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Abstract 
If to apply bidimensional Fourier’s transform to homogeneous system of eq-
uations of the theory of elasticity, then we will receive system of ordinary dif-
ferential equations. The general solution of this system contains 6 arbitrary 
constants and allows to solve problems for the layer and the multilayer envi-
ronment. It is shown that it is convenient to do statement and the solution of 
such tasks in the matrix form. The task for the layer on the elastic half-space 
is solved. Ways of inverse of Fourier’s transformation are considered. 
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1. Introduction 

Tens of monographs devoted to the solution of various tasks of the classical 
theory of elasticity are published. Authors apply different methods of modern 
mathematics. However, modern mathematical programs for computers give the 
real chance to effectively apply one more method: statement and the solution of 
tasks in the matrix form after bidimensional Fourier’s transform. This work is 
devoted to it. We will consider the task for the layer on the elastic half-space 
which has the particular interest for sciences of the Earth. 

2. Bidimensional Fourier’s Transformation 

Bidimensional Fourier’s transform will be used in the look 
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where 1i = − , 2 2r x y= + , 2 2ρ ξ η= +  and in the second integral 

( )sin cosrx ξ τ η τ
ρ

= + , ( )cos sinry ξ τ η τ
ρ

= − + . 

Then inverse transformation receives the form 
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wherein the second integral ( )sin cosx y
r
ρξ τ τ= − + , ( )cos sinx y

r
ρη τ τ= − . 

Transformations of derivatives are defined by formulas 
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The following representations of Bessel functions are useful to inverse trans-
formation of Fourier 
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3. Displacements and Stresses 

Homogeneous equations of balance of homogeneous isotropic elastic environ-
ment in displacements have the form 

( ) 2drad div 1 2 0ν+ − ∇ =u u                  (3.1) 

where [ ], ,u v w=u  is displacement vector, ∇  is the nabla-operator, ν  is 
Poisson’s coefficient. 

If to (3.1) to apply bidimensional Fourier’s transform on x, y, then the general 
solution of such system receives the form 
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where Ai and Bi are arbitrary constants, 1 2 3A A A i
G

ξ η ρ
ρ

+ −
= − ,  

1 2 3B B B i
Q

ξ η ρ
ρ

+ +
= , 3 4χ ν= − . 

For the first time such solution was received in work [1]. In the matrix type of 
the transform of movements and stresses take the form 
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where μ is the shear modulus, × is multiplication of matrixes, 
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4. Statement and the Solution of the Problem. 

We consider it expedient to remind that the algebra of matrixes differs from 
algebra of numbers. The main difference consists that matrix multiplication is 
noncommutativity. 

Let’s consider the problem about the elastic layer on the surface of the elastic 
half-space. To simplify calculations, we will consider Poisson’s coefficient iden-
tical in the layer and the half-space and 1 4ν = . At calculations it is necessary 
to carry out the main simplification: 2 2 2ξ η ρ+ = . 

The layer 0h z− ≤ ≤  is defined by formulas 

( ) e ez z
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ρ ρ
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and the half-space 0z ≥  

( ) e z
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= ⋅ ×w , ( ) e zmz S C
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= ⋅ ×g             (4.2) 

where ( )xw  is matrix of displacements, ( )zg  is matrix of stresses, mμ is the 
shear modulus in half-space, 1m ≠  and C is matrix of arbitrary constants. 

On a layer surface at z h= −  the following single forces are possible: 
( ) ( ) ( ), ,zz x y h x yσ δ δ− = − , ( ) ( ), , , , 0zx zyx y h x y hσ σ− = − = , matrix is G; 
( ) ( ) ( ), ,zx x y h x yσ δ δ− = − , ( ) ( ), , , , 0zz zyx y h x y hσ σ− = − = , matrix is Gx; 
( ) ( ) ( ), ,zy x y h x yσ δ δ− = − , ( ) ( ), , , , 0zz zxx y h x y hσ σ− = − = , matrix is Gy. 

where δ is delta-function. 
The mentioned matrixes have the form 

0
0
1

G =
−

, 
1

0
0

Gx
−

= , 
0
1

0
Gy = −                 (4.3) 

Thus, we have two boundary conditions: on demarcation of at 0z =  the 
continuity of movements and stresses is observed and on the surface of the layer 
at z h= −  single force is applied. As a result, system of equations for definition 
of matrixes of A, B and C receive the look 

( ) ( )0 0=u w  , ( ) ( )0 0=s g  , ( )h G− =s              (4.4) 
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In the right-hand member of the third Equation (4.4) it is possible to substi-
tute matrixes of Gx or Gy depending on the objective. 

The first two equations of system (4.4) in expanded form have the form 

A B C+ = , So A Po B m So C× + × = ⋅ ×              (4.5) 

where So and Po are matrixes S и P at z = 0. 
The system (4.4) has the solution 

( )1B m Nb C= − ⋅ × , A Na C= ×                (4.6) 

where ( ) 11Nb So Po E
−−= × − , ( )1Na E m Nb= − − ⋅ . 

Then the equations for the layer receive the form 
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and the third equation of system (4.4) receives the form 
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where Sh and Ph are matrixes S и P at z h= − . 
Solution of (4.8) is 
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where 
( ) ( )( )
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Now solutions for a layer and a half-space take a form 
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It is reasonable to carry out calculations on formulas (4.11) at the numerical 
values m. In the final solution it makes sense to make substitution z z h→ − , 
and then the layer and the half-space will occupy areas 0 z h≤ ≤  and z h≥ . 

5. The Result 

We will not provide all solutions which can be received on formulas (4.11). Let’s 
give only the formula for displacements in the half-space. Calculations were 
made at 5m =  and substitution z z h→ −  was made. Displacements have the 
form 
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where z h≥ , ( )4 2 2 2
0 32e 112 116 e 77h hf hρ ρρ− −= + + + ,  

( ) 2
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( )2 2 2
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Inverse transformations are carried out by means of section 2 formulas. Let’s 
give two examples for arbitrary H(ρ) function 
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Calculation of the received integrals takes 1 - 2 seconds of machine time and 
allows to investigate the decision in detail. 

6. Conclusion 

By the offered method, it is possible to solve several other problems for the layer. 
The solution in all cases turns out rather simple and is uniform. It is sometimes 
simpler to solve again the known problem, than to look for its solution in litera-
ture. 
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