
Open Journal of Statistics, 2021, 11, 178-212 
https://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2021.111010  Feb. 10, 2021 178 Open Journal of Statistics 
 

 
 
 

Uncovering and Displaying the Coherent Groups 
of Rank Data by Exploratory Riffle Shuffling 

Vartan Choulakian, Jacques Allard 

Université de Moncton, Moncton, Canada 

 
 
 

Abstract 
Let n respondents rank order d items, and suppose that d n . Our main 
task is to uncover and display the structure of the observed rank data by an 
exploratory riffle shuffling procedure which sequentially decomposes the n 
voters into a finite number of coherent groups plus a noisy group: where the 
noisy group represents the outlier voters and each coherent group is com-
posed of a finite number of coherent clusters. We consider exploratory riffle 
shuffling of a set of items to be equivalent to optimal two blocks seriation of 
the items with crossing of some scores between the two blocks. A riffle shuf-
fled coherent cluster of voters within its coherent group is essentially charac-
terized by the following facts: 1) Voters have identical first TCA factor score, 
where TCA designates taxicab correspondence analysis, an L1 variant of cor-
respondence analysis; 2) Any preference is easily interpreted as riffle shuffling 
of its items; 3) The nature of different riffle shuffling of items can be seen in the 
structure of the contingency table of the first-order marginals constructed from 
the Borda scorings of the voters; 4) The first TCA factor scores of the items of a 
coherent cluster are interpreted as Borda scale of the items. We also introduce a 
crossing index, which measures the extent of crossing of scores of voters be-
tween the two blocks seriation of the items. The novel approach is explained on 
the benchmarking SUSHI data set, where we show that this data set has a very 
simple structure, which can also be communicated in a tabular form. 
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1. Introduction 

Ordering the elements of a set is a common decision making activity, such as, 
voting for a political candidate, choosing a consumer product, etc. So there is a 
huge literature concerning the analysis and interpretation of preference data 
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scattered in different disciplines. Often rank data is heterogenous: it is composed 
of a finite mixture of components. The traditional methods of finding mixture 
components of rank data are mostly based on parametric probability models, dis-
tance or latent class models, and are useful for sparse data and not for diffuse data. 

Rank data are sparse if there are at most a small finite number of permuta-
tions that capture the majority of the preferences; otherwise they are diffuse. As 
a running example in this paper, we will consider the famous benchmarking 
SUSHI data set enumerating 5000n =  preferences of 10d =  sushis, see [1]. 
The SUSHI data set is diffuse, because there are at most three counts for one ob-
served permutation. It has been analyzed, among others by [2] [3] [4]. 

A second data set that we shall also analyze is the APA dataset of size 
5738n =  by 5d = , see [5]. APA data set is also considered as non-sparse by 

[2], because all the 120 permutations exist with positive probability. 
For a general background on statistical methods for rank data, see the excel-

lent monograph by [6] and the book [7]. 

1.1. Riffle Shuffle 

The riffle shuffle, see [8], is considered the most popular method of card shuf-
fling, in which one cuts a deck of d cards (aka items) into two piles of sizes d1 
and d2, respectively, and successively drops the cards, one by one, so that the 
piles are interleaved into one deck again. 

Let V, named a voting profile, be a set of n preferences on d items. Based on 
riffle shuffling ideas, [2] proposed the notion of riffled independence to model 
the joint probability distribution of observed preferences of V. Independently, 
[9] used it for visual exploration of V, naming it two blocks partition of the Bor-
da scored items with crossing of some scores; this will be further developed here 
under the following important. 

Assumption: d n . This means that the sample size n is quite large com-
pared to the number of items d. 

SUSHI and APA data sets satisfy this assumption. 
The most important first step in the application of a riffle shuffling procedure 

is how to partition the d items into two disjoint subsets. In the probabilistic riffle 
shuffling approach of [2], the partitioning step is essentially done using some 
adhoc approach in the case of the SUSHI data set or based on background 
second order information of the items in the case of the APA data set. While in 
the exploratory riffle shuffling approach of this paper an optimal partition is ob-
tained by maximizing the cut norm of row centered data, or equivalently by tax-
icab correspondence analysis of nega coded data. 

We compare the two formulations of riffle shuffle, probabilistic and explora-
tory, in section 10. 

1.2. Aim 

Our aim is to explore and display a given voting profile V by sequentially parti-
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tioning it into G coherent groups plus a noisy group; that is, 

( )1
,G

g
V cohG g noisyG

=
= 



                   (1) 

where G represents the number of coherent groups and ( )cohG g  is the gth 
coherent group. Furthermore, each coherent group is partitioned into a finite 
number of coherent clusters; that is, 

( ) ( )1
for 1, , ,gc

gcohG g cohC g G
α

α
=

= = 



             (2) 

where gc  represents the number of coherent clusters in the gth coherent group. 
So the coherent clusters are the building blocks for the coherent groups. We note 
the following facts: 

Fact 1: The assumption d n  induces the new notion of coherency for the 
clusters and consequently for the groups; it is a stronger characterization than 
the notion of interpretability for groups as discussed in [9]. 

Fact 2: Each coherent group and its clusters have the same latent variable 
summarized by the Borda scale. 

Fact 3: Given that the proposed method sequentially peels the data like Oc-
cam’s razor, the number of groups G is calculated automatically. Furthermore, 
outliers or uninformative voters belonging to the noisyG  are easily tagged. 

Fact 4: The approach is exploratory, visual, data analytic and is developed 
within the framework of taxicab correspondence analysis (TCA). TCA is an L1 
variant of correspondence analysis developed by [10]. TCA is a dimension re-
duction technique similar to principal component analysis. In this paper, we 
shall use only the first TCA factor scores of the items and of the voters. 

Two major advantages of our method are: First, we can easily identify outliers. 
For the SUSHI data, our method tags 12.36% of the voters as outliers, which 
form the noisy group. While no outliers in the SUSHI data have been identified 
in [3] [4]. Second, it provides a tabular summary of the preferences which com-
pose a coherent group. For instance, consider the first mixture component of the 
SUSHI data given in [4], where the modal ordering is almost the same as the 
Borda scale ordering of the ten sushis in cohG(1) obtained by our method, see 
Table 14 in this paper. The sample size of their first mixture component is 
27.56%, which is much smaller than 48.36%, the sample size of our cohG(1), see 
Table 14. However, Table 13 of this paper provides a tabular-visual summary of 
the 2418 preferences which form cohG(1). The visual summary describes differ-
ent kinds of equivalent similar riffle shufflings of the 2418 preferences, and it 
provides further insight into the structure of the data. Such interesting visual 
summaries are missing in [3] [4]. 

1.3. Highlights of a Coherent Cluster 

A coherent cluster of voters has interesting mathematical properties and is es-
sentially characterized by the following facts: 

1) Voters have identical unique first TCA factor score. 

https://doi.org/10.4236/ojs.2021.111010


V. Choulakian, J. Allard 
 

 

DOI: 10.4236/ojs.2021.111010 181 Open Journal of Statistics 
 

2) Any voter preference is easily interpreted as a particular riffle shuffling of 
its items. 

3) The nature of riffle shuffling of the items can be observed in the structure 
of the contingency table of the first-order marginals constructed from the Borda 
scorings of the voters belonging to the coherent cluster. 

4) The first TCA factor scores of the items of a coherent cluster are inter-
preted as Borda scale of the items. 

5) We also introduce the crossing index, which measures the extent of inter-
leaving or the crossing of scores of voters between two blocks seriation of the 
items in a coherent cluster. 

1.4. Organization 

This paper has eleven sections and its contents are organized as follows: Section 
2 presents an overview of TCA; section 3 presents some preliminaries on the 
Borda coding of the data and related tables and concepts; section 4 presents 
Theorem 1, which shows that the first principal dimension of TCA clusters the 
voters into a finite number of clusters; section 5 discusses coherent clusters and 
their mathematical properties; section 6 discusses riffle shuffling in a coherent 
cluster; section 7 introduces the crossing index; section 8 introduces the cohe-
rent groups; section 9 presents the analysis of APA data set; section 10 presents a 
comparison of the two formulations of riffle shuffle probabilistic and explorato-
ry; and finally we conclude in section 11. 

All mathematical proofs are relegated to the Appendix. Details of the compu-
tation are shown only for the first coherent group of SUSHI data set. 

2. An Overview of Taxicab Correspondence Analysis 

Consider a n p×  matrix X  where 0ijX ≥ . We have 1 1
p n

ijj i X∗∗= =
=∑ ∑ X . 

Let X∗∗=P X  be the correspondence matrix associated to X ; and as usual, 
we define 1

p
i ijjp p∗ =
= ∑ , 1

n
j ijip p∗ =
= ∑ . Let ( )n iDiag p ∗=D  a diagonal ma-

trix with diagonal elements ip ∗ . Similarly ( )p jDiag p∗=D . Let  
( ) 1k rank= −P . 

In TCA the calculation of the dispersion measures ( )αδ , principal axes 
( ),α αu v , principal basic vectors ( ),α αa b , and principal factor scores ( ),α αf g  
for 1, , kα =   is done in a stepwise manner. We put ( )( )1

1 ij ij i jp p p p∗ ∗= = −P . 
Let αP  be the residual correspondence matrix at the α-th iteration. 

