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Abstract 
The quality of products manufactured or procured by organizations is an 
important aspect of their survival in the global market. The quality control 
processes put in place by organizations can be resource-intensive but sub-
stantial savings can be realized by using acceptance sampling in conjunction 
with batch testing. This paper considers the batch testing model based on the 
quality control process where batches that test positive are re-tested. The re-
sults show that re-testing greatly improves the efficiency over one stage batch 
testing based on quality control. This is observed using Asymptotic Relative 
Efficiency (ARE), where for values of p computed ARE > 1 implying that our 
estimator has a smaller variance than the one-stage batch testing. Also, it was 
found that the model is more efficient than the classical two-stage batch test-
ing for relatively high values of proportion. 
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1. Introduction 

Batch testing, also known as group testing or pool screening, is a method that 
combines individual items into several batches of a certain size [1]. Then the 
batches are tested instead of individual items. If a batch tests positive, it is as-
sumed that at least one item in the batch is positive; otherwise it is assumed that 
all items in the batch are negative. Batch testing provides cost-effective method 
of screening a population for a given trait when the proportion of the trait in the 
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population is low and the tests involved are expensive and sensitive. 
Batch testing, which has two main objectives; classification and estimation, 

has had early major contributions from [2] and [3]. It first appeared in statistics 
literature in the context of screening blood samples obtained from military in-
ductees for the presence of a disease [2]. However, this method is currently ap-
plied in different fields such as safety of blood products [4], disease screening in 
humans [5], animals [6] or plants [7], genetics [8] and purity of seeds [9]. 

In implementing quality control procedures, a sample of items is taken from 
the produced or procured lot and pooled in batches. Each batch is tested with 
the appropriate test and rejected if the number of items with the trait in the 
batch exceeds a predetermined cut off value, l. Otherwise, the batch is accepted 
[10]. Ideally, the tests are normally assumed to be perfect but occasionally these 
tests are prone to misclassification errors due to dilution [11], blockers [5] and 
[5] or non-representative sample [12]. But misclassification is usually kept at the 
minimal level. Depending on the cost and benefits, an organization concerned 
with the production or procurement of the items may decide to re-test batches 
that initially test positive. Re-testing enables organization to reduce misclassifi-
cation and also facilitates the investigation of dilution effect [13] and [14]. 
Therefore, it is in this background that we develop this article and the article is 
arranged as follows; Section 2 gives the literature review, that is, outlines the es-
timator of a proportion obtained using batch testing in quality control with per-
fect and imperfect tests. Section 3 illustrates the proposed batch testing model in 
quality control with re-testing and in Section 4; the proposed model is compared 
with the models proposed by [15] and [16]. Lastly, Section 5 gives brief discus-
sion and conclusion. 

2. Literature Review 

The quality of products procured from or released to the market is a major con-
cern to most if not all organizations. Thus, many of the organizations set up 
quality control processes to ensure quality standards of their products are met. 
However, quality control processes are sometimes cost-intensive, destructive and/or 
may take much time to get the results. To mitigate against these issues accep-
tance sampling is usually employed where a lot of items are either accepting or 
rejecting without inspecting each and every item in it. A lot is classified as posi-
tive if the number of its items with a trait of interest is greater than a cut-off val-
ue otherwise it is marked negative [10]. Further savings on testing resources can 
be realized if the items are tested in a batch instead of individual testing [17]. 

Application of batch testing in quality control is similar to threshold batch 
testing that was first introduced by [18], where he considered two cut-off values; 
lower and upper, and derived an algorithm that identifies the defective items 
with minimum number of tests. Other authors also studied the threshold batch-
ing testing with the view of improving on the identification algorithm and among 
them are [19]. 
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Apart from identification of defectives, batch testing is also concerned with 
estimation of proportion of a trait in a population [20]. This was extended to 
quality control process by [15], in which they considered batch testing model 
with only the lower cut-off value with perfect tests. The maximum likelihood es-
timator of the proportion was derived and its properties investigated. It was found 
out that by introducing the cut-off value, the estimator of proportion became more 
efficient than existing batch testing for large values of the proportion. 

An aspect of concern when using batch testing is misclassifications of items 
due to blockers [20] or dilution effect [5]. But it is [5] who first study estimation 
of a proportion by batch testing with imperfect tests. This concept of imperfect 
tests was later applied to batch testing in quality control process by [21]. 

