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Abstract 
A new general method for computing standard errors of risk and perfor-
mance estimators is developed. The method relies on the fact that the influ-
ence function of an estimator, the Gateaux derivative of the estimator func-
tional in the direction of point mass distributions, may be used to represent 
the asymptotic variance of the estimator as the expected value of the squared 
influence function. The law of large numbers shows that the asymptotic va-
riance of an estimator can be estimated as the time series average of the 
squared influence function, thereby yielding a very simple estimator standard 
error calculation that does not require knowledge of the asymptotic variance 
formula. We derive formulas for the influence functions of six risk estimators 
and seven performance estimators, thereby providing a convenient portfolio 
performance and risk management tool to easily compute standard errors for 
most risk and performance estimators of interest or practical importance. We 
conduct a simulation study to evaluate the quality of the standard errors and 
confidence interval error rates for the Sharpe ratio and downside Sharpe ratio 
estimators. Software implementations of our proposed method in the R 
packages RPEIF and RPESE are publicly available on CRAN. 
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1. Introduction 

Returns based risk estimators such as volatility, value-at-risk, and expected 
shortfall, and performance estimators such as the Sharpe ratio and Sortino ratio, 
have important roles in asset and portfolio risk assessment and management. 
Since such risk and performance estimators are based on observed returns, they 
are subject to estimation error that can be quite sensitive to non-normality of the 
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returns distribution. Standard statistical practice dictates that the uncertainty in 
a risk and performance estimate should be quantified, minimally in terms of an 
estimator’s standard error (SE) and often preferably in terms of a confidence in-
terval. Unfortunately, risk and performance estimators are often reported with-
out a standard error, one reason for which is the following. The usual determi-
nistic recipe for computing an estimator standard error is based evaluating the 
estimator’s asymptotic variance formula with sample estimates substituted for 
unknown parameter values in the formula, dividing that value by the sample size 
and taking the square root. The problem is that, except for the most popular es-
timators such as a value-at-risk or Sharpe ratio estimator, the asymptotic va-
riance formulas are not well known or may not even exist in the quantitative 
finance literature. Furthermore, the bootstrap alternative to the standard errors 
and confidence intervals will often be unacceptable in portfolio risk and perfor-
mance reporting because of their inherent randomness. 

In this paper we overcome the above impediments to computing risk and 
performance estimator SE’s by introducing a new deterministic method of 
computing standard errors based on the use of the influence function (IF) bor-
rowed from robust statistics. The new method allows one to use a risk or per-
formance estimator’s IF formula to derive the estimator’s asymptotic variance 
expression, from which one can compute an estimator standard error via the 
usual recipe described above. However, we will show that an estimator IF for-
mula allows one to easily compute an estimator standard error without having to 
derive the asymptotic variance formula. With that in mind, we derive the for-
mulas of the IF’s for six risk estimators and seven performance estimators. 
Graphical display of the IF’s for all thirteen estimators gives a clear visual picture 
of the differences in the data sensitivity of the various estimators. The efficacy of 
the new method for computing estimator SE’s and corresponding confidence 
intervals is illustrated via Monte Carlo studies for the Sharpe ratio and downside 
Sharpe ratio performance estimators. An important feature of the new IF based 
SE method is that formulas are easily derived for other estimators not treated 
herein, using only the tools of basic calculus. 

The influence function is a directional (Gateaux) derivative of the asymptotic 
function representation of an estimator that was introduced by Hampel [1] and 
developed further in the robust statistics research literature and used in applied 
statistics literature. A wide range of references to that literature is provided in 
robust statistics books by Hampel et al. [2] and Maronna et al. [3]. The first ap-
pearance of influence functions in quantitative finance research is, to our know-
ledge, in an appendix of Yamai and Yoshiba [4], where the authors use the in-
fluence function of a lightly trimmed expected shortfall estimator to derive the 
asymptotic variance formula of the estimator. Subsequently, Chapter 6 of Scher-
er and Martin [5] discusses influence functions for mean vectors and covariance 
matrices, and uses the results to derive influence function formulas for the 
weight vector, mean return and volatility of mean-variance optimal tangency 
portfolios. DeMiguel and Nogales [6] proposed improving on the stability and 
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performance of minimum variance optimal portfolios using M-estimators and 
S-estimators, and derived the influence function formulas for these estimators. 
Cont et al. [7] computed influence functions for the value-at-risk (VaR) and the 
expected shortfall (ES) based on returns empirical distributions (referred to as 
the “historical” method), normal distributions and Laplace distributions. More 
recently Martin and Zhang [8] derived influence function formulas for both 
nonparametric and parametric expected shortfall (ES) for t-distributions, and 
showed that the influence function of the parametric ES has the undesirable fea-
ture that large profits are reflected as large risk. 