The variational definitions of the TCA at the α-th iteration are 

{ }

{ }

{ } { }

1 1

,

1

1

max max max

max subject to 1, 1

max subject to 1, 1

max subject to 1, 1 , 1, 1 .

p n p n

p

n

p n

α α α
α

α

α

δ
∈ ∈ ∈ ∈

∞ ∞ ∞ ∞

′ ′
= = =

= ∈ − +

′= ∈ − +

′= ∈ − + ∈ − +

u v u v

a

P u P v v P u
u v u v

P u u

P v v

v P u u v
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The α-th principal axes are 

{ } { }1 11, 1 1, 1
arg max and arg max ,

p nα α α α
∈ − + ∈ − +

′= =
u v

u P u v P v          (3) 

and the α-th basic principal vectors are 

and ,α α α α α α′= =a P u b P v                     (4) 

and the α-th principal factor scores are 
1 1and ;n pα α α α
− −= =f D a g D b                    (5) 

furthermore the following relations are also useful 

( ) ( ) ( ) ( )and ,sgn sgn sgn sgnα α α α α α= = = =u b g v a f         (6) 

where ( ).sgn  is the coordinatewise sign function, ( ) 1sgn x =  if 0x > , and 
( ) 1sgn x = −  if 0x ≤ . The α-th taxicab dispersion measure αδ  can be repre- 

sented in many different ways 

1 1 1

1 1 1

,

.

n n

p p

α α α α α α α α α

α α α α α α α α

δ ′ ′= = = = =

′ ′ ′= = = = =

P u a a v D f u D f

P v b b u D g v D g
           (7) 

The ( )1α + -th residual correspondence matrix is 

1 .n pα α α α αδ+ ′= −P P D f g D                    (8) 

An interpretation of the term n pα α αδ′D g f D  in (8) is that, it represents the 
best rank-1 approximation of the residual correspondence matrix αP , in the 
sense of taxicab norm. 

In CA and TCA, the principal factor scores are centered; that is, 

( ) ( )
1 1

0 for 1, , .
pn

i j
i j

f i p g j p kα α α∗ ∗
= =

= = =∑ ∑              (9) 

The reconstitution formula in TCA and CA is 

( ) ( ). .
1

1 .
k

ij i jp p p f i g jα α α
α

δ
=

 = +  
∑                (10) 

In TCA, the calculation of the principal component weights, αu  and αv , 
and the principal factor scores, αg  and αf , can be accomplished by two algo-
rithms. The first one is based on complete enumeration based on equation (3). 
The second one is based on iterating the transition formulae (4, 5, 6). This is an 
ascent algorithm; that is, it increases the value of the objective function at each 
iteration, see [11]. The iterative algorithm could converge to a local maximum; 
so it should be restarted from several initial configurations. The rows or the 
columns of the data can be used as starting values. 

The TCA map is obtained by plotting ( )1 2,g g  or ( )1 2,f f . 

3. Preliminaries 

In this section we review 1) The Borda scoring of a voting profile V into R and 
the Borda scale; 2) Contingency table of the first order marginals of R; 3) The 
coded tables doubleR  and negaR . 
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3.1. Borda Scorings and Borda Scale 

Let { }1 2, , , dA a a a=   denote a set of d alternatives/candidates/items, and V a 
set of n voters/individuals/judges. In this paper, we consider the linear order-
ings/rankings/preferences, in which all d objects are rank-ordered according to 
their levels of desirability by the n voters. We denote a linear order by a sequence 

( )1 2 dk k ka a a=s   , where 
1 2k ka a  means that the alternative 

1ka  is 
preferred to the alternative 

2ka . The Borda scoring of s , see [12], is the vector 
( )b s  where to the element 

jka  the score of ( )d j−  is assigned, because 
jka  

is preferred to ( )d j−  other alternatives; or equivalently it is the jth most pre-
ferred alternative. Let ( )ijr=R  be the matrix having n rows and d columns, 
where ijr  designates the Borda score of the ith voter’s preference of the jth al-
ternative. We note that the ith row of R  will be an element of dS  the set of 
permutations of the elements of the set { }0,1,2, , 1d − . A toy example of R  
is presented in Table 1 for 4n =  and 3d = . 

The Borda scale of the elements of A is n n′= Rβ 1 , where n1  is a column 
vector of 1’s having n coordinates. The Borda scale seriates/orders the d items of 
the set A according to their average scores: ( ) ( )j i>β β  means item j is pre-
ferred to item i, and ( ) ( )j i=β β  means both items ( ),i ja a  are equally pre-
ferred. In the toy example of Table 1, the Borda scale seriates { },A B C . 

Similarly, we define the reverse Borda score of s  to be the vector ( )b s , 
which assigns to the element 

jka  the score of ( )1j − . We denote ( )ijr=R  to 
be the matrix having n rows and d columns, where ijr  designates the reverse 
Borda score of the ith judge’s nonpreference of the jth alternative. The reverse 
Borda scale of the d items is n n′= Rβ 1 . 

We note that 

( )1 n nd ′+ = −R R 1 1  
and 

( )1 dd ′+ = −β β 1 . 

3.2. Contingency Table of First-Order Marginals 

The contingency table of first-order marginals of an observed voting profile V on  
 

Table 1. Toy example with 4n =  preferences of 3d =  items. 

 C  B  A  C  B  A  

A B C   0 1 2 2 1 0 

A C B   1 0 2 1 2 0 

B A C   0 2 1 2 0 1 

B C A   1 2 0 1 0 2 

Borda scale β  0.5 1.25 1.25    

reverse Borda scale β     1.5 0.75 0.75 

nega nβ     6 3 3 
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d items is a square d d×  matrix M, where ( ),i jM  stores the number of 
times that item j has Borda score i for 0, , 1i d= − , see [[6], p. 17]. Table 2 
displays the matrix M for the toy example R displayed in Table 1. We note the 
following facts: 

1) It has uniform row and column marginals equal to the sample size. 
2) We can compute the Borda scale β  from it. 
3) It reveals the nature of crossing of scores attributed to the items for a given 

binary partition of the items. For the toy example, consider the partition { }C  
and { },B A  with attributed scores of { }0  and { }1,2  respectively (this is the 
first step in a riffle shuffle). Then the highlighted cells (marked in bold) in Table 
2 show that there are two crossing of scores, permutation (transposition) of the 
scores 0 and 1, between the sets { }C  and { },B A , (this is the second step in a 
random shuffle). Furthermore, the third row of Table 2 shows that the score 2 is 
equally attributed to both items of the set { },B A  and it never crossed to { }C . 

3.3. Coded Tables Rdouble and Rnega 

Our methodological approach is based on Benzécri’s platform, see [[13], p.1113], 
that we quote: “the main problem inductive statistics has to face is to build tables 
that, through appropriate coding and eventual supplementation, give to the 
available data such a shape that the analysis is able to extract from it the answer 
to any question that we are allowed to ask”. Italics are ours. 

There are three elements in Benzécri’s platform: 1) coding, a kind of pre- 
processing of data, will be discussed in the following paragraph; 2) eventual sup-
plementation consists in applying TCA and not correspondence analysis (CA), 
because in the CA case we do not have a result similar to Theorem 1; 3) question 
that we are allowed to ask is to explore and visualize rank data. 

Within the CA framework, there are two codings of rank data doubleR  and 

negaR . 

3.3.1. Rdouble 
The first one is the doubled table of size ( )2n d×  

double
 

=  
 

R
R

R  
proposed independently by [14] [15], where they showed that CA of doubleR  is  

 
Table 2. The matrix of first-order marginals of R. 

 C B A row sum 

0 2 1 1 4 

1 2 1 1 4 

2 0 2 2 4 

column sum 4 4 4  

Borda scale β  0.5 1.25 1.25  

https://doi.org/10.4236/ojs.2021.111010


V. Choulakian, J. Allard 
 

 

DOI: 10.4236/ojs.2021.111010 185 Open Journal of Statistics 
 

equivalent to the dual scaling of Nishisato coding of rank data, see [16]. CA of 

doubleR  is equivalent to CA of its first residual correspondence matrix 

1

1
1 2 ,

1
2

ij

double

ij

dr

dt r

− − 
 =

−  − −    

P

 
where ( )1t nd d= − . The structure of 1

doubleP  shows that each row is centered 
as in Carroll’s multidimensional preference analysis procedure, MDPREF, ex-
posed in Alvo and Yu (2014, p. 15). In TCA the objective function to maximize 
is a combinatorial problem, see Equation (3); and the first iteration in TCA of 

doubleR  corresponds to computing 

{ } ( )

{ }

1
1 1,1 1

1 11,1

max |

2 1max
2

n

n

double t t
double

d n
ij ij i

dr v
t

δ
∈ −

= =∈ −

= −

− = − 
 

∑ ∑

v

v

v v P

           (11) 

3.3.2. Rnega 
In the second approach, we summarize R  by its column total; that is, we create 
a row named nn ′= =nega Rβ 1 , then we vertically concatenate nega to R, thus 
obtaining 

nega
 

=  
 

R
R

nega  
of size ( )1n d+ × . 

[17] discussed the relationship between TCA of doubleR  and TCA of negaR : 
TCA of negaR  can be considered as constrained TCA of doubleR , because we are 
constraining the vector t t

n− = −v 1  in (11); that is, the objective function to 
maximize corresponds to computing 

{ } ( )

{ } ( )

{ } ( )

1
1 1,1 1

1
1,1 1

1 11,1

max |

max 1

1 1max 1
2

n

n

n

t t
n double

t
nega

d n
j i ii j

dr v
t

δ

= =

∈ −

∈ −

∈ −

= −

= −

− = − + 
 

∑ ∑

v

v

v

v P

v P

1

           (12) 

So, we see that if in (11) the optimal value of n=v 1 , then 1 1
doubleδ δ= , other-

wise 1 1
doubleδ δ> . 