Much of the recent studies have focused on determining more efficient esti-
mator and optimal group sizes when the tests are not 100% perfect. For instance, 
[22] developed multistage adaptive batching testing model and [23], proposed a 
combination of experiments. These batch testing strategies produced estimators 
of the proportion that performed better than existing models in the presence test 
errors. [24] suggested a batch testing procedure that incorporates re-testing which 
is noted to recover lost sensitivity or specificity. 

This paper considers batch testing model in quality control processes with 
re-testing and compares it to one stage batch testing in quality control and the 
usual two-stage batch testing. 

2.1. Estimation of a Proportion Using Batch Testing Model  
Based on Quality Control 

Consider a finite population with N items and each item can be classified as 
good or bad depending on the presence or absence of a trait and let p, be the 
unknown proportion of items with the trait in the population. Suppose that the 
population can be divided into n batches each of size k. A batch is rejected if the 
number of items with the trait in the batch is greater than a predefined threshold 
or cutoff value l. The probability of rejecting a batch is 

( ) ( )1p F lπ = −                         (1) 

where 

( ) ( )
0

1
l k dd

d

k
F l p p

d
−

=

 
= − 

 
∑

 
Suppose X out of the n batches test positive on the test. Here X is a random 

variable. According to [2], X follows a binomial (n, ( )pπ ). The Maximum Li-
kelihood Estimator of p is obtained by solving Equation (2); 

( )
0

1 1
l k dd

d

k xp p
d n

−

=

 
− = − 

 
∑                    (2) 

Equation (2) has no solution in closed form except when 0l = , which leads 
to the results obtained by [3] among others as 
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1

ˆ 1 1
kxp

n
 = − − 
 

                        (3) 

Hence, the proposed estimator generalizes [3] results. When 0l > , Equation 
(2) can be solved iteratively. The maximum likelihood estimator of p is found to 
be positively biased for p and that the bias is negligible for small values of p but 
can be very high for large values of p [15]. 

The asymptotic variance is obtained from the Fisher’s information given by; 

( )
12

2

log .L
E

p

−
  ∂ −    ∂   

                      (4) 

which gives; 

( )
( ) ( ) ( )
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Notice that if the cut off value l = 0, the variance of the estimator becomes; 

( ) ( )
( ) 22

1 1
ˆvar

1

k
T

T k
T

p
p

nk p −

− −
=

−
                    (6) 

as obtained by [3] and other authors. Thus, the maximum likelihood estimator 
of p for batch testing based on quality control is a generalization of Thompson’s 
original estimator in the [2] model. 

Utilizing the delta method p̂  is asymptotically normally distributed [25]. 
That is, for fixed k and l and n →∞  we have, 

( )
( ) ( ) ( )

( )

22

2

1 1
ˆ 0,d p p p p

n p p Normal
E pkF l

π π − −   − →
 −   

       (7) 

2.2. Estimation of a Proportion Using Batch Testing Model Based 
on Quality Control with Imperfect Tests 

The batch testing model based on quality control procedure with imperfect tests 
is applied. The probability that a batch is classified as positive is; 

( ) ( )( ) ( ) ( )0 1 1p F l F lπ η φ= − + −                  (8) 

where are the sensitivity and specificity of the tests assumed to be constant in the 
course of testing. The sensitivity of a test means the probability of correctly de-
tecting a positive batch while specificity is the probability of correctly identifying 
a negative batch. If n batches of size k are tested and X0 batches test positive, 
then the likelihood function is; 

( ) ( ) ( )0 0
0 1 1

0

, , , 1
x n xn

L p n x p p
x

η φ π π
− 

= −        
 

           (9) 
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Using maximum likelihood method estimation method, the estimator of p is 
obtained by solving; 

( )
0

1
1

l k dd

d

x
k np p
d

η

η φ
−

=

− 
− =  + − 

∑                  (10) 

For l = 0, Equation (10) reduces to 
1

0ˆ 1
1

kx
np

η

η φ

 − 
= −  

+ − 
   

This is a result obtained by [16]. However, Equation (10) has no solution in 
closed form when 0l > . Therefore, the equation can be solved iteratively using 
an R or MATLAB code that is easily developed. 

