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Abstract 
We derive a Put Option price associated with selling strategy of the underly-
ing security in a random interest rate environment. This extends Put Option 
pricing under linear investment strategy from the Black-Scholes setting to 
Hull-White stochastic interest rate model. As an application, Call Option 
price for the linear investment strategy in the Hull-White model is estab-
lished. Our results address recent emergence of developing dynamic invest-
ment strategies for the purpose of reducing the investor risk exposure asso-
ciated with European-type options. 
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1. Introduction 

A steady growth of financial derivatives market over the past decades led to var-
ious generalizations of the classical Black-Scholes model. Notably, a pioneering 
work of Wang et al. ([1] [2] [3]) introduced a dynamic investing strategy in the 
underlying security for the purpose of hedging the investment risks. It turned 
out that selling a security proportionally to its dropping price for Put Option and 
buying the security proportionally to its rising price for Call Option (both under 
the Black-Scholes model) resulted in lower Option price. Zhang et al. [4] extended 
the result for Call Option to stochastic interest rates following the Vasicek model. 
Subsequently, Ghorbani and Korzeniowski [5] obtained the Call Option price with 
investment strategy for the Cox-Ingersoll-Ross (CIR) interest rates model via 
path-integral representation based on n-dimensional Ornstein-Uhlenbeck process. 
It is worth noting that unlike in the Vasicek model, where the interest rate is 
gaussian, the interest rate process in the CIR model is no longer gaussian and 
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lacks the closed form representation.  
The gist of considering dynamic investment strategies, such as presented here, 

is two-fold. Firstly, unlike in the classical Black-Scholes model where the inves-
tor buys options and has no position in the underlying stock throughout the op-
tion time horizon, the dynamic investment strategy requires the investor to con-
tinuously trade the stock, whereby lowering the investor risk which is manifested 
by the lower option price. Secondly, the interest rates are no longer constant and 
are assumed stochastic. 

This paper is concerned with Put Option hedging by linear investment strate-
gy under the Hull-White stochastic interest rates model. European Put Option 
with the linear investment strategy triggers stock selling whenever the stock 
price falls below the strike price and stays in the range ( )1 ,K Kα−   . Follow-
ing [2] we state the relevant facts regarding the hedging strategy. The investment 
fraction is defined by: 

 ( )
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( ) ( ) ( )
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where 
S is stock price. 
( )Q S  is the stock investment proportion, which is equal to the value of the 

stock investment divided by A, where A is the entire investment amount. 
K is strike price of the option. 
α  is the investment strategy index, indicating the stock investment occurs 

during the period in which the stock price drops from K to ( )1 Kα− . 
β  is the minimum value of the stock investment proportion. 
It was found in [2] that the Put Option value VT based on the linear invest-

ment with parameters ,α β , strike price K reads as follows:  
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  (1.2) 

where ST is the terminal stock price. 
We will use the above formula for the stock price that satisfies a stochastic 

differential equation (SDE) with drift depending on the random interest rate, 
whose SDE follows the Hull-White model. 

2. The Market Model 

The evolution of the stock price tS  satisfies the following SDE  

1 1,d d dt t t t tS S t S Wµ σ= +                      (2.1) 
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with mean return tµ , constant volatility 1σ  and a standard Brownian motion 

1,tW . The stock price dynamic under the risk-neutral measure is then as follows 

1 1,d d dt t t t tS r S t S Wσ= +                       (2.2) 

where tr  is the interest rate. 
By Ito formula the stock price at time T can be expressed as  

2
1

1 1,0 0d d
2

0e
T T

s tr s W

TS S
σ

σ
 
 − +
 
 

∫ ∫
=                      (2.3) 

where S0 is the initial stock price. 
Wang et al. [2] proposed a put option model based on a dynamic investment 

strategy for the Black-Scholes option pricing. In this paper we extend their result 
to the stochastic Hull-White interest rate model tr  which satisfies the following 
SDE  

( )( ) 2 2,d d dt t tr t ar t Wθ σ= − +                    (2.4) 

with a and 2σ  constants and 2,tW  standard Brownian motion independent 
from 1,tW .  

Remark 2.1. Special case of Hull-White model, ( )t abθ = , becomes the Va-
sicek model. 

In general, Calin [6], ( )tθ  satisfies the following equation 

( ) ( ) ( ) ( )
2

20, 0, 1 e
2

at
tt f t a f t

a
σθ −= ∂ + + −             (2.5) 

where ( )0,f t  is the yield curve determined by the bond price.  
The solution to (2.4) reads  
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e e e d e e d

t tat at as at as
t sr r s s Wθ σ− − −= + +∫ ∫ .         (2.6) 

Note that the first two terms are deterministic and the last is a Wiener integral, 
thus the process tr  is normally distributed, with mean and variance 
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Integrating (2.6) yields 
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when the interest rates are stochastic, the bond price is calculated by conditional 
expectation 

( ) d, e
T

st r s
tP t T E −∫ =   
                     (2.9) 

where t  denotes the information available in the market at time t.  
Lemma 2.1. The Hull-White zero-coupon bond price is as follows  
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Proof: By (2.9)  
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The proof will be carried out in several steps. 
Step 1: Set 2,0 0

e e d d
T sas au

T uX W s−= ∫ ∫ , then 
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since 2,0
e d

s au
uW∫  is gaussian with mean 0 and variance 
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2
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Step 2: 
By product rule 
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Integrating the above gives 
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By taking the expectation and using the fact that the Wiener integral has zero 
mean, we obtain  
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Step 3: Applying Ito lemma: 

( ) ( )22
2,0

d 2 d d 2 e e d d
TaT as
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then integrating and applying step 2, yields 
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Step 4: Using a stochastic variant of Fubini’s theorem we interchange the 
Riemann and the Wiener integrals as follows 
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which implies that XT is normally distributed with mean 0 and variance 2
TE X    

computed in step 3. Therefore 

( ) ( )
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2 2e e d d 2e e e e
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 (2.19) 

which gives rise to the formula (zero coupon bond price). 