Let 

{ }
( )1

1,1 1 1

1 1arg max 1 .
2n

d n

ij i
j i

dr v
t∈ − = =

− = − + 
 

∑ ∑
v

v  

Define the set of indices { }1| 1iI i v+ = =  and { }1| 1iI i v− = = − , where  
( )1 1iv=v . Then 

1
1

2 1
2

d

ij
j i I

dr
t

δ
+= ∈

− = − 
 

∑ ∑                    (13) 
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shows that the summation in (13) is restricted to the subset of assessors that be-
long to I+ . The subset I+  indexes the voters having the same direction in their 
votes. Given that we are uniquely interested in the first TCA dimension, all the 
necessary information is encapsulated in I+ , as discussed in [9] [17] using other 
arguments. 

Furthermore, 1δ  in (13) equals four times the cut norm of  

( ) 1 1,
2centered ij

di j r
t

− = − 
 

R , where the cut norm is defined to be 

1,

1 1 1 1max 4,
2 2centered ij ijcut S T j S i T j S i I

d dr r
t t

δ
+ +∈ ∈ ∈ ∈

− −   = − = − =   
   

∑ ∑ ∑ ∑R
 

where { }1, ,S d⊆   and T I⊆ ; it shows that the subsets I+  and S+  are 
positively associated, for further details see for instance, [18] [19]. 

In the sequel, we will consider only the application of TCA to negaR . 

4. First TCA Voter Factor Scores of Rnega 

We show the results on the SUSHI data set enumerating 5000n =  preferences 
of 10d =  sushis, see [1]. Even though, our interest concerns only the first TCA 
voter factor scores of a voting profile 1V , it is a common practice in CA circles 
to present the principal map of the row and column projections. 

Figure 1 and Figure 2 display the principal maps obtained from CA and TCA 
of negaR  of the SUSHI data denoted by 1V . We observe that, TCA clusters the 
voters into a finite number of discrete patterns, while CA does not: This is the 
main reason that we prefer the use of TCA to the use of the classical well-known 
dimension reduction technique CA. 

We have the following theorem concerning the first TCA principal factor  
 

 
Figure 1. CA map of SUSHI rank data. 
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Figure 2. TCA map of SUSHI rank data. 
 

scores of the voters belonging to a profile 1V , ( )1f i  for 1, ,i n=  , where the 
first principal axis partitions the d items into 1d  and 2d  parts such that 

1 2d d d= + . 
Theorem 1 
a) The maximum number of distinct clusters of the n voters belonging to 1V  

on the first TCA principal axis (distinct ( )1f i  values for 1i V∈ ) is 1 2 1d d + . 

b) The maximum value that ( )1f i  can attain is 
( )

1 22
1

d d
d d −

. 

c) The minimum value that ( )1f i  can attain is 
( )

1 22
1

d d
d d

−
−

. 

d) If the number of distinct clusters is maximum, 1 2 1d d + , then the gap be-

tween two contiguous ( )1f i  values is 
( )

4
1d d −

. 

Remark 1 
a) We fix ( )1 0f nega <  to eliminate the sign indeterminacy of the first bili-

near term in (10). 
b) We partition 1V  into 1 2 1d d +  clusters, 1 2 1

1 1,=1

d dV V αα

+=


, where the voters 

of the αth cluster are characterized by their first TCA factor score; that is,  

( ) ( ) ( ) ( )
1 1 2

1, 1 1
4: 2 1

1 1
V d dV i V f i

d d d dα α
  = ∈ = − − 

− −  
 for 1 21, , 1d dα = + . 

Example 1: In Figure 2, 1 4d =  and 2 6d = , and we observe: 
Fact 1: by Theorem 1a, 5000 preferences are clustered into 1 2 1 25d d + =  

clusters on the first TCA principal axis. 
Fact 2: by Theorem 1b, the maximum value of ( )1 48 90f i = . 
Fact 3: by Theorem 1c, the minimum value of ( )1 48 90f i = − . 
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Fact 4: by Theorem 1d, the gap separating two contiguous clusters of voters on 
the first TCA principal axis is 4/90. 

A cluster of voters defined in Remark 1b, 1,V α  for 1 21, , 1d dα = + , can be 
classified as coherent or incoherent. And this will be discussed in the next sec-
tion. 

5. Coherent Cluster 

The following definition characterizes a coherent cluster. 
Definition 1 (Coherency of a cluster of voters 1,V α  for 1 21, , 1d dα = + ) 
A cluster of voters 1, 1V Vα ⊆  is coherent if  

( ) ( ) ( ) ( )
1, 1 2

1
42 1

1 1
V d df v

d d d d
α α= − −

− −
 for all 1,v V α∈ , where ( )1,

1
Vf iα  is the 

first TCA factor score of the voter 1,i V α∈  obtained from TCA of subprofile 

1,V α . 

Remark 2: 
a) It is important to distinguish between ( )1

1
Vf i  for 11, ,i V=   where 

1n V= , and ( )1,
1
Vf iα  for 1,1, ,i V α=  , where 1,V α  represents the sample size 

of the cluster 1,V α . 
b) Definition 1 implies that a cluster 1,V α  is coherent when for all voters 

1,i V α∈  the first TCA factor score ( )1,
1
Vf iα  does not depend on the voter i, but 

it depends on ( )1 2, ,d dα . 
Corollary 1: It follows from Remark 1a and Equation (13) that, a necessary 

condition, but not sufficient, for a cluster 1,V α  to be coherent is that its first 
TCA factor score obtained from TCA of 1V  is strictly positive; that is,  

( )1
10 Vf i<  for 1,i V α∈ . 

Example 2: Figures 3-9 show the coherency of the clusters of voters 1,V α  for 
1, ,7α =  , where dots represent clusters of voters; while Figure 10 shows the 

incoherence of the cluster 1,8V . Further, the first three columns of Table 3 dis-
play the mathematical formulation of the 7 coherent clusters  

( )1 1,cohC V αα =  for 1, ,7α =   as defined in Remark 1b and their sample sizes 

1,V α . 
Proposition 1: For a voting profile V, ( ) ( )1 1V f negaδ ≥ , where ( )1 Vδ  is 

the first TCA dispersion value obtained from TCA of V, and ( )1f nega  is the 
first TCA factor score of the row nega. 

The equality in Proposition 1 is attained only for coherent clusters as shown 
in the following result. 

Proposition 2: The first TCA dispersion value of a coherent cluster  
( )1cohC α  satisfies 

( )( ) ( ) ( ) ( ) ( )
1, 1 2

1 1 1
42 1

1 1
V d dcohC f nega

d d d d
αδ α α= = − −

− −  
Example 3: propostion 2 can be observed by looking at the columns 3 and 4 of 

Table 3 which concern the 7 coherent clusters ( )1 1,cohC V αα =  for 1, ,7α =  .  
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Figure 3. TCA map of 1,1V . 

 

 
Figure 4. TCA map of 1,2V . 

 

 
Figure 5. TCA map of 1,3V . 
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Figure 6. TCA map of 1,4V . 

 

 
Figure 7. TCA map of 1,5V . 

 

 
Figure 8. TCA map of 1,6V . 
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Figure 9. TCA map of 1,7V . 

 

 
Figure 10. TCA map of 1,8V . 

 
Table 3. Characteristics of ( )1 1,cohC V αα =  of SUSHI data. 

α  1,V α  description of 1,V α  ( )1 1,V αδ
 ( )( )

1, 1 1v V JT S
α
τ∈  ( )1,Cross V α  

1 314 ( ){ }1
1: 48 90Vi f i =

 
48/90 6 0 

2 235 ( ){ }1
1: 44 90Vi f i =

 
44/90 7 1/12 

3 326 ( ){ }1
1: 40 90Vi f i =

 
40/90 8 2/12 

4 315 ( ){ }1
1: 36 90Vi f i =

 
36/90 9 3/12 

5 452 ( ){ }1
1: 32 90Vi f i =

 
32/90 10 4/12 

6 375 ( ){ }1
1: 28 90Vi f i =

 
28/90 11 5/12 

7 401 ( ){ }1
1: 24 90Vi f i =

 
24/90 12 6/12 
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While for the incoherent cluster 1,8V  with sample size of 1,8 335V = , we ob-
serve: ( ){ }1

1,8 1: 20 90 0.222VV i f i= = = , and by Proposition 1,  

( )1 1,8 0.2354 2 9Vδ = > . This means that the 335 voters belonging to 1,8V  form a 
cluster within the whole sample of 5000 voters, but separated as 335 voters they 
do not form a coherent cluster. 

Interpretability of a Coherent Cluster 

The following result shows that for coherent clusters, the first TCA dimension 
can be interpreted as Borda scaled factor. 

Proposition 3: The first TCA column factor score of the item j, ( )1g j , is an 

affine function of the Borda scale ( )jβ ; that is, ( ) ( )1
2 1

1
g j j

d
β= −

−
 for 

1, ,j d=  . Or ( )1, 1corr =g β . 