The asymptotic variance is obtained from the Fisher’s information given by 
Equation (4) to get; 

( )
( ) ( )( ) ( )
{ } ( ){ }

22
0 0

0 2

1 1
ˆvar

1

p p p p
p

n E pkF l

π π

η φ

− −
=

 + − − 
             (11) 

Notice that if the cut off value l = 0 and 1η φ= =  then the variance of the es-
timator reduces to Equation (6). Thus the estimator obtained in this section ge-
neralizes both the estimator obtained in Section (2) and Thompson’s estimator. 

3. Estimation of a Proportion in the Proposed Model 

In our proposed testing model, the finite population with N items is pooled into 
n batches each of size k. The batches are then tested and a batch that contains 
more than l items with a trait of interest is classified as positive; otherwise it is 
negative. Further, batches that test positive are given a re-test and a batch that 
has more than l items with a trait is labeled positive and testing is stopped. The 
probability of declaring a batch negative on initial test; 

( ) ( ) ( )( ) ( )1 1 1p F l F lπ η φ= − − +                 (12) 

The probability of declaring a batch negative on re-test after initially testing 
positive; 

( ) ( ) ( )( ) ( ) ( )2 1 1 1p F l F lπ η η φ φ= − − + −             (13) 

Suppose that X1 and X2 are batches that test negative initially and test negative 
on re-test out of n batches respectively, then the likelihood function for the pro-
posed model is; 

( ) ( ) ( ) ( ) ( )1 2 1 2
1 2 1 2, , , 1

x x n x x
L p n x p p p pη φ α π π π π

− −
− −               (14) 

The maximum likelihood estimator of p is obtained by solving 

( ).
0

L
q

∂
=

∂
                          (15) 

Equation (15) has no solution in closed form except when l = 0. Therefore, the 
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equation is solved iteratively with the aid codes developed using R or MATLAB 
software. 

Next, we consider the calculation of the asymptotic variance of our estimator. 
This variance is used to calculate the asymptotic relative efficiency of this esti-
mator with respect to other estimators. The variance is obtained by computing 
Equation (4) to get; 

( )
( ) ( ) ( ) ( )( ) ( )

( ){ }

22
1 2 1 2

1 2

1 1
ˆvar

p p p p p p
p

n E pkF l Y

π π π π− − −
=

 − 
       (16) 

where 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

22
2 2 1 1

1 2

1 1 1 1 1

2 1 1 1

Y p p p p

p p

η φ π π φ φ η η π π

η φ φ φ η η π π

= + − − + − − − −

+ + − − − −
 (17) 

The derivation of the variance is discussed in the Appendix. This variance is 
used to determine the Wald interval of p as 

( )1 2 1ˆ ˆvarp z pα±                       (18) 

where is ( )1 α−  the confidence level. 

4. Model Comparison 

In this section we compare our proposed model with the model outlined in Sec-
tion (3) and that proposed by [16]. This is accomplished by computing Asymp-
totic Relative Efficiency (ARE). If the other estimators are denoted by ˆ Bp  and 
our estimator is denoted by 1p̂ , then 

( )
( )1

ˆvar
ARE

ˆvar
Bp

p
=                        (19) 

Therefore, ARE > 1 implies that the proposed model is more efficient than the 
other models. First, we check whether re-testing improves efficiency by comparing 
the proposed model with the one-stage testing procedure outlined in Section (3). 
The sensitivity and specificity of the tests are set at 99% and 95%. When sensitivity 
and specificity are set to 99% the results are shown in Figure 1 and Table 1 below. 

For l = 0, the comparison is between re-testing in batch testing with one-stage 
[2] model. Clearly, from Table 1 and Table 2 re-testing improves efficiency and 
this just confirms what other authors have noted [16] and [14]. When l is more 
than 0, we compare one stage batch testing model based on quality control and 
re-testing in the quality control model. It is noted that re-testing substantially im-
proves efficiency. For instance, if p = 0.01, k = 10 and 95%η φ= = , re-testing 
improves efficiency by 18 times over one stage batch testing in quality control. 
This increases to about 47 times when 99%η φ= = . 

Next, we compare the proposed model with the one developed by [16] in 
which batches that test negative initially are given a re-test. He demonstrated 
that the model was more efficient than [2] model with imperfect test for rela-
tively higher values of p. The results are presented in Table 3 and Table 4. 
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Figure 1. The figures show a plot of Asymptotic Relative Efficiency (ARE) against 1p̂  
for varying values of k. 