Important related work on proving performance estimator asymptotic nor-
mality, and deriving asymptotic variance formulas, were provided by De Capita-
ni [9] and De Capitani and Pasquazzi [10]. The first of these two papers derived 
asymptotic variance formulas for the Sortino and Omega ratios for both i.i.d. 
returns and stationary α-mixing time series that include GARCH(1, 1) returns. 
That paper also carried out extensive Monte Carlo finite-sample studies of the 
performance of the confidence intervals for such processes. The second paper fo-
cused on a general approach for establishing asymptotic normality and asymptotic 
variance expressions with serially dependent returns for a variety of performance 
ratio estimators that include the Sharpe ratio, VaR ratio and CVar ratio (called 
ESratio herein), which are among the estimators treated herein. It is interesting 
to note that this second paper briefly uses the term “influence function” for the 
result of applying a classical delta method, but does not refer to the Hampel in-
fluence function. 

The remainder of the paper is organized as follows. Section 2 provides the de-
finition and key properties of influence functions. Section 3 introduces the func-
tional forms of six risk estimators that are treated in the quantitative finance li-
terature, derives their nonparametric influence function formulas, discusses the 
evaluation of nuisance parameters, and provides graphical displays of their in-
fluence functions and discusses their different shapes; Section 4 does likewise for 
seven performance estimators. In Section 5 we describe how to use influence 
functions to conveniently compute the standard errors of risk and performance 
estimators without using the asymptotic variance expression. In that section we 
also show that for the standard deviation (volatility) and Sharpe ratio estimators, 
our simple method that does not require an asymptotic variance formula gives 
exactly the same result as when using the estimator asymptotic variance expres-
sion with sample estimates used in place of unknown parameter values. Section 
6 uses Monte Carlo to study the effectiveness of using influence functions to 
compute finite sample standard errors, and associated confidence interval error 
rates, of risk and performance estimators. Section 7 briefly points to recent re-
search results on generalizing the IF standard errors method for i.i.d. returns in 
the current paper, to deal with serially dependent returns. The Appendix pro-
vides supplementary material, including the derivation of IF based asymptotic 
variance formulas for all the risk and performance estimators treated in this pa-
per, along with references to formal mathematical statistics derivations of most 
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of the formulas. 

2. Influence Functions Basics 

Here we begin with a brief discussion of the representation of an estimator 
asymptotic value as a functional, followed by the definition of an influence func-
tion based on such representation. Then we state two key properties of influence 
functions. 

2.1. Risk and Performance Estimator Functional Representation 

Suppose one has a returns based risk or performance estimator  
( )1 2

ˆ ˆ , , ,n n nr r rθ θ=   where it is assumed throughout that the ir  are identically 
distributed with common distribution function ( )F F r= . All such estimators 
of practical interest converge in a probabilistic sense to a true but unknown pa-
rameter θ  as the sample size n goes to infinity. Furthermore, since the value of 
θ  is determined by the distribution function F, we have an estimator asymp-
totic functional representation ( )Fθ .1 For example, the sample mean estimator 
ˆnµ  has the functional representation 

( ) ( )dF r F rµ = ∫                         (1) 

where the range of integration here and throughout the paper is the entire real 
line, and the sample variance estimator 2ˆnσ  has the functional representation: 

( ) ( )( ) ( )22 d .F r F F rσ µ= −∫                    (2) 

The above functional representations are merely a mathematical way of 
representing the true but unknown values of the distribution mean and variance. 
For distributions that have a probability density ( )f r  and ( ) ( )d dF r f r r= , 
the integrals have their usual form as in introductory probability and statistics 
books. However, the following comments reveal the usefulness of the general 
forms of the integrals in the above expressions. 