Remark 3: 
The first TCA principal factor score of item j for 1, ,j d=   is bounded: 

( )11 1g j− ≤ ≤ , because ( )0 1j dβ≤ ≤ − . 
Example 4: Table 4 displays the Borda scales of the items, sushis, in the seven 

coherent clusters ( )1 1,cohC V αα =  for 1, ,7α =  . To identify the sushi type, 
one has to refer to Figure 2; for instance, j10 corresponds to 10 cucumber roll in 
Figure 2. We observe the following main fact: For each of the seven coherent 
clusters, the first TCA principal axis produced the same binary partition of the 
items: { }1 j10, j7, j4, j9J =  characterized by ( )14.5 jβ>  for 1 1j J∈ , and 

{ }2 j3, j1, j2, j6, j5, j8J =  characterized by ( )1 4.5jβ >  for 2 2j J∈ . The six su-
shis in 2J  have Borda scales above average score of ( )4.5 0 9 2= + ; while the 
four sushis in 1J  have Borda scales below average score of 4.5. 

Now we ask the question what are the differences among the seven coherent 
clusters? The answer is riffle shuffling of the scores of the items, which we dis-
cuss next. 

6. Exploratory Riffle Shuffling 

[8] is the seminal reference on riffle shuffling of cards. [2] generalized the notion  
 

Table 4. Borda scales of the 10 sushis in the seven coherent clusters. 

Borda scale j10 j7 j4 j9 j3 j1 j2 j6 j5 j8 

( )( )1 1cohCβ
 

0.66 1.31 1.87 2.16 5.55 5.78 6.03 6.58 7.31 7.52 

( )( )1 2cohCβ
 

0.69 1.29 2.44 2.59 5.47 5.43 5.50 6.35 7.38 7.86 

( )( )1 3cohCβ
 

0.65 1.60 3.04 2.71 5.25 5.25 5.39 6.26 7.17 7.68 

( )( )1 4cohCβ
 

0.83 1.79 3.10 3.28 5.30 4.74 5.22 6.34 6.76 7.64 

( )( )1 5cohCβ
 

1.12 2.02 3.26 3.60 5.70 4.74 5.27 5.75 5.99 7.60 

( )( )1 6cohCβ
 

1.12 2.33 3.62 3.93 5.68 4.98 5.21 5.33 5.25 7.56 

( )( )1 7cohCβ
 

1.42 2.74 3.84 4.00 5.45 4.70 5.02 5.26 5.20 7.38 
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of independence of two subsets of items to riffled independence to uncover the 
structure of rank data. Within the framework of data analysis of preferences, ex-
ploratory riffle shuffling can be described in the following way. We have two 
sets: J a set of d distinct items and S a set of d Borda scores. We partition both 
sets into two disjoint subsets of sizes 1d  and 2 1d d d= − ; that is, 1 2J J J=   
with { }11 1 2, , , dJ j j j=   and 1 2S S S=   with { }1 10,1, , 1S d= − . Riffle 
shuffling consists of two steps. In the first step, we attribute the scores of 1S  to 

1J  and the scores of 2S  to 2J . In the second step, we permute some scores 
attributed to 1J  with the same number of scores attributed to 2J . The second 
step can be mathematically described as an application of a permutation τ , 
such that ( ) ( ) ( )( )1 21 2 1 2, ,J J JS S S Sτ τ τ= . We interpret ( )

1 1J Sτ  as the set of 
scores attributed to 1J , and ( )

2 2J Sτ  as the set of scores attributed to 2J . 
Example 5: Table 5 displays a toy example with 7n =  voters’ Borda scor-

ings of 10d =  items with { }1 a, b,c,dJ =  and { }2 e, f ,g, h, i, jJ = . We observe 
the following: a) The first four voters have only done the first step in a riffle 
shuffle: each one of them has attributed the scores in { }1 0,1, 2,3S =  to the 
items in 1J  and the scores in { }2 4,5,6,7,8,9S =  to the items in 2J . This can 
be described as ( ) ( )1 2 1 2, ,J S S S Sτ = ; that is the permutation τ  is the identity 
permutation; so there is no crossing of scores between 1J  and 2J . b) Voters 5, 
6 and 7 have done both steps in a riffle shuffle. Voters 5 and 6 have permuted score 
3 with 5, so we have ( ) { }

1 1 0,1, 2,J Sτ = 5  and ( ) { }
2 2 4, ,6,7,8,9J Sτ = 3 . Voter 7 

has permuted the scores { },2 3  with { },4 5 , so we have ( ) { }
1 1 0,1, ,J Sτ = 4 5  and  

( ) { }
2 2 , ,6,7,8,9J Sτ = 2 3 . 
Further, we note by ( )

1 1J Sτ  the number of voters who have done the riffle 
shuffle ( ) ( )( )1 21 2,J JS Sτ τ . So ( ) { }

1 1 0,1, 2,3 4J Sτ = = , { }0,1,2, 2=5  and 
{ }0,1, , 1=4 5 . The permuted scores between the two blocks of items are in bold 

in Table 5. 
Remark 4: A useful observation that we get from Example 5 is that we can 

concentrate our study either on 1J  or on 2J : For if we know ( )
1 1J Sτ , the 

scores attributed to 1J , we can deduce ( )
2 2J Sτ , the scores attributed to 2J  

because of mutual exclusivity constraints ensuring that any two items, say a and  
 

Table 5. Borda scorings of 10 items by 7 voters. 

voter 
items 

a b c d e f g h i j 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 3 1 6 4 5 8 7 9 

3 3 2 1 0 5 6 4 9 7 8 

4 2 1 0 3 8 7 9 4 5 6 

5 0 1 2 5 4 3 6 7 8 9 

6 1 2 5 0 3 6 4 9 7 8 

7 0 4 5 1 6 8 9 2 7 3 
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b, never map to the same rank by a voter. 
A simple measure of magnitude of ( )1 2,d d  riffle shuffling of a voter i is the 

sum of its Borda scores attributed to the items in 1J ; that is, 

( )( )1
1

1 ,i J ij
j J

T S rτ
∈

= ∑
 

where ijr  is the Borda score attributed to item j by voter i. In Table 5, for the 
first four voters, ( )( )1 1 6i JT Sτ =  for 1,2,3,4i = , which is the minimum at-
tainable sum of scores; it implies that for these voters there is no crossing of 
scores between the two blocks 1J  and 2J . While for voters 5 and 6,  

( )( )1 1 8i JT Sτ =  for 5,6i = ; for voter 7, ( )( )17 1 10JT Sτ = . These values show 
that the crossing of scores between the two blocks 1J  and 2J  of voters 5 and 
6 are at a lower level than the crossing of scores for voter 7. 

For relatively small sample sizes, it is easy to enumerate the different types of 
( )1 2,d d  riffle shuffles. For relatively large sample sizes, we use the contingency 
table of first-order marginals, that we discuss next. 

Types of (d1, d2) Riffle Shufflings in a Coherent Cluster 

The contingency table of first order marginals of an observed voting profile V on 
d items is a square d d×  matrix M, where ( ),i jM  stores the number of 
times that item j has Borda score i for 0, , 1i d= − , see subsection 3.2. It helps 
us to observe types of ( )1 2,d d  riffle shufflings in a coherent cluster as we ex-
plain in Example 6. 

Example 6: Tables 6-12 display 1,αM  for 1, ,7α =  , the contingency 
tables of first-order marginals of the seven coherent clusters of the SUSHI data, 
respectively. We observe the following: 

Each one of them reveals the nature of the riffle shuffles of its coherent cluster,  
 

Table 6. 1,1M , contingency table of first-order marginals of ( )1 1cohC . 

Borda 
scores 

items 

j10 j7 j4 j9 j3 j1 j2 j6 j5 j8 sum 

0 174 92 37 11 0 0 0 0 0 0 314 

1 88 88 76 62 0 0 0 0 0 0 314 

2 38 78 91 107 0 0 0 0 0 0 314 

3 14 56 110 134 0 0 0 0 0 0 314 

4 0 0 0 0 92 78 73 38 21 12 314 

5 0 0 0 0 95 77 59 42 23 18 314 

6 0 0 0 0 47 63 70 65 37 32 314 

7 0 0 0 0 35 49 45 72 68 45 314 

8 0 0 0 0 32 27 32 62 87 74 314 

9 0 0 0 0 13 20 35 35 78 133 314 

β  0.66 1.31 1.87 2.16 5.55 5.78 6.03 6.58 7.31 7.52  
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Table 7. 1,2M , contingency table of first-order marginals of ( )1 3cohC . 

Borda 
scores 

items 

j10 j7 j4 j9 j3 j1 j2 j6 j5 j8 sum 

0 127 70 32 6 0 0 0 0 0 0 235 

1 69 82 38 46 0 0 0 0 0 0 235 

2 32 56 62 85 0 0 0 0 0 0 235 

3 0 0 0 0 55 59 74 29 15 3 235 

4 7 27 103 98 0 0 0 0 0 0 235 

5 0 0 0 0 68 60 42 41 11 13 235 

6 0 0 0 0 49 53 35 48 32 18 235 

7 0 0 0 0 26 35 42 48 40 44 235 

8 0 0 0 0 28 15 22 44 70 56 235 

9 0 0 0 0 9 13 20 25 67 101 235 

β  0.69 1.29 2.44 2.59 5.47 5.43 5.50 6.35 7.38 7.86  

 
Table 8. 1,3M , contingency table of first-order marginals of ( )1 3cohC . 

Borda 
scores 

items 

j10 j7 j4 j9 j3 j1 j2 j6 j5 j8 sum 

0 182 97 33 14 0 0 0 0 0 0 326 

1 104 100 46 76 0 0 0 0 0 0 326 

2 19 41 41 70 40 37 46 17 12 3 326 

3 16 35 53 51 39 48 43 22 13 6 326 

4 3 29 62 61 40 41 43 32 9 6 326 

5 2 24 91 54 39 43 23 24 16 10 326 

6 0 0 0 0 70 65 51 60 45 35 326 

7 0 0 0 0 53 36 52 74 56 55 326 

8 0 0 0 0 35 33 33 57 80 88 326 

9 0 0 0 0 10 23 35 40 95 123 326 

β  0.65 1.60 3.04 2.71 5.25 5.25 5.39 6.26 7.17 7.68  

 
Table 9. 1,4M , contingency table of first-order marginals of ( )1 4cohC . 