 
Table 1. ARE of 1p̂  with respect to one-stage quality control procedure with 99%η φ= = . 

l 

p 0 1 2 3 

k = 5 

0.005 1.3925 29.6041 97.8326 99.0070 

0.01 1.1938 10.2325 90.3806 98.9624 

0.05 1.0343 1.4308 8.9272 76.7396 

0.08 1.0194 1.1738 3.1516 35.0415 

0.10 1.0145 1.1127 2.1448 18.7860 

0.20 1.0049 1.0282 1.1625 2.4562 

0.30 1.0021 1.0113 1.0514 1.3139 

k = 10 

0.005 1.1943 9.3430 86.7328 98.8871 

0.01 1.0946 3.2798 47.3194 97.1246 

0.05 1.0150 1.1061 1.8519 9.8372 

0.08 1.0078 1.0433 1.2390 2.6844 

0.10 1.0055 1.0279 1.1324 1.7656 

0.20 1.0013 1.0061 1.0211 1.0728 

0.30 1.0004 1.0019 1.0063 1.0186 

k = 15 

0.005 1.1279 4.8138 64.9368 98.2320 

0.01 1.0615 2.0179 20.3049 88.3148 

0.05 1.0087 1.0486 1.2656 2.7860 

0.08 1.0041 1.0195 1.0786 1.3549 

0.10 1.0027 1.0123 1.0444 1.1698 
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Continued 

0.20 1.0005 1.0021 1.0067 1.0185 

0.30 1.0001 1.0005 1.0016 1.0043 

k = 25 

0.005 1.0749 2.4088 28.2591 92.4917 

0.01 1.0351 1.3769 5.8627 48.8542 

0.05 1.0039 1.0181 1.0687 1.2826 

0.08 1.0015 1.0066 1.0210 1.0641 

0.10 1.0009 1.0038 1.0117 1.0324 

0.20 1.0001 1.0004 1.0012 1.0032 

0.30 1.0001 1.0001 1.0002 1.0004 

 
Table 2. ARE of 1p̂  with respect to one-stage quality control procedure with 95%η φ= = . 

l 

p 0 1 2 3 

k = 5 

0.005 2.7786 17.5694 19.0419 19.0499 

0.01 1.9232 14.3298 18.9861 19.0497 

0.05 1.1720 2.9339 13.7249 18.8566 

0.08 1.0988 1.8323 7.8361 17.8817 

0.10 1.0744 1.5493 5.3864 16.4788 

0.20 1.0269 1.1418 1.7807 6.2454 

0.30 1.0127 1.0584 1.2556 2.4505 

k = 10 

0.005 1.9255 13.9318 18.9553 19.0492 

0.01 1.4634 8.0892 18.3375 19.0369 

0.05 1.0769 1.5179 4.4725 14.1599 

0.08 1.0409 1.2162 2.1256 6.8122 

0.10 1.0294 1.1410 1.6414 4.1806 

0.20 1.0086 1.0327 1.1072 1.3591 

0.30 1.0041 1.0114 1.0336 1.0948 

k = 15 

0.005 1.6209 10.4527 18.7026 19.0447 

0.01 1.3047 5.0041 16.6937 18.9689 

0.05 1.0457 1.2419 2.2422 7.0496 

0.08 1.0227 1.0990 1.3868 2.6231 

0.10 1.0156 1.0633 1.2216 1.8143 

0.20 1.0045 1.0127 1.0356 1.0943 

0.30 1.0029 1.0045 1.0098 1.0237 

k = 25 

0.005 1.3695 6.1213 17.4752 19.0028 
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Continued 

0.01 1.1759 2.7141 11.5841 18.3792 

0.05 1.0218 1.0919 1.3395 2.3160 

0.08 1.0097 1.0352 1.1067 1.3171 

0.10 1.0065 1.0212 1.0605 1.1627 

0.20 1.0028 1.0040 1.0081 1.0179 

0.30 1.0026 1.0027 1.0031 1.0044 

 
Table 3. ARE of 1p̂  with respect to Nyongesa (2011) model with 99%η φ= = . 