Given a functional representation ( )T F  of an estimator, a nonparametric 
sample based estimator n̂θ  is easily obtained by the “plug-in” principle of re-
placing the unknown returns distribution function F by the empirical distribu-
tion nF  that has a jump of height 1/n at each of the observed returns values 

1 2, , , nr r r : 

( ) ( )1 2, , , .n n n nF r r rθ θ θ= = 
                  (3) 

with such a substitution the integrals become summations with respect to dis-
crete probabilities of 1/n assigned to each data value. For example, application of 
the plug-in principle to the above mean and variance functions results in the 
usual sample mean and sample variance estimators, respectively  

 ( )22

1 1

1 1ˆ ˆ ˆ, .
n n

n t n t n
t t

r r
n n

µ σ µ
= =

= = −∑ ∑                  (4) 

 

 

1The term functional refers to a function whose domain is an infinite dimensional space, e.g., the 
space of all distribution functions, or all distribution functions for which the mean exists, etc. 
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Further details on functional representations may be found in Section 3.7 of 
[3]. 

2.2. Estimator Influence Function Definition 

For a fixed distribution function ( )F x , an influence function is based on use of 
the mixture distribution 

( ) ( ) ( ) ( ) 1,0 21 rF x F x xγ γ γδ γ= − + < <               (5) 

where ( )r xδ  is a point mass discrete distribution function with a jump of 
height one (also known as a “unit step function”) located at value r. The influ-
ence function of an estimator with functional form ( )T F  is defined as 

( ) ( )
0

dˆ; ,
d

IF r F Fγ
γ

θ θ
γ =

=                      (6) 

where we think of θ̂  as a representative of the entire sequence of estimators 

1 2 3
ˆ ˆ ˆ, , ,θ θ θ 

. 
An influence function is a special directional derivative of the functional 
( )T F  in the direction of a point mass distributions rδ , evaluated at F.2 
Applying the above formula to the sample mean functional (1) gives 

( ) ( )

( ) ( ) ( )( )

( ) ( )
( )

0

dˆ; , d
d
d d d

d

0 d d

r

r

IF r F x F x

x F x x x F x

x x x F x

r F

γ

γ

µ
γ

γ δ
γ

δ

µ

=

=

 = + − 

= + −

= −

∫

∫ ∫

∫ ∫

 

and for simplicity we write 

( )ˆ; ,IF r F rµ µ= −                           (7) 

where we keep in mind that ( )Fµ µ= . 
Similarly, a straight forward application of 6 to the sample variance functional 

(2), details of which are provided at the beginning of Section 3, gives the sample 
variance influence function formula 

( ) ( )2 2ˆ; ;IF r F rµ µ σ= − −                        (8) 

where ( )Fµ µ=  and ( )2 2 Fσ σ= . 

2.3. Two Key Influence Function Properties 

The sample mean and sample variance influence function formulas (7) and (8) 
have the obvious property that their expected values are equal to zero. It is in 
fact a general property of an influence function ( )ˆ; ,IF r Fθ  that its expectation 
under the distribution F is equal to zero, namely 

( )ˆ; , 0FE IF r Fθ  =                           (9) 

 

 

2This kind of derivative is called a Gateaux derivative. 
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and it is straightforward to verify that his condition holds for all the estimator 
influence functions derived in Sections 3 and 4. 

A second general property of influence functions is that the finite sample es-
timator ( )n nFθ θ=  obtained from the functional ( )Fθ  has an influence 
function transformed returns representation 

( ) ( )
1

1ˆ ˆ; , remainder
n

n t
t

F IF r F
n

θ θ θ
=

− = +∑              (10) 

where the remainder goes to zero in a probabilistic sense rapidly relative to the 
size of the summation term as n →∞ . Details on this property of influence 
functions, as well as the zero expectation property, can be found in Hampel [1], 
Hampel et al. [2], Fernholz [11] and Maronna et al. [3]. We come back to further 
discussion on use of the above representation in Section 5. 

3. Risk Estimators Influence Functions  

The risk estimators treated in this paper are listed in Table 1. We now describe 
the functional forms of the estimators and their finite-sample estimators, and 
derive the estimator influence functions. The derivations of the influence functions 
only require standard calculus rules for computing the derivative of a product, qu-
otient, composition of two functions, and the derivative with respect to the ar-
gument and upper limit of an integral. For details on risk estimators see McNeil 
et al. [12], and for an early treatment of partial moments see Fishburn [13]. 