Borda 
scores 

items 

j10 j7 j4 j9 j3 j1 j2 j6 j5 j8 sum 

0 164 93 44 14 0 0 0 0 0 0 315 

1 78 71 30 36 10 31 32 9 16 2 315 

2 44 53 49 50 32 39 27 10 8 3 315 

3 22 52 58 87 24 20 24 15 7 6 315 

4 5 17 35 43 51 61 41 25 23 14 315 
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Continued 

5 1 11 61 46 43 42 34 35 26 16 315 

6 1 18 38 39 52 37 37 49 28 16 315 

7 0 0 0 0 49 44 51 61 54 56 315 

8 0 0 0 0 37 28 47 72 69 52 315 

9 0 0 0 0 17 13 22 39 84 140 315 

β  0.83 1.79 3.10 3.28 5.30 4.74 5.22 6.34 6.76 7.64  

 
Table 10. 1,5M , contingency table of first-order marginals of ( )1 5cohC . 

Borda 
scores 

items 

j10 j7 j4 j9 j3 j1 j2 j6 j5 j8 sum 

0 188 99 36 10 6 25 30 22 34 2 452 

1 132 109 69 57 12 30 21 13 9 0 452 

2 69 88 59 67 28 46 40 28 20 7 452 

3 39 72 85 92 34 44 21 31 25 9 452 

4 12 35 76 81 50 57 53 36 38 14 452 

5 6 29 63 72 63 64 53 41 40 21 452 

6 3 11 34 36 71 68 64 75 45 45 452 

7 3 9 30 37 87 45 62 73 57 49 452 

8 0 0 0 0 71 41 47 72 95 126 452 

9 0 0 0 0 30 32 61 61 89 179 452 

β  1.12 2.02 3.26 3.60 5.70 4.74 5.27 5.75 5.99 7.60  

 
Table 11. 1,6M , contingency table of first-order marginals of ( )1 6cohC . 

Borda 
scores 

items 

j10 j7 j4 j9 j3 j1 j2 j6 j5 j8 sum 

0 151 81 31 14 8 14 19 18 39 0 375 

1 112 79 44 33 12 21 26 25 19 4 375 

2 66 72 52 63 16 24 29 22 28 3 375 

3 26 52 68 68 22 45 31 29 25 9 375 

4 8 26 42 37 52 67 41 45 45 12 375 

5 8 27 56 61 44 49 42 36 28 24 375 

6 3 21 36 52 64 42 49 50 29 29 375 

7 0 7 25 31 70 43 44 59 45 51 375 

8 1 10 21 16 66 33 46 49 45 88 375 

9 0 0 0 0 21 37 48 42 72 155 375 

β  1.12 2.33 3.62 3.93 5.68 4.98 5.21 5.33 5.25 7.56  
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Table 12. 1,7M , contingency table of first-order marginals of ( )1 7cohC . 

Borda 
scores 

items 

j10 j7 j4 j9 j3 j1 j2 j6 j5 j8 sum 

0 129 65 46 14 11 24 35 23 52 2 401 

1 122 77 53 35 14 28 24 19 25 4 401 

2 74 69 50 51 24 41 36 31 19 6 401 

3 36 51 31 66 44 48 39 46 30 10 401 

4 24 50 40 71 51 45 38 37 27 18 401 

5 7 45 49 56 43 53 39 48 32 29 401 

6 5 23 73 68 42 50 42 33 40 25 401 

7 3 10 31 28 85 39 43 54 51 57 401 

8 1 3 17 5 58 46 47 65 57 102 401 

9 0 8 11 7 29 27 58 45 68 148 401 

β  1.42 2.74 3.84 4.00 5.45 4.70 5.02 5.26 5.20 7.38  

 
Table 13. Types of riffle shuffles in the 7 coherent clusters of SUSHI data. 

( )1cohC α  
scores given to 

{ }j10, j7, j4, j9  

sum of 
scores 

count ( )1cohC α  
scores given to 

{ }j10, j7, j4, j9  

sum of 
scores 

count 

( )1 1cohC  { }0,1,2,3  6 314 ( )1 6cohC  { }0,1,2,8  11 48 

( )1 2cohC  { }0,1,2,4  7 235  { }0,1, ,37  11 63 

( )1 3cohC  { }0,1,2,5  8 171  { }0, , 2,36  11 53 

 { }0,1, ,34  8 155  { },1, 2,35  11 98 

( )1 4cohC  { }0,1,2,6  9 96  { }0,1, ,4 6  11 59 

 { }0,1, ,35  9 119  { }0, , 2,4 5  11 54 

 { }0, , 2,34  9 100 ( )1 7cohC  { }0,1,2,9  12 26 

( )1 5cohC  { }0,1,2,7  10 79  { }0,1, ,38  12 26 

 { }0,1, ,36  10 84  { }0, , 2,37  12 33 

 { }0, , 2,35  10 85  { },1, 2,36  12 43 

 { },1, 2,34  10 119  { }0, , ,34 5  12 38 

 { }0,1, ,4 5  10 85  { }0, , 2,4 6  12 39 

     { }0,1, ,4 7  12 49 

     { }0,1, ,5 6  12 82 

     { },1, 2,54  12 65 

 
which are summarized in Table 13. The number of observed ( )4,6  blocks of 
scores for the seven coherent clusters, ( ) ( )( )1 21 2,J JS Sτ τ , is only 27 in Table 13 
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out of the possible total number of ( )10! 4!6! 210= . The counts of the observed 

( )4,6  blocks do not seem to be uniformly distributed in Table 13. Further-
more, we observe that as α  increases from 1 to 7, the magnitude of riffle shuf-
fles, ( )( )1 1v JT Sτ , increases in the coherent clusters from 6 to 12. Integers in 
bold in Table 13 are the shuffled-crossed scores. 

The counts in Table 13 are calculated from 1,αM  for 1, ,7α =  , by rea-
soning on the permutation of scores between the sets 1S  and 2S . Here are the 
details, where { }1 j10, j7, j4, j9J = . 

a) ( )1 1cohC  
{ }0,1,2,3 314= , which is the number of 0 s attributed to 1J  in 1,1M . 

Among the 1,αM  for 1, ,7α =  , note that 1,1M  is the only contingency table 
of first-order marginals which is block diagonal. 

b) ( )1 2cohC  
{ }0,1, 2, 4 235= , which is the number of 4 s attributed to 1J  in 1,2M . 

c) ( )1 3cohC  
{ }0,1,2,5 171= , which is the number of 5 s attributed to 1J  in 1,3M . 
{ }0,1, ,3 155=4 , which is the number of 4 s attributed to 1J  in 1,3M . 

d) ( )1 4cohC  
{ }{ }0,1,2, 96=6 , which is the number of 6 s attributed to 1J  in 1,4M . 
{ }0,1, ,3 119=5 , which is the number of 5 s attributed to 1J  in 1,4M . 
{ }0, , 2,3 100=4 , which is the number of 4 s attributed to 1J  in 1,4M . 

e) ( )1 5cohC  
{ }0,1,2, 79=7 , which is the number of 7 s attributed to 1J  in 1,5M . 
{ }0,1, ,3 84=6 , which is the number of 6 s attributed to 1J  in 1,5M . 
{ }0, , 2,3 85=5 , which is the number of 1 s not attributed to 1J  in 1,5M . 
{ } { }0,1, , 0, , 2,3 170+ =4 5 5 , which is the total number of 5 s attributed to 

1J  in 1,5M ; so { }0,1, , 170 85 85= − =4 5 . 
{ },1, 2,3 119=4 , which is the number of 0 s not attributed to 1J  in 1,5M . 

f) ( )1 6cohC  
{ }0,1,2, 48=8 , which is the number of 8 s attributed to 1J  in 1,6M . 
{ }0,1, ,3 63=7 , which is the number of 7 s attributed to 1J  in 1,6M . 
{ },1, 2,3 98=5 , which is the number of 0 s not attributed to 1J  in 1,6M . 
{ }0, , 2, 152 98 54= − =4 5 , where 152 is the total number of 5 s attributed to 

1J  in 1,6M . 
{ }0,1, , 113 54 59= − =4 6 , where 113 is the total number of 4 s attributed to 

1J  in 1,6M . 
{ }0, , 2,3 112 59 53= − =6 , where 112 is the total number of 6 s attributed to 

1J  in 1,6M . 
g) ( )1 7cohC  
{ }0,1,2, 26=9 , which is the number of 9 s attributed to 1J  in 1,7M . 
{ }0,1, ,3 26=8 , which is the number of 8 s attributed to 1J  in 1,7M . 

For the remaining counts, we have to solve the following system of 7 linear 
equations, where, { }0, , 2,3u = 7 , { }0, , ,3t = 4 5 , { }0, , 2,s = 4 6 ,  
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{ }0,1, ,w = 4 7 , { }0,1, ,z = 5 6 , { },1, 2,3x = 6 , and { },1, 2,5y = 4 . 
147x y+ = , which is the number of 0 s not attributed to 1J  in 1,7M . 
72u w+ = , which is the number of 7 s attributed to 1J  in 1,7M . 