3. Hull-White under T-Forward Measure 

The stochastic model for the bond price under Hull-White model is as follows 
[6] 
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In order to simplify the calculation of option value under the stochastic interest 
rate, we use the technique of changing the measure and numeraire. Following 
general considerations in Brigo and Mercurio [7] the dynamic of Hull-White 
model under the zero-coupon bond as numeraire can be obtained using the fol-
lowing 

Proposition 2.3.1. [7] Assume two numeraires B and P evolve under a proba-
bility measure Q  
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Then the drift of process X under numeraire P is 
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d d d .
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Note. By the Proposition for money market account d dt t tB r B t=  and ze-

ro-coupon bond ( ) ( ) ( )( ) ( ) 2,d , , d 1 e , da T t
t tP t T r P t T t P t T W

a
σ − −= − − , tr  for 

Hull-White model under T-forward measure TQ  satisfies the following SDE 
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2
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where  

( )( )d d 1 e d .a T tT
t tW W t

a
σ − −= + −                   (3.6) 

Now that we obtained the evolution of Hull-White under T-forward measure, 
we solve (3.5) via multiplying by the integrating factor eat  to get 
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( ) ( ) ( )( )
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θ σ− −= − − + .        (3.7)  

Integrating from 0 and t yields  
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By integrating over [0, T] we obtain 
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4. Put Option Price  

The Put Option price is expressed as a product of the expectation of VT under 
the T-forward measure and the price of zero-coupon bond. Notice that by (2.3) 
stock price ST is lognormally distributed and we denote its probability density by 
( )f s  for TS s= . 
Theorem 4.1. (Put Option Price). The Put Option price at time 0 under the 

Hull-White interest rate is given by 
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Proof.  
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We split evaluating [ ]T
TE V  into integrals 1I , 2I  and 3I  as follows 
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Set ln Ty S= , then ( )e ey yf  is the probability density function of ln TS , and 
the mean and variance under the T-forward measure can be expressed form (2.3) 
as follows 
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Moreover, we have 
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where ( )N x  is the standard normal cumulative distribution function. 
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  (4.9)  

Corollary. 4.1. (Put Option price for Vasicek Model). Observe that in the 
special case we recover the Put Option price for the Vasicek model when 
( )t abθ = .  

5. Application to Call Option 

European Call Option under the linear investment strategy triggers stock buying 
whenever the stock price exceeds the strike price. The investment fraction is de-
fined by:  
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S K
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β α
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where 
S is stock price. 
( )Q S  is the stock investment proportion, which is equal to the value of the 

stock investment divided by A, where A is the entire investment amount. 
K is strike price of the option. 
α  is the investment strategy index, indicating the stock investment occurs 

during the period in which the stock price increases from K to ( )1 Kα+ . 
β  is the maximum value of the stock investment proportion. 
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Zhang et al. [4] derived the Call Option price TC C≡  based on the linear in-
vestment for the Vasicek interest rate model and we extend their result to the 
Hull-White model. 

Theorem. 5.1. The Call Option price with the linear investment strategy at 
time 0 for the Hull-White model is given by 
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with ( )0,P T , 1 2 3 4, , ,d d d d , Tµ  and 2
Tσ  defined below 
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Proof. The formula for CT has been derived in Zhang et al. [4] for the Vasicek 
model with explicit dependence on the bond price ( )0,P T , Tµ  and 2

Tσ . Since 
in the Hull-White model the respective bond price ( )0,P T , Tµ  and 2

Tσ  have 
been found in (2.10), (4.4) and (4.5) respectively, and the derivation of the Call 
Option price CT in Hull-White model is analogous to that of Vasicek model we 
omit the proof of the formula CT. 

Corollary. 5.1. (Call Option price for Vasicek Model). Observe that in the 
special case we recover the Call Option price for the Vasicek model when 
( )t abθ = . 

6. Conclusion 

We obtained the closed form of the Put and Call Option price for the linear in-
vestment strategy under the Hull-White stochastic interest rates. In particular, a 
protective put option can serve as an insurance policy against losses for the stock 
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holder. Since the option price associated with trading of the underlying security 
is based on continuous stock trading (impossible to implement!), a feasible dis-
crete variant is in order. Recently Li et al. [8] proposed a discretized method for 
the Call Option under the classical Black-Scholes with linear investment strategy. 
A feasible market implementation for our Hull-White pricing model will be 
presented in a forthcoming paper. Regarding the subject of dynamic investment 
strategies for European-type options under stochastic interest rates, to the best 
of our knowledge, the references cited in this article include up to date published 
research.  
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