l 

p 1 2 3 

 k = 5 

0.001 0.2164 5.3546e−07 2.3848e−13 

0.005 3.9413 0.0008 8.6069e−09 

0.01 8.5029 0.0189 9.3740e−07 

0.05 36.5456 4.0149 0.0471 

0.08 54.3329 10.3408 0.5451 

0.10 65.2915 15.8345 1.3283 

 k = 10 

0.001 1.1035 2.5420e−05 1.3884e−10 

0.005 9.6112 0.0398 6.2503e−06 

0.01 18.1836 0.5981 0.0007 

0.05 70.0768 21.3549 3.2719 

0.08 100.1277 48.0430 13.0015 

0.10 118.2877 69.6712 24.0546 

 k = 15 

0.001 2.3559 0.0002 3.2298e−09 

0.005 14.5392 0.2588 0.0002 

0.01 26.7917 2.1507 0.0159 

0.05 96.8177 46.0052 12.8843 

0.08 136.1110 97.7387 44.5177 

0.10 160.5376 138.8346 78.5275 

 k = 25 

0.001 4.9448 0.0025 1.3748e−07 

0.005 23.4561 1.4957 0.0068 

0.01 42.1520 6.9966 0.3764 

0.05 140.3911 106.8778 53.5889 

0.08 197.8769 218.4010 166.7186 

0.10 236.2497 312.2300 287.0305 
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Table 4. ARE of 1p̂  with respect to Nyongesa (2011) model with 95%η φ= = . 

 L 

p 1 2 3 

 k = 5 

0.001 0.0069 1.5678e−08 6.9819e−15 

0.005 0.2092 1.2939e−05 1.4529e−10 

0.01 0.8649 0.0003 1.2169e−08 

0.05 7.7909 0.3066 0.0005 

0.08 11.6831 1.4814 0.0122 

0.10 13.9829 2.6849 0.0512 

 k = 10 

0.001 0.0373 6.0763e−07 3.3149e−12 

0.005 1.0505 0.0006 8.1271e−08 

0.01 3.2221 0.0128 7.3743e−06 

0.05 15.0585 3.8583 0.2162 

0.08 21.1658 9.7347 1.9364 

0.10 24.7741 14.3689 4.2763 

 k = 15 

0.001 0.0946 4.1540e−06 6.6609e−11 

0.005 2.2266 0.0044 1.8235e−06 

0.01 5.4724 0.0909 0.0002 

0.05 20.5304 9.2938 1.8903 

0.08 28.2758 20.3172 8.6669 

0.10 32.9241 28.9329 15.9529 

 k = 25 

0.001 0.2941 4.307e−05 2.3228e−09 

0.005 4.6059 0.0489 7.2465e−05 

0.01 9.1276 0.7265 0.0065 

0.05 29.1147 22.2477 10.6125 

0.08 39.6495 45.4753 34.7850 

0.10 45.9407 64.9692 60.7597 

 
It is evident from the tables above the proposed model is more efficient that 

the model proposed by [16] when rate of defectiveness is relatively high. For 
example, if l = 1, k = 15, p = 0.01 and 99%η φ= = , the proposed model is 26 
times more efficient than [16] model. 

5. Discussion and Conclusion 

Batch testing model applied in quality control where batches that test positive 
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initially are re-tested has been developed. The maximum likelihood estimator of 
p and its asymptotic variance derived. The asymptotic variance of the estimator 
is used to compare our model with two other models; one stage batch testing 
model based on quality control [15] and one proposed by [16]. This is accom-
plished by computing the asymptotic relative efficiency of the estimator. 

The results show that our estimator generally has a small variance as com-
pared to the estimators obtained from the other two models for relatively high 
values of p for given cut off values, batch sizes, sensitivity and specificity. 

This work advances the field of batch testing by introducing cut off value 
greater than zero and further generalizing the model first introduced by [2] in 
which the cut off value is strictly equal to zero. This case is particularly encoun-
tered in quality control. We recommend that a model in which negative batches 
are re-tested is considered. If some of the negative batches test positive on 
re-test, then it indicates the presence of test errors. 
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Appendix. Derivation of Asymptotic Variance 

We consider the computation of the asymptotic variance of our estimator as 
presented in Equation (16). The variance is computed by solving for 
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Getting the second derivative 
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Taking expectations of Equation (21), we obtain 
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Implying that 
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completing the proof as demanded in the text. 
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