169s z x+ + = , which is the number of 6 s attributed to 1J  in 1,7M . 
157t z y+ + = , which is the number of 5 s attributed to 1J  in 1,7M . 

185t s w y+ + + = , which is the number of 4 s attributed to 1J  in 1,7M . 
158u t x+ + = , which is the number of 3 s attributed to 1J  in 1,7M . 

218u s x y+ + + = , which is the number of 2 s attributed to 1J  in 1,7M . 

7. Crossing Index 

The following ( )1 2,d d  crossing index is based on the internal dispersion of a 
voting profile. 

Definition 3: For a voting profile V we define its crossing index to be 

( )
( )
( )

( )

( )

1 2 1 2

1 2

1 , 1 ,

1 21 ,

1 1
max 2

1

d d d d

d dV

V V
Cross V

d dV
d d

δ δ

δ
= − = −

−

 by Proposition 2. 

where ( )1 21 ,d dVδ  is the first taxicab dispersion obtained from TCA of V and 
( )1 2,d d  represents the optimal TCA binary partition of the d items of V such 
that 1 2d d d= + . 

Proposition 4: The crossing index of a coherent cluster is 

( )( ) ( )
1 2

2 1
.Cross cohC

d d
α

α
−

=
 

Example 7: The last column in Table 3 contains the values of the crossing in-
dices of the seven coherent clusters of the first iteration of SUSHI data. We ob-
serve: a) ( )( )1 1 0Cross cohC = , because the structure of its matrix of first-order 
marginals, 1,1M , is block diagonal; which means that the permutation τ  is the 
identical permutation, so there are no crossing of scores between the two subsets 
of items 1J  and 2J  in ( )1 1cohC . b) ( )( )1Cross cohC α  for 1, ,7α =   is a 
uniformly increasing function of α , similar in spirit to the ( )( )1 1v JT Sτ  statis-
tic. c) For the incoherent cluster 1,8V , we have: ( )1 1,8 0.2354Vδ =  given in Ex-
ample 3; and 1 2 5d d= =  from Figure 10. So  

( ) ( )1,8
0.23541 1 0.4237 0.5763

2 5 5 10 9
Cross V = − = − =

× × ×
. 

8. Coherent Group 

Our aim is to explore a given voting profile V by uncovering its coherent mix-
ture groups, see Equation (1); that is, ( )1

G

g
V cohG g noisyG

=
= 



, where G 
represents the number of coherent groups and ( )cohG g  is the gth coherent 
group. The computation is done by an iterative procedure in Gn  steps for 

Gn G≥  that we describe: 
For 1g = ; let 1V V= ; compute ( )1cohG  from 1V , then partition  

( )1 2 1V V cohG=  ; 

https://doi.org/10.4236/ojs.2021.111010


V. Choulakian, J. Allard 
 

 

DOI: 10.4236/ojs.2021.111010 200 Open Journal of Statistics 
 

For 2g = ; compute ( )2cohG  from 2V , then partition ( )2 3 2V V cohG=  ; 
By continuing the above procedure, after Gn  steps, we get  

( )=1
Gn

g
V cohG g=


. 
However, some of the higher ordered coherent groups may have relatively 

small sample sizes; so by considering these as outliers, we lump them together 
thus forming the noisy group denoted by noisyG  in Equation (1). 

Let us recall the definition of a coherent group given in Equation (2) 

( ) ( )1
for 1, , ;gc

gcohG g cohC g G
α

α
=

= = 

  
that is, a coherent group is the union of its coherent clusters. This implies that 
the sample size of ( )cohG g  equals the sum of the sample sizes of its coherent 
clusters 

( ) ( )
1

.
gc

gcohG g cohC
α

α
=

= ∑
 

As an example, for the SUSHI data, from the 2nd column of Table 3 we can 
compute the sample size of the first coherent group 

( ) ( )
7

1
1

1 2418.
gc

cohG cohC
α

α
=

=

= =∑
 

Furthermore, ( )1cohG  is composed of 27 observed riffle shuffles summa-
rized in Table 13, which provides quite a detailed view of its inner structure. 

The next result shows important characteristics of a coherent group inherited 
from its coherent clusters. 

Theorem 2: (Properties of a coherent group ( )cohG g ) 
a) The first principal column factor score 1g  of the d items in a coherent 

group is the weighted average of the first principal column factor score 1g  of 
the d items of its coherent clusters; that is, 

( )( ) ( )
( )

( )( )1 1
1

for 1, ,
cg

g
g

cohC
g j cohG g g j cohC j d

cohG gα

α
α

=

∈ = ∈ =∑ 

 

( )
( )

( )( )
1

2 1
1

gc
g

g

cohC
j cohC

d cohG gα

α
β α

=

= ∈ −
− ∑  by Proposition 3. 

And ( )( ) ( )( )( )1 , 1corr cohG g cohG g =g β . 
b) The first TCA dispersion value of a coherent group is the weighted average 

of the first TCA dispersion values of its coherent clusters; that is, 

( )( ) ( )
( )

( )( )1 1
1

.
gc

g
g

cohC
cohG g cohC

cohG gα

α
δ δ α

=

= ∑
 

c) The crossing index of a coherent group is the weighted average of the 
crossing indices of its coherent clusters; that is, 

( )( ) ( )
( )

( )( )
1

.
gc

g
g

cohC
Cross cohG g Cross cohC

cohG gα

α
α

=

= ∑
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Example 8: Table 14 summarizes the first four coherent groups of SUSHI 
data, which emerged after 5 iterations. For 1g = , we get  

( ) ( )1 7
11

1 ccohG cohC
α

α=

=
=


; that is, the first coherent group of voters, the major-
ity, is composed of 48.36% of the sample with crossing index of 27.3%. Standard 
errors of the Borda scale of the items in ( )1cohG  in Table 14 are: 

( )0.046,0.051,0.042,0.042,0.053,0.047,0.037,0.034,0.037,0.025 .  
We can discern the following grouped seriation (bucket ranking) of the items 

{ } { } { } { }j8 j5 j6 j3, j2 j1 j9, j4 j7 j10 .        
The groupings are based on the standard 95% confidence intervals of the 

Borda scale of the items. 
The 2nd coherent group ( )2cohG , summarized by its Borda scales in Table 

14, is made up of eight coherent clusters; it is composed of 19.0% of the sam-
ple with crossing index of 35.38%. The voters in this coherent group disap-
prove {uni(seaurchin), sake(salmonroe)}, which are considered more “daring 
sushis”. 

The third coherent group ( )3cohG , summarized by its Borda scales in Table 
14, is made up of eight coherent clusters; it is composed of 13.24% of the sample 
with crossing index of 27.3%. The voters in this coherent group prefer the three 
types of tuna sushis with sea urchin sushis. 

The fourth coherent group ( )4cohG , summarized by its Borda scales in Ta-
ble 14, is made up of eight coherent clusters; it is composed of 6.94% of the 
sample with crossing index of 35.27%. The voters disapprove the three types of 
tuna sushis. 

Remark 6: 
a) Note that the number of preferred sushis in ( )1cohG  and ( )2cohG  are 

six; that is 2 6J = . While the number of preferred sushis in ( )3cohG  and 
( )4cohG  are four. 

b) The four coherent groups summarized in Table 14 can also be described as 
two bipolar latent factors: By noting that the only major difference between the 
first two coherent groups is that (5. uni (sea urchin), 6. sake (salmon roe)) are 
swapped with (7. tamago (egg), 4. ika (squid)). While the only major difference 
between the third and fourth coherent groups is that the three tunas are swapped 
with (4. ika (squid), 5. uni (sea urchin), 1. ebi (shrimp)). 

c) We consider the fifth group as noisy (outliers not shown) composed of 
12.36% of the remaining sample: it contains ( ) ( )2

51
5cohG cohC

α
α

=
=


 whose 
sample size is 38, a very small number. For the sake of completeness we also 
provide the sample sizes of its two coherent clusters ( )5 1 22cohC =  and 

( )5 2 16cohC = . 

9. APA Data Set 

The 1980 American Psychological Association (APA) presidential election had 
five candidates: { },A C  were research psychologists, { },D E  were clinical  
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Table 14. The first four coherent groups of SUSHI data and related statistics. 

( ) ( )7

11
1cohG cohC

α
α

=
=
  

β  ( ) ( )8

21
2cohG cohC

α
α

=
=
  

β  

8. toro (fatty tuna) 7.62 8. toro (fatty tuna) 6.15 

5. uni (sea urchin) 6.31 2. anago (sea eel) 5.97 

6. sake (salmon roe) 5.92 1. ebi (shrimp) 5.92 

3. maguro (tuna) 5.49 7. tamago (egg) 5.76 

2. anago (sea eel) 5.35 3. maguro (tuna) 5.55 

1. ebi (shrimp) 5.04 4. ika (squid) 5.41 

9. tekka-maki (tuna roll) 3.27 9. tekka-maki (tuna roll) 3.80 

4. ika (squid) 3.10 10. kappa-maki (cucumber roll) 2.56 

7. tamago (egg) 1.94 6. sake (salmon roe) 2.45 

10. kappa-maki (cucumber roll) 0.97 5. uni (sea urchin) 1.44 

( )( )1 27.3%Cross cohG =
 

 ( )( )2 35.38%Cross cohG =
 

 

( ) ( )1 2418 48.36%cohG =
 

 ( ) ( )2 955 19.10%cohG =
 

 

( ) ( )8

31
3cohG cohC

α
α

=
=
  

β  ( ) ( )8

41
4cohG cohC

α
α

=
=
  

β  

8. toro (fatty tuna) 7.31 4. ika (squid) 6.67 

6. sake (salmon roe) 6.62 5. uni (sea urchin) 6.50 

3. maguro (tuna) 6.30 6. sake (salmon roe) 6.43 

9. tekka-maki (tuna roll) 6.00 1. ebi (shrimp) 6.16 

7. tamago (egg) 3.76 8. toro (fatty tuna) 3.69 

4. ika (squid) 3.41 7. tamago (egg) 3.39 

2. anago (sea eel) 3.00 2. anago (sea eel) 3.21 

1. ebi (shrimp) 2.92 9. tekka-maki (tuna roll) 3.14 

10. kappa-maki (cucumber roll) 2.86 10. kappa-maki (cucumber roll) 2.99 

5. uni (sea urchin) 2.80 3. maguro (tuna) 2.80 

( )( )3 31.37%Cross cohG =
 

 ( )( )4 35.27%Cross cohG =
 

 

( ) ( )3 662 13.24%cohG =
 

 ( ) ( )4 347 6.94%cohG =
 

 

 
psychologists and B was a community psychologist. In this election, voters 
ranked the five candidates in order of preference. Among the 15,449 votes, 5738 
votes ranked all five candidates. We consider the data set which records the 5738 
complete votes; it is available in [[20], p. 96] and [[5], Table 1]. The winner was 
candidate C. 