The derivation below of the influence function of the sample standard deviation 
is facilitated by first deriving the formula for the influence function of the sam-
ple variance given by (8) in Section 2. Plugging the expression (2) of the sample 
variance functional into the general influence function formula (6), we get 

( ) ( )( ) ( )
22

0

d; , d
d

IF r F x F F xγ γ
γ

σ µ
γ =

 = −  ∫              (11) 

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )2

0

d
2 d d

d r

F
x F F x x F x F xγ

γ γ γ

γ

µ
µ µ δ

γ
=

 
 = − − + − −
  

∫ ∫ (12) 

where the first term above evaluated at 0γ = . Splitting up the last two terms 
and evaluating each at 0γ =  gives 
 
Table 1. Risk estimator names and descriptions. 

Name Estimator Description 

SD Sample standard deviation 

SemiSD Semi-standard deviation 

LPM1 Lower partial moment of order 1 

LPM2 Lower partial moment of order 2 

ES Expected shortfall with tail probability α 

VaR Value-at-risk with tail probability α 
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( ) ( )22 2; ,IF r F rσ µ σ= − −                     (13) 

where ( )Fµ µ=  and ( )2 2 Fσ σ= . 

Standard Deviation (SD) 
The standard deviation functional representation is 

( ) ( )( )2 1 2
F Fσ σ=                         (14) 

and its plug-in estimator is ( ) ( )2
1 2

22

1

1 1ˆ ˆ ˆn
n n t nt r

n
σ σ µ

=

 = = − 
 
∑  where ˆnµ  is 

the sample mean. 
The influence function of the standard deviation estimator is 

( ) ( )( )
0

1 22d; ;
d

IF r F Fγ
γ

σ σ
γ =

=  

and using the chain rule for the composition of functions gives 

( )
( )( )

( )

( ) ( )

( )( )

2

2
0

2

2 2

1 2

1 d; ;
d2

1 ; ;
2
1

2

IF r F F
F

IF r F
F

r

γ
γγ

σ σ
γσ

σ
σ

µ σ
σ

=

= ⋅
⋅

= ⋅
⋅

= − −

          (15) 

where ( )Fµ µ= , ( )Fσ σ= . 

Semi-Standard Deviation (SemiSD) 
The functional form of the semi-standard deviation is 

( ) ( ) ( )( ) ( )( )2 1 2

d
F

SemiSD F x F F x
µ

µ
−∞

= −∫             (16) 

and the estimator is  ( )
1 2

2
ˆ

1 ˆ
t nn t nrSemiSD r

n µ µ
≤

 = − 
 
∑ . 

The SemiSD functional is the square root of the semi-variance functional 

( ) ( )1 2SemiSD F SV F=  

( ) ( ) ( )( ) ( )2
d .

F
SV F x F F x

µ
µ

−∞
= −∫  

So we first derive the semi-variance influence function 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

2

0

2

2

2

2 2

d; , d
d

; , 2 d

d

2 2 d d

d

2 d

F

F

F
r

F F
r

F

F

IF r SV F x F F x

IF r F x F F x

x F x F x

r x F F x x F x

x F F x

r x F F x r I r SemiSD

µ
γ γ

γ

µ

µ

µ µ

µ

µ

µ
γ

µ µ

µ δ

µ µ µ δ

µ

µ µ µ µ

−∞
=

−∞

−∞

−∞ −∞

−∞

−∞

 = −  

= − ⋅ −

+ − −  

= − − ⋅ − + −

− −

= − − ⋅ − + − ≤ −

∫

∫

∫

∫ ∫

∫

∫
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and then use the chain rule 

( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

0

2 2

2 2

d; ;
d

2 d

2
2
2

F

IF r SemiSD F SV F

r x F F x r I r SemiSD

SemiSD
r I r SemiMean r SemiSD

SemiSD

γ
γ

µ

γ

µ µ µ µ

µ µ µ

=

−∞

=

− − ⋅ − + − ≤ −
=

⋅

− ⋅ ≤ − ⋅ ⋅ − −
=

⋅

∫     (17) 

where ( )Fµ µ= , ( )SemiSD SemiSD F= , and  

( ) ( ) ( )dSemiMean SemiMean F x F x
µ

µ
−∞

= = −∫ . 

