conditions are satisfied if q is finite or tu  is a stationary AR process. It 

is also assumed that the fourth moment of tu  is finite. Phillips and Perron [24] 
assumed similar conditions for the error terms for the random walk model; 
however, I assume these conditions for the trend stationary model. 

I first consider the case in which the null model is a random walk without 
drift. Secondly, I analyze the case in which the null model is a random walk with 
drift and the auxiliary regression model contains a constant. Finally, I consider 
the case in which the auxiliary regression model contains both a constant and a 
time trend. 

2.1. Random Walk Model and Auxiliary  
Regression Model without a Constant 

I consider the case in which the null hypothesis is the random walk model given 
by 

0 1: 1, 2, ., ,t t tH y y t Tε−= + =                    (3) 

We consider the auxiliary regression model, 

1 0 00 an, d 0, 1,2, , .t t ty y y t Tρ ω ω−= + = = =             (4) 

Long and Herrera [25] considered the asymptotic properties of the OLS esti-
mator of the trend stationary model when the true model is a random walk; 
however, we usually use the OLS estimator (4) for the unit root tests. Note that 
when 1ρ < , the model becomes trend stationary and is included as a term in 
(1). The OLS estimator of ρ  is given by 

11
2

11

ˆ .
T

t tt

tt
T

y y

y
ρ −=

−=

= ∑
∑

                        (5) 

Under the null hypothesis, it is well known that (Hamilton [[26], pp. 488-489]) 

( )
( )
( )

2

2

1 1
ˆ 1

2
D W

T
W r

ρ
−  − →

  ∫
 and ( ) ( )

( )
( )

2

2

1 1
ˆ ˆ1 . .

2
D W

s e
W r

τ ρ ρ
−  = − →

  ∫
 .(6) 

where 
1

0
=∫ ∫ , ( )W ⋅  represents standard Brownian motion, and ( )ˆ. .s e ρ  is 

the standard error. 
When the true model is trend stationary as given by (1), the asymptotic dis-

tribution of the OLS estimator is given by the following theorem. 
Theorem 2.1 
When (1) is the true model, the OLS estimator becomes 

( ) 31
2

PT ρ − → .                       (7) 

The proof is given in Appendix A1. Although the OLS estimator is given by 
the same formula, I use ρ̂  under the null (random walk) model and ρ  for the 
true (trend stationary) model to distinguish the distributions of the estimator. 

https://doi.org/10.4236/ojs.2021.111011


K. Nawata 
 

 

DOI: 10.4236/ojs.2021.111011 216 Open Journal of Statistics 
 

2.2. Random Walk Model with Drift and Auxiliary  
Regression Model with a Constant 

When we perform unit root tests, it may be more reasonable to consider the 
random walk model with drift. 

Here, the null hypothesis is given by 

0 1: 1, 2, , .,t t tH y y t Tα ε−= + + =                  (8) 

The auxiliary regression model is given by 

1 1, 2,, , .t t ty y t Tα ρ ω−= + + =                   (9) 

The regression model contains a constant term, and we do not need the initial 
condition, unlike in (4). As described above, note that when 1ρ < , the model 
becomes trend stationary and included as a term in (1). The OLS estimator of 
ρ  is given by 

( )( )
( )
1 1 21

2
1 11

ˆ t tt

tt

T

T y

yy yy

y
ρ −=

−=

− −
=

−

∑
∑

, 11
1

tt
T y

y
T

−== ∑  and 1
T

tt y
y

T
== ∑ .   (10) 

Under the null hypothesis, the asymptotic distribution is given by (Hamilton 
[[26], p. 492]), 

( ) ( )3 2 2
0ˆ 1 0,12DT N mρ α− →                 (11) 

When the true model is the trend stationary model given by (1), the asymp-
totic distribution of the OLS estimator is given by the following theorem. 

Theorem 2.2 
When (1) is the true model, the OLS estimator (9) becomes 

( )2
0 02 2

12 361 ,DT N m mρ
α α

−  →  

 

 .               (12) 

The proof is given in Appendix A2. Theorem 2.2 means that the DF test based 
on the OLS estimator has no asymptotic power against the trend stationary alterna-
tives as suggested by the previous studies. West [13] showed that ( )1 0PT ρ − →   

but ( )
3
2ˆ 1 PO Tρ

− 



− = 


 and his derivation is incomplete. It is necessary to 

prove that ( )
3
21 po Tρ

− 
− =   

 
  to show that the asymptotic power of the DF test  

is zero, as in this paper. It is impossible to distinguish between the two hypo-
theses, i.e. “ 1ρ = ” and trend stationary, based on the asymptotic distributions of 
the OLS estimator. Schmidt and Phillips [14] wrote “they are inconsistent 
against trend alternatives (West (1987))”. We have to be very careful to perform 
the unit root tests of the random walk with drift. 

2.3. Random Walk Model with Drift and Regression  
Model with a Constant and a Time Trend 

Finally, I consider the case in which the null hypothesis is the random walk 
model with drift as given by (8), and the auxiliary regression model contains 
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both drift and the time trend: 

1 0 00 and 0, 1,2, , .,t t ty y t y t Tβ ρ δ ω ω−= + + + = = =         (13) 

Harvey et al. [27], Elliot et al. [28], and Kwiatkowski et al. [29] considered the 
estimators of the parameters in the model given by 

,t t t t ty t z z zβ δ ρ ε= + + = + .                 (14) 

Models (13) and (14) become the same model if 1ρ = . The asymptotic distri-
bution of the OLS estimator under (8) is given by (Hamilton [[26], pp. 498-499]) 

( )ˆ 1 D FT
G

ρ − → ,                      (15) 

1 3 1 2 3 1 3
1 1 1 1 ,
3 2 8 2

F c c d d c c d   = − + + −   
     

2 2
2 1 3 1 3

1 1 ,
12 3

G c c c c c= − − +
 

( ) ( ) ( )2
1 2 3d , d , d ,c W r r c W r r c rW r r= = =∫ ∫ ∫  

( ) ( ) ( ) ( )2
1 2 31 , 1 1, and 1 dd W d W d W W r r= = − = − ∫  

The asymptotic distribution of ( ) ( )ˆ ˆ1 . .s eτ ρ ρ= −  is given by Hamilton [[26], 
p. 500]. When the true model is the trend stationary model given by (1), the 
asymptotic distribution of the OLS estimator is given by the following theorem. 

Theorem 2.3 

1
0 1

0

P m r
m

ρ ρ→ = = ,                     (16) 

where 1r  is the first order autocorrelation of the error terms. This means that 
ρ  does not converge to 1, and we can distinguish the random walk with drift 
from the trend stationary model if the first order correlation of error terms is not 
equal to 1. Harvey et al. [[27], p. 589] also wrote “each test is applied to data 
containing either a fixed or local (in sample size) trend, both the asymptotic 
power and the type I error of the tests rapidly approach zero as the magnitude of 
the trend increased.” However, the present study obtained different results. Only 
the value of 1r  does matter and the magnitude of the trend (the value of α ) is 
irrelevant. 

Note that if 1ρ =  and 0δ ≠ , (13) becomes 

t ty tβ δ ω∆ = + + .                      (17) 

This means that ty  must be a quadratic function of the time trend, and the 
model obtained from (17) becomes different from a random walk with drift. As 
Schmidt and Phillips [[14], p. 258] noted, “δ  represents quadratic trend... This 
confusion over the meanings of the parameters shows up in properties of the 
Dickey-Fuller tests…”. The F-test of H0: 1ρ =  and 0δ =  is also used for the 
unit root tests [30]. This means that δ  should be zero when ρ  is 1 and ρ  
should be less than 1 when δ  is not equal to zero. 
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3. Analysis of US Real GDP 

Figure 1 shows the real US GDP data (billions of chained 2012 dollars, quarter-
ly, seasonally adjusted annual rate from Federal Reserve Economic Data, Eco-
nomic Research Division, Federal Reserve Bank of St. Louis [31]) from the first 
quarter of 1950 to the fourth quarter of 2019, i.e., 280 quarters or 70 years. (The 
2020 data were not used because the economic impact of COVID-19 is unclear 
at this time.) The GDP was 2185 billion dollars in the first quarter of 1950, and 
19,254 billion dollars in the fourth quarter of 2019. It increased 8.8-fold during 
the sample period, so elog GDP , 1,2, , 280t ty t= =   is used in the analysis. The 
values 1t =  and 280 refer to the first quarter of 1950 and the fourth quarter of 
2019, respectively. Figure 2 shows the autocorrelation (ACF) and partial auto-
correlation (PACF) functions of ty . The figure suggests that the process is the 
AR process (1). All critical values in the first and third cases were obtained from 
Hamilton [[26], pp. 762-764]. 

 

 
Figure 1. Real US GDP (billions of chained 2012 Dollars, quarterly, seasonally adjusted 
annual rate) [30]. 

 

 
Figure 2. Autocorrelation (ACF) and partial autocorrelation (PACF) functions of ty . 
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3.1. Results of the First Case 

In the first case in which the null and auxiliary regression models are given by (3) 
and (4), the estimated results areas follow (the standard error is given in parenthes-
es): 

( )

* * 2
11.00437 , 0.99

0.000
97,

444
t ty y R− ==

                 (18) 

( )ˆ 1 1.2226T ρ − =  and ( ) ( )ˆ ˆ1 . . 9.8423s eτ ρ ρ == − . 
To remove the influence of the initial value, *

0t ty y y= −  is used in this case. 
First, 0 : 1H ρ =  against 1 : 1H ρ > . (Since *

ty  is clearly an increasing func-
tion of t, the alternative becomes 1 : 1H ρ > .) ( )ˆ 1 1.223T ρ − =  does not exceed 
the 95% critical value of 1.28. However, τ  exceeds the 99% critical value of 
2.01, which suggests that 1ρ > . Since the τ  test has usually been used in pre-
vious studies, I use the τ  test when the results of the two tests are different. 
The 95% confidence interval of ρ̂  based on the distribution of τ  is [0.995,  

1.011], and 0 1.51 1 1.0054
280T

ρ
+ = + = , obtained from Theorem 2.1, is included 

in this interval, so the trend stationary alternative is not rejected. 

3.2. Results of the Second Case 

For the second case, the null and auxiliary regression models are given by (8) 
and (9). The estimation results are 

1
20.03675 0.99 0.999796,67 ,t ty y R− == +             (19) 

( )
3

22
1 0ˆ 1 0.9 0.720, 3558 12T V mρ α =− = − =  and  

( )
3
2

1 1.1261 2ˆt T Vρ = −= − . 

Therefore, 0 : 1H ρ =  against 1 : 1H ρ <  is not rejected at the 5% level. (The 
5% critical value of the standard normal distribution is −1.645). However, in the  

model trend stationary, 
3
21 Po Tρ

− 
−


=  


  as shown in Theorem 2.2, and we  

cannot distinguish the random walk with drift model from the trend stationary 
model based on the distribution of ˆ 1ρ − . Therefore, the result may suggest that 
the model may be either a random walk with drift or trend stationary. 

3.3. Results of the Third Case 

In the third case, the null, alternative and auxiliary regression models are given 
by (8) and (13). The estimation results are 

( ) ( ) ( )
1

20.1367 0.9840 0.000100 , 0.999798
0.06573 0.008394 0.0000655

,t ty y Rt− == + +
        (20) 

( )ˆ 1 4.485T ρ − = −  and ( ) ( )ˆ ˆ1 . 1. 083. 9s eτ ρ ρ = −= − . 

The 5% critical values of the unit root tests based ( )ˆ 1T ρ −  and τ  are −21.3 
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and −3.43, respectively, and we cannot reject 0 : 1H ρ =  against 1 : 1H ρ <  at 
the 5% level. However, the F-value of 0 : 1H ρ =  and 0δ =  is 8.3996, which is 
bigger than the 5% critical value of the F-test, 6.34, and the null hypothesis is re-
jected at the 5% level. The following are the results of the DF tests for the first 
and second cases for ty∆ . 

( )

* *
10.37149 ,

0.046532
t ty y −∆ ∆= −

                     (21) 

( ) ( ) ( )ˆ ˆ 7.9837,ˆ1 104.0, 1 . .T s eρ τ ρ ρ− = − = − = −  
2

10.005113 0.3558 0.1286 , 4,tty y R− =+∆ ∆=  

( )
3

22
1 0ˆ 1 23.956, 12 33.90T V mρ α− == − =  and ( )

3
2

1 4.11ˆ 1 4t T Vρ = −= −  

In these cases, not only the null hypotheses of the unit root but also the trend 
stationary model are rejected with any reasonable significance level. These re-
sults suggest that the process cannot have a quadric trend. In other words, if 

1ρ = , δ must be 0. However, this contradicts the results of the F-test. 

3.4. Trend Stationary Model 

Assuming that 1ρ <  in (13), we obtain the trend stationary model. The esti-
mates of the trend model are given by 

( ) ( )

2 0.97 8.8 98400 ,0.007738 ,
0.00760 0.00000472

t ty R= + =
              (22) 

Note that, from Theorem 2.3, we get 0 0.9896Pρ ρ =→ , very close to 1. Let 

te  be the residuals of Equation (22) (detrended values of ty ). Figure 3 shows 
ACF and partial PACF of te . The figure strongly implies that te  follows the 
AR(p), and the value of p is small. We can apply the ADF test [2] to te . The results 
are as follows (the model is selected by the Schwarz Bayes information criterion): 

( ) ( )

2
1 1 2 1 1 10.01813 0.3 ,625 0.9821,

0.05543 0.05527
t t t t te e e e e Rγ γ− − − −= =+ ∆ − + ∆ =

     (23) 

 

 
Figure 3. Autocorrelation (ACF) and partial autocorrelation (PACF) functions of te . 
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( ) ( )1 1ˆ ˆ1 . . 2.2688.s eτ γ γ= −− =  
The 5% critical value of τ  is −1.95, and we can reject the null hypothesis of 

the unit root for the detrended process; the trend stationary assumption is ac-
cepted. The result is very close to the unit root process, and it is consistent with 
previous studies; some found a unit root and others did not. When the process is 
trend stationary, the estimator of α  becomes a supper efficient estimator, and 
we can use the ADF test for the residuals. 

3.5. Economic Implications 

Since the trend stationary model was supported in the previous section, we 
combine (22) and (23) and consider the model given by: 

1 2ˆ 1.347.8 43400 0.00773 0.38 625t tty e et − −−= + +           (24) 

R2 obtained from ˆty  is 0.99979. The very large R2 indicates that ˆty  fits ty  
very well. 

Using (24), we can simulate an economic shock to the economy in a given pe-
riod (for example, the Lehman shock in 2008). Figure 4 shows the impacts of the 
negative shock. The shock is normalized as −1 and occurs at time zero. The im-
pacts are larger than the original shock for three quarters, peaking at 45% larger 
than the original shock, and then gradually declines, showing a cyclical move-
ment [32]. The impact continues for a long period, dropping to half the original 
impact even after 40 quarters or 10 years. This finding may have important im-
plications for policy makers. The world economy is now facing a serious prob-
lem due to COVID-19 and may suffer a long-term depression unless proper 
economic countermeasures are taken. 

4. Conclusions 

In this paper, I considered the asymptotic properties of the OLS estimator when 
the true model is trend stationary. The power of the DF depends on the null and 
auxiliary regression models. I considered the following three cases: 1) the null 
model is a random walk without drift and the auxiliary regression model does  

 

 
Figure 4. Impacts of economic shock (−1 at t = 0). 
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not contain a constant; 2) the null model is a random walk with drift and the 
auxiliary regression model contains a constant; and 3) the null model is a ran-
dom walk with drift and the auxiliary regression model contains both a constant 
and a time trend. Although the DF test has no asymptotic power for the second 
case, we can distinguish between the random walk and trend stationary models 
in first and third cases in contrast to what was suggested in previous studies. The 
asymptotic distribution of the OLS estimator depends on the first order of the 
autocorrelation of error terms in the third case. 

Then I analyzed the real US GDP for 280 quarters or 70 years. The trend sta-
tionary model with AR (2) errors fits very well and gives a very large R2 value. 
However, the result is very close to the unit root process and is consistent with 
those of previous studies, some of which found a unit root while others did not. 
Then the impacts of the economic shock (such as the Lehman stock) were eva-
luated. The impacts were found to continue for a long period and to take 40 
quarters or 10 years to decrease to half the original impact. 

In this study, only the real US GDP was analyzed. Economic variables such as 
the GDP of various countries will be studied in the future to determine whether 
they follow the random walk model or trend model. 
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Appendix A1. Proof of Theorem 2.1 

When the alternative model given by (1) is the true one, the OLS estimator be-
comes 
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From (A.8) and (A.9), we get 
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Appendix A2. Proof of Theorem 2.2 

Here, 1 1t t t ty y u uα− −− = + −  and the OLS estimator of ρ becomes 
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A.3 Proof of Theorem 2.3 
The OLS estimator of ρ  is equivalent to the OLS estimator of 
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Let 
* * .t ty at v= +                        (A.23) 
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For the numerator, 
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From (A.28), (A.31), and (A.34), we get 

1
1

0

P m r
m

ρ → = .                     (A.35) 

 

https://doi.org/10.4236/ojs.2021.111011

	The Random Walk and Trend Stationary Models with an Analysis of the US Real GDP: Can We Distinguish between the Two Models?
	Abstract
	Keywords
	1. Introduction
	2. Models and Asymptotic Distributions of the OLS Estimator
	2.1. Random Walk Model and Auxiliary Regression Model without a Constant
	2.2. Random Walk Model with Drift and Auxiliary Regression Model with a Constant
	2.3. Random Walk Model with Drift and Regression Model with a Constant and a Time Trend

	3. Analysis of US Real GDP
	3.1. Results of the First Case
	3.2. Results of the Second Case
	3.3. Results of the Third Case
	3.4. Trend Stationary Model
	3.5. Economic Implications

	4. Conclusions
	Conflicts of Interest
	References
	Appendix A1. Proof of Theorem 2.1
	Appendix A2. Proof of Theorem 2.2