Table 15 compares the results obtained by our method and the best dis-
tance-based mixture model given in [21]. Distance-based models have two pa-
rameters, a central modal ranking and a precision parameter. The precision pa-
rameter measures the peakedness of the distribution. [21] found that the Cayley 
distance produced better results than the Kendall and Spearman distances using 
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BIC (Bayesian information criterion) and ICL (integrated complete likelihood) 
criteria. Parts a and b of Table 15, are reproduced from [[21], Table 4 and Table 
5]. 

Part c of Table 15 summarizes the results of our approach, where we only de-
scribe the first four coherent groups: We find only the first two coherent groups 
as meaningfully interpretable based on the a priori knowledge of the candidates. 
Voters in ( )1cohG , with sample size of 31%, prefer the research oriented psy-
chologists { },A C  over the rest. Voters in ( )2cohG , with sample size of 23.7%, 
prefer the clinical psychologists { },D E  over the rest. We interpret ( )3cohG  
and ( )4cohG  as mixed B with 14.23% and 12% of the voters, respectively. Ad-
ditionally, there is a noisyG  making up 19.1% of the sample, which comprises 

( )5cohG  displayed in Table 15. 
[5] discussed this data set quite in detail; surprisingly, our results confirm his 

observations: a) There are two groups of candidates, { },A C  and { },D E . The 
voters line up behind one group or the other; b) The APA divides into academi-
cians and clinicians who are on uneasy terms. Voters seem to choose one type or 
the other, and then choose within; but the group effect predominates; c) Candi-
date B seems to fall in the middle, perhaps closer to D and E. 

The following important observation emerges from the comparison of results 
in Table 15. We have two distinct concepts of groups for rank data, categorical and 
latent variable based. To see this, consider groups 3 and 4 in part a of Table 15:  

 
Table 15. A summary of results derived from three methods of analysis of APA election data. Parts (a) 
and (b) are from Murphy and Martin (2003). 

(a) Parameters of the best mixture model selected, Cayley-based, using BIC 

Group sample% modal orderings precision 

1 42 D B E C A     0.16 

2 31 C D E A B     0.79 

3 12 B C A D E     1.52 

4 8 B C A E D     1.81 

5 7 B D A E C     1.72 

(b) Parameters of the best mixture model selected, Cayley-based, using ICL 

Group sample% modal ordering precision 

1 100 B C A E D     0.25 

(c) The first five coherent groups, each composed of two coherent clusters 

Group sample% ( )Cβ  ( )Aβ  ( )Bβ  ( )Eβ  ( )Dβ  Cross 

cohG(1) Research 31.0 3.55 3.15 1.31 1.15 0.85 10.22% 

cohG(2) Clinical 23.7 0.83 1.28 1.28 3.31 3.30 12.90% 

cohG(3) mixed B 14.2 0.66 2.70 2.96 0.71 2.97 12.45% 

cohG(4) mixed B 12.0 2.85 0.77 2.86 2.80 0.72 10.22% 

cohG(5) outlier 8.6 0.96 3.30 1.31 3.40 1.00 9.88% 
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Group 3 is based on the modal category B C A D E     and group 4 is 
based on the modal category B C A E D    . The only difference between 
these two modal categories is the permutation of the least ranked two clinical 
psychologist candidates { },D E ; this difference is not important and does not 
appear in our approach, which is a latent variable approach. 

Description 

The eight coherent clusters of the first four coherent groups can simply be de-
scribed as: 

( ) ( ) { } { } { }( )21 2 ,1 : 3, 4 3,4 7v J A Ccoh C T Sτ τ= = =  for 1, ,1233v =  . 

( ) ( ) { } { } { }( )21 2 ,2 : 3, 4 , 4 6v J A Ccoh C T Sτ τ= = =2  for 1, ,545v =  . 

( ) ( ) { } { } { }( )22 2 ,1 : 3, 4 3,4 7v J D Ecoh C T Sτ τ= = =  for 1, ,834v =  . 

( ) ( ) { } { } { }( )22 2 ,2 : 3, 4 , 4 6v J D Ecoh C T Sτ τ= = =2  for 1, ,526v =  . 

( ) ( ) { } { } { }( )13 1 ,1 : 0,1 0,1 1v J C Ecoh C T Sτ τ= = =  for 1, ,512v =  . 

( ) ( ) { } { } { }( )13 1 ,2 : 0,1 0, 2v J C Ecoh C T Sτ τ= = =2  for 1, ,305v =  . 

( ) ( ) { } { } { }( )14 1 ,1 : 0,1 0,1 1v J A Dcoh C T Sτ τ= = =  for 1, ,350v =  . 

( ) ( ) { } { } { }( )14 1 ,2 : 0,1 0, 2v J A Dcoh C T Sτ τ= = =2  for 1, ,338v =  . 

In this case, we can also visualize all the orderings belonging to a coherent 
group: Figure 11 and Figure 12 display all the preferences belonging to the two 
coherent clusters of the first coherent group. The label CAEBD162 in Figure 11 
should be interpreted as the preference C A E B D     repeated 162 times. 

 

 
Figure 11. TCA map of 1 1Coh C  of APA data. 
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Figure 12. TCA map of 1 2Coh C  of APA data. 

10. Riffle Independence Model 

Riffle independence is a nonparametric probabilistic modelling method of pre-
ferences developed by [2], which generalizes the independence model. It can be 
described in the following way: 

(a) Partition the set J of d distinct items into two disjoint subsets 1J  of size 

1d  and 2J  of size 2d . Then generate an ordering of items within each subset 
according to a certain ranking model. This implies that any ordering of the d 
items can be written as a direct product of two disconnected orderings; which in 
its turn implies the independence of the two subsets 1J  and 2J . So the model 
complexity of this step is of order 1 2! !d d+ . 

(b) Interleave the two independent orderings for these two subsets using a rif-
fle shuffle to form a combined ordering. An interleaving is a binary mapping 
from the set of orderings to { }1 2,J J . The model complexity of this step is of 
order ( )1 2! ! !d d d . The interleaving step generates the riffled independence of the 
two subsets 1J  and 2J . 

So the combined model complexity of both steps is ( )1 2 1 2! ! ! ! !d d d d d+ +  
which is much smaller than ( )1 2! !d d d= + . 

For example, consider an ordering of the items in the set { }, , , , ,J A B C D E F=  
from its two subsets { }1 ,J A C=  and { }2 , , ,J B D E F= . In the first step, rela-
tive orderings of the items in 1J  and 2J  are drawn independently. Suppose 
we obtain the relative ordering ( ) ( )1J C Aϕ =   in 1J , and the relative order-
ing ( ) ( )2J B D F Eϕ =     in 2J . Then, in the second step, the two relative 
orderings are combined by interleaving the items in the two subsets. For in-
stance, if the interleaving process is ( ) ( )1 2 1 2 2 1 2 2, , , , , ,J J J J J J J Jω = , where the 
relative ordering of the items in each subset remains unchanged, the combined 
ordering is then determined by the composition 
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( ) ( ) ( )( ) ( ) ( )1 2 1 2, , .J J J J C B D A F E Jω ϕ ϕ ϕ∗ = =    

 
Given the two subsets 1J  and 2J  with their orderings ( )1Jϕ  and ( )2Jϕ  

and interleaving ( )1 2,J Jω  generated from models with probability distribu-
tions 

1 2
,J Jf g  and mω , respectively, the probability of observed ordering under 

the riffle independence model is 

( )( ) ( )( ) ( )( ) ( )( )1 21 2 1 2, .J JP J m J J f J g Jωϕ ω ϕ ϕ=
 

There are two formulations of riffle shuffle for rank data in statistics: proba-
bilistic and exploratory. In the riffled independence model, the set of items is 
partitioned recursively, while in the exploratory approach the set of voters is 
partitioned recursively. 

11. Conclusions 

The main contribution of this paper is the introduction of an exploratory riffle 
shuffling procedure to reveal and display the structure of diffuse rank data for 
large sample sizes. The new notion of a coherent cluster, that we developed, is 
simply based on the geometric notion of taxicab projection of points on the first 
TCA axis globally and locally; furthermore, it has nice mathematical properties. 
Coherent clusters of a coherent group represent the same latent variable oppos-
ing preferred items to disliked items, and can easily be interpreted and displayed. 

Like Occam’s razor, step by step, our procedure peels the essential structural 
layers (coherent groups) of rank data. 

Our method was able to discover some other aspects of the rank data, such as 
outliers or small groups, which are eclipsed or masked by well-established me-
thods, such as distance or random utility-based methods. The major reason for 
this is that in random utility-based methods the multivariate nature of a prefe-
rence is reduced to binary preferences (paired comparisons), and in Mallows 
distance related methods distances between any two preferences are bounded. 

We presented a new index, Cross, that quantifies the extent of crossing of 
scores between the optimal binary partition of the items that resulted from TCA. 
The crossing index of a group is based on the first taxicab dispersion measure: it 
takes values between 0 and 100%, so it is easily interpretable. 

The proposed approach can easily be generalized to the analysis of rankings 
with ties and partial rankings. 

The package TaxicabCA written in R available on CRAN can be used to do the 
calculations. 
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Appendix 

Let ( )ijr=R  for 1, ,i n=   and 1, ,j d=   represent the Borda scorings for 
preferences, where ijr  takes values 0, , 1d − . Similarly, let R  represent the 
reverse Borda scorings, whose column sums are the cordinates of the row named 

nn ′= =nega R1β . We consider the application of TCA to the data set 

nega
 

=  
 

R
R

nega  
of size ( )1n d+ × . So let 

nega t=P R  
be the correspondence table associated with negaR , where  

( )1
02 1d

jt n j nd d−

=
= = −∑ . We have 

1 for 1, ,
2ip i n

n∗ = =                      (14) 

1 for 1,
2

i n= = +                       (15) 

and 
1 for 1, , .jp j d
d∗ = =                     (16) 

The first residuel correspondence matrix will be 
( )1
ij ij i jp p p p∗ ∗= −                          (17) 

1 1. for 1, ,
2

ijr
i n

t n d
= − =              (18) 

1 1. for 1.
2

j i n
t d

= − = +
nega

           (19) 

Consider the nontrivial binary partition of the set { }0,1, , 1S d= −  into 

1 2S S S=  , where 1 1S d= , 2 2S d=  and 1 2d d d= + . To eliminate the sign 
indeterminacy in the first TCA principal axis, we fix ( ) ( )1 1 1 1nega n= + = −v v ; 
and we designate by 1S  the set of item indices such that the first TCA principal 
axis coordinates are negative, that is, ( )1 1j = −u  for 1j S∈ . It follows that 

( )1 1j =u  for 2j S∈ . 
Now we have by (4) for 1, ,i n=   

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

1 2

1 2

1

1

1

1
1 11

1 1
1 1

1 1

1

1

2 by 17

1 12 . by 18
2

2 ;

d
i ijj

ij ijj S j S

ij ijj S j S

ijj S

ij
j S

ijj S

a j p

j p j p

p p

p

r
t n d

d r
nd t

=

∈ ∈

∈ ∈

∈

∈

∈

=

= +

= − +

= −

 
= − − 

 

= −

∑
∑ ∑
∑ ∑
∑

∑

∑

u

u u

              (20) 

https://doi.org/10.4236/ojs.2021.111010


V. Choulakian, J. Allard 
 

 

DOI: 10.4236/ojs.2021.111010 210 Open Journal of Statistics 
 

and from which we deduce by (5) for 1, ,i n=   

( ) 1

1 1
1

2 4 .
1

i
i ijj S

i

a df r
p d d d ∈

∗

= = −
− ∑                 (21) 

We have the following Theorem concerning the first TCA principal factor 
scores of respondents 1if  for 1, ,i n=  . 

Theorem 1: 
a) The maximum number of distinct clusters of n respondents on the first 

TCA principal axis (distinct 1if  values) is 1 2 1d d + . 
Proof: We consider the two extreme cases of 1S  and calculate the summation 

term in (21): 

For { }1 10,1, , 1S d= − , 
( )1

1

1 1 1
0

1
2

d
ijj S j

d d
r j−

∈ =

−
= =∑ ∑ . 

For { }1 1,1, , 1S d d d= − − , 
( )

1 1 2

1 1 1 2 1
2

d d
ijj S j d d j d

d d d
r j j− −

∈ = − =

+ −
= = =∑ ∑ ∑ . 

It follows that 

( ) ( )
1

1 1 1 21 1
;

2 2ij
j S

d d d d d
r

∈

− + −
≤ ≤∑

 

so 
1 ijj S r

∈∑  can take at most 
( ) ( )1 2 1 1

1 2

1 1
1 1

2 2
d d d d d

d d
+ − −

− + = +  values. 

b) The maximum value that 1if  can attain is 
( )

1 22
1

d d
d d −

. 

Proof: From (21) and Part a, it follows that the maximum value that 1if  can 

attain is 
( )

( )
( )

1 11 1 212 4 2
1 2 1

d dd d d
d d d d d

 −
− =  − − 

. 

c) The minimum value that 1if  can attain is 
( )

1 22
1

d d
d d

−
−

. 

Proof: From (21) and Part a, it follows that the minimum value that 1if  can 

attain is 
( )

( )
( )

1 21 1 212 4 2
1 2 1

d d dd d d
d d d d d

 + −
− = −  − − 

. 

d) If the number of distinct clusters is maximum, 1 2 1d d + , then the gap be-

tween two contiguous 1if  values is 
( )

4
1d d −

. 

Proof: Suppose that the number of distinct clusters is maximum, 1 2 1d d + . 

We consider the first TCA factor score 
( ) 1

1
1

2 4
1i ijj S

df r
d d d ∈

= −
− ∑  which is 

different in value from the two extreme values 
( )

1 22
1

d d
d d

±
−

. Then  

( ) ( )1 1

1
1

2 4 1
1i ijj S

df r
d d d ∈

= − − +
− ∑  will be the contiguous higher value to 1if ; 

and similarly 
( ) ( )2 1

1
1

2 4 1
1i ijj S

df r
d d d ∈

= − +
− ∑  will be the contiguous lower 

value to 1if ; and the required result follows. 

https://doi.org/10.4236/ojs.2021.111010


V. Choulakian, J. Allard 
 

 

DOI: 10.4236/ojs.2021.111010 211 Open Journal of Statistics 
 

Proposition 1: For a voting profile V, ( )1 1fδ ≥ nega . 

Proof: Let 
( )

11
1

1a nega
 

=  
 

a
a . We need the following three observations. 

First, it is well known that 1a  is centered by (5) and (9), 

( )1 1 11 10 ;n n a nega+′ ′= = +a a1 1  
from which we get, 

( )11 1 .n a nega′ =a1                       (22) 

Second, by triangle inequality of the L1 norm we have 

11 111 .n′≥a a1                         (23) 

Third, the marginal relative frequency of the nega row is 1 2negap ∗ =  by (15), 
and 1 1i i if a p ∗=  for 1, , 1i n= +  by (5); so we have 

( ) ( )1 12 .f nega a nega=                     (24) 

Now we have by (7) 

( )

( ) ( )

( ) ( )

( ) ( )

1 1 11 11 1

11 1

1

1

by 23

2 by 22

by 24

n

a nega

a nega

a nega

f nega

δ = = +

′≥ +

=

=

a a

a1
                 (25) 

Propostion 2: Let ( ) ,m mcohC V αα =  be the αth coherent cluster of the mth 
coherent group characterized by ( ),

1
m mV Vf fα

α=σ  for all ( )mcohC α∈σ . Then 
( )1 1

mVf fαδ = = − nega . 
Proof: By Definition 1 of the coherency of the cluster ,mV α , we have  

( ),
10 m mV Vf i fα

α< =  for ( )1, , mi cohC α=  ; by (5) it follows that  

10 mV
ia f nα< =  for ( )1, , mi cohC α=  ; so (25) becomes equality,  

11 1 1111
n

i ni a
=

′= =∑a a1 , and the required result follows. 
Proposition 3 is a corollary to the following general result 
Theorem 3: If the first TCA principal axis of the columns of negaR  is 

1 1
n 

=  − 
v

1
, then 

the first principal column factor score 1g  of the d items is an affine function 

of the Borda scale β ; that is, ( ) ( )1
2 1

1
g j j

d
β= −

−
 or ( )1, 1corr =g β . 

Proof: Suppose that 1 1
n 

=  − 
v

1
; then by (4) for 1, ,j d=   

( ) ( ) ( )

( )
( )
( )

1
1

1 1
1

11
1

1

n

ij
i

n

ij n j
i

b j v i p

p p

+

=

+
=

=

= −

∑

∑
 

( )1

1
2

n

ij
i

p
=

= ∑  by (17) 
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( )
1

2
n

ij i j
i

p p p∗ ∗
=

= −∑  

1
2

n

ij j
i

r t p∗
=

= −∑  by (14) 

( )2 jn j t pβ ∗= −  
Thus by (5) for 1, ,j d=   

( ) ( ) ( ) ( )
1 1

2 2
1.

1
j

j
j

n j t p j
g j b j p

p d
β β∗

∗
∗

−
= = = −

−  
Proposition 4: The crossing index of a coherent cluster is 

( )( ) ( )
1 2

2 1
.Cross cohC

d d
α

α
−

=
 

Proof: Easily shown by using Definition 3 and Proposition 2. 
The proof of Theorem 2a easily follows from Theorem 3. The proof of Theo-

rem 2b is similar to the proof of Proposition 1. The proof of Theorem 2c is simi-
lar to the proof of Proposition 4. 
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