Lower Partial Moments (LPM1, LPM2) 
The functional form of a lower partial moment of general order k, with a user 

specified threshold constant c, is 

( ) ( ) ( )d
c kLPMk F c x F x
−∞

= −∫                    (18) 

and the estimator is  ( )1
t

k
n tr cLPMk c r

n ≤
= −∑ . This threshold c is often referred 

to as the minimum acceptable return (MAR). 
The LPMk influence function is 

( ) ( )

( ) ( ) ( )( )
( ) ( )

0

d; ;
d

d
c k

k

IF r LPMk F LPMk F

c x x F x

c r I r c LPMk

γ γγ

δ

=

−∞

 =  

= − −

= − ≤ −

∫            (19) 

where ( )LPMk LPMk F= . Using 1k =  and 2k =  yields the influence func-
tions of the lower partial moments LPM1 and LPM2. 

Expected Shortfall (ES) 
The functional form of expected shortfall is 

( ) ( ) ( )1 d
q F

ES F x F xα
α α −∞

= − ∫                  (20) 

where the quantile functional ( )q Fα  is defined in (23) and the estimator is 



( )1

1 n
n ttES r

n
α

α
  
=

= −
  

∑ , where x    is the smallest integer greater or equal to x. 

By the chain rule and the rule for differentiation with respect to an integral 
upper limit, the influence function of ES is 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

d; ;
d

1 ; ; d

1 1 ; ; d

q
r

q

IF r ES F ES F

q f q IF r q F x x F x

q f q IF r VaR F r I r q x F x

α

α

α α γ γ

α α α

α α α α

γ

δ
α

α

=

−∞

−∞

 =  

−  = ⋅ ⋅ + ⋅ −    
−  = ⋅ ⋅ − ⋅ + ⋅ ≤ − ⋅  

∫

∫
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( ) ( ) ( )
( ) ( )

( )( ) ( )

( ) ( )

( ) ( )

1 1

1

1

I r q
q f q r I r q ES

f q

q I r q r I r q ES

q r q I r q ES

I r q
q ES r q

α
α α α α

α

α α α α

α α α α

α
α α α

α
α

α

α α
α

α α
α

α

 ≤ −−
= ⋅ ⋅ − ⋅ + ⋅ ≤ + ⋅ 

  
−  = − ⋅ ≤ − + ⋅ ≤ + ⋅ 

−
 = ⋅ + − ⋅ ≤ + ⋅ 

≤
= − − − ⋅ −

     (21) 

where ( )q q Fα α=  and ( )ES ES Fα α= . 

Value-at-Risk (VaR) 
The functional form of VaR is 

( ) ( )VaR F q Fα α= −                        (22) 

where the quantile functional ( )q Fα  is defined by the equation 
( ) ( )d

q F
F xαα

−∞
= ∫                         (23) 

and the VaR estimator is  ( )n nVaR r α  
= − . 

Under distribution Fγ  we have 

( ) ( )d .
q F

F xα γ
γα

−∞
= ∫                       (24) 

Taking the derivative with respect to γ  on both sides of the above equation, 
and using the chain rule and the rule for the differentiation with respect to an 
integral upper limit, one obtains: 

( ) ( )
0

d0 d
d

q F
F xα γ
γ

γγ −∞
=

 =   ∫  

( ) ( ) ( ) ( )
( ) ( ) ( )

0 ; , d

; ; .

q
IF r q F f q x F x

IF r VaR F f q I r q

α
α α

α α α

δ

α
−∞

= ⋅ + −  
= − ⋅ + ≤ −

∫  

This results in the VaR influence function formula 

( ) ( )
( )

; ,
I r q

IF r VaR F
f q

α
α

α

α≤ −
=                 (25) 

where ( )q q Fα α= . 

3.1. Risk Estimator Influence Functions Nuisance Parameters 

Note that the various influence function formulas contain one or more nuisance 
parameters that need to be specified in order to compute influence function val-
ues for various values of a return r. For example, the IF of the sample standard 
deviation depends on the nuisance parameters ( )Fµ µ=  and ( )Fσ σ= , and 
the IF of the sample SemiSD depends upon ( )Fµ µ= , the semi-mean 

( )SemiMean SemiMean F= , and the semi-standard deviation ( )SSD SSD F= . 
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For purposes of the calculating and displaying the risk estimator influence func-
tions to follow, we use nuisance parameter values based on the assumption of 
normally distributed returns with monthly mean return 1%µ = , volatility 

5%σ = , risk-free rate 0fr = , and assume tail probability 0.10α =  for quan-
tiles, VaR and ES, estimators, and 0c =  for lower partial moments and Sortino 
ratio with fixed threshold. 

3.2. Shapes of Risk Estimators Influence Functions 

It is instructive to plot and compare the shapes of the above risk estimator in-
fluence functions. Figure 1 displays those plots using the nuisance parameters 
computed as described above. 

The first important thing that one notices in Figure 1 is that, unlike the other 
estimator influence functions, the SD and SemiSD estimator influence functions 
increase with increasing positive returns, quadratically so for the SD influence 
function, and linearly for the SemiSD influence function. In both cases this be-
havior is quite undesirable since all sufficiently large positive returns show up as 
risk contributors, the more so the more positive the return. On the other hand, the  
 

 

 

 
Figure 1. Influence functions of six risk estimators with nuisance parameters as specified 
in Table 1. 
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influence function of all the risk estimators except VaR increase with increasingly 
negative returns for all sufficiently negative returns, as one would expect for a 
risk estimator. It is notable that the increasingly popular ES coherent risk esti-
mator only increases linearly for losses, whereas the non-coherent risk estima-
tors SemiSD and LPM2 increase quadratically. It is likely preferable to use a co-
herent shortfall type risk estimator that increases quadratically for negative re-
turns, e.g., an expected quadratic shortfall (EQS) estimator.3 

As for the small negative values of the SD and SemiSD influence functions for 
ranges of returns close to zero, these are due to returns “inliers” that represent 
negative risk for the SD and SemiSD. Finally, we note that the discontinuous and 
bounded natures of the VaR influence function are both undesirable features, 
the first because small changes in a return near the discontinuity can result in a 
large change in risk indication, and the second because increasingly large nega-
tive outliers do not indicate increasingly large risk. 

Plotting the influence functions of the risk estimators in Figure 1 was done using 
the Risk and Performance Estimators Influence Functions (RPEIF) R package avail-
able at the CRAN link https://cran.r-project.org/web/packages/RPEIF/index.html, 
where a Reference annual and a Vignette are provided. 

4. Performance Estimators Influence Functions 

The performance estimators treated in this paper are listed in Table 2, and this 
section describes the functional forms of the estimators and their finite-sample 
estimators, and derives the estimator influence functions. As in Section 3, the 
derivations of the influence functions only require standard calculus rules. 

For the downside Sharpe ratio see Ziemba [15], and for the Sortino ratio see 
Sortino and van-der-Meer [16], Sortino and Price [17] and Sortino and Forsey 
[18]. For the ESratio see Martin et al. [19], where it was called the STARR ratio. 
For the VaRratio see Favre and Galeano [20], for the RachevRatio see Biglova et 
al. [21] and Stoyan et al. [22], and for the Omega performance estimators see 
Keating and Shadwick [23]. 

 
Table 2. Performance estimator names and descriptions. 

Name Estimator Description 

SR Sharpe ratio 

DSR Downside Sharpe Ratio 

SoRc Sortino ratio with threshold a constant c 

ESratio Mean excess return to ES ratio with tail probability α 

VaRratio Mean excess return to VaR ratio with tail probability α 

Rachevratio Rachev ratio with lower and upper tail probabilities α and β 

Omega Omega ratio with threshold c 

 

 

3This is the SMCR special case of the class of higher-moment coherent risk (HMCR) measures stu-
died by Krokhmal [14]. 
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Sharpe Ratio (SR) 
The functional representation of the Sharpe ratio is 

( ) ( )
( )

( )
( )

f eF r F
SR F

F F
µ µ
σ σ

−
= =                    (26) 

and the estimator is 


,ˆ
ˆ ˆ

n f e n
n

n n

r
SR

µ µ
σ σ
−

= =  where ˆnµ  and ˆnσ  are sample 

mean and sample standard deviation, respectively. 
Noting that the influence function of ( ) ( )e fF F rµ µ= −  is the same as the 

influence function of ( )Fµ , and using the quotient rule for derivatives, the in-
fluence function for the Sharpe-Ratio is 

( ) ( )

( ) ( )
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2
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2
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= − − ⋅ − −

= − − + − +

        (27) 

where ( )e e Fµ µ= , ( )Fσ σ=  and ( )SR SR F= . 

Downside Sharpe Ratio (DSR) 
Downside Sharpe Ratio is a short name for what Ziemba [15] called the 

“Symmetric Downside Risk Sharpe Ratio”, and the DSR functional is  

 ( ) ( )
( )

( )
( )2 2

f eF r F
DSR F

SSD F SSD F

µ µ−
= =                (28) 

and the estimator is 


( )2
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.

12 ˆ2
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n
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− −
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The influence function for ( )2DSR F  is 

( ) ( )

( ) ( ) ( ) ( )
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(29) 

where ( )Fµ µ= , ( )SemiMean SemiMean F= , ( )SemiSD SemiSD F= , and 
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( )DSR DSR F= . So the influence function of ( )DSR F  is given by the above 
expression divided by 2 . 

Sortino Ratio (SoR) 
The Sortino ratio functional with threshold c is 

( ) ( )
( )

( )
( )2 2

e

c c

F c F
SoRc F

LPM F LPM F

µ µ−
= =  

and the estimator is 
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,
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ˆ ˆ
12

t

n n
c n

n
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c c
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µ µ

≤

− −
= =

−∑
. Note that c is 

called MAR (“minimum acceptable return”) by Sortino. 
The influence function for ( )SoRc F  is 
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 (30) 

where ( )Fµ µ= , ( )2 2c cLPM LPM F=  and ( )SoRc SoRc F= . 

Expected Shortfall Ratio (ESratio) 
The expected shortfall ratio functional is 

( ) ( )
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= =                   (31) 

and the estimator is 
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∑
, where x    is the 

smallest integer greater or equal to x. 
The influence function of expected shortfall ratio is derived as follows 
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 (32) 

where ( )Fµ µ= , ( )q q Fα α= , ( )ES ES Fα α=  and ( )ESratio ESratio F= . 

Value at Risk Ratio (VaRratio) 
The functional form of the VaR ratio is 
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( ) ( )
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and the estimator is 
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The influence function of the VaR ratio is 
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      (34) 

where ( )Fµ µ= , ( )q q Fα α=  and ( )VaRratio VaRratio F= . 

Rachev Ratio (RachevRatio) 
The functional form of the Rachev ratio is 
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where ( )ES ES Fα α=  is the expected shortfall at level α, and ( )EG EG Fβ β=  
is the expected tail gain at upper β-quantile defined by the following equation 
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The Rachev ratio estimator is 
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The influence functions of ( )ES Fα  and ( )EG Fβ  are 
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and  
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Using the above two influence functions gives the following formula for the 
influence function of the Rachev ratio: 
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     (35) 

where ( )Fµ µ= , ( )q q Fα α= , ( )1 1q q Fβ β− −= , ( )ES ES Fα α= ,  

( )EG EG Fβ β= , and ( )RachR RachR F= . 

Omega Ratio (Omega)  
The functional form of the Omega ratio is 
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= −∫  is the lower partial moments of order 1, 

and c is a user specified. 

The Omega ratio estimator is 
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The influence function of the Omega ratio is 
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 (36) 

Shapes of the Performance Estimators Influence Functions 

Figure 2 displays the influence functions for the first six of the seven perfor-
mance estimators in Table 2, using nuisance parameters computed as described 
in Section 3.1, and for the Rachev ratio using 0.10α =  and 0.10β = . The in-
fluence function for the Omega ratio is similar to that of the Rachev ratio in that 
they both have two linearly increasing pieces with different slopes, but the 
Omega ratio does not have the flat spot that the Rachev ratio has, except for the 
special limiting case of the Rachev ratio where 1q qα β−=  where the flat spot 
disappears. 

For the range of r values shown in Figure 2, all the influence functions are 
non-decreasing, and except for the Rachev ratio all are strictly increasing in r. 
Furthermore, the performance estimator influence function formulas show that 
these behaviors hold over the entire range of possible r values for all the perfor-
mance estimator except for the Sharpe ratio, whose influence function is decreasing 
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Figure 2. influence functions of six performance estimators with nuisance parameters as 
specified in Table 2. 
 
for all sufficiently large values of r. Thus, except for the Sharpe ratio, increasing 
values of r indicate increasing performance as one might expect of a perfor-
mance estimator. While practitioners may argue that the large values of r re-
quired for the Sharpe ratio influence function to be decreasing are quite atypical, 
the lack of monotonicity of the Sharpe ratio influence function is none-the-less 
an unattractive feature of a performance estimator. 

The influence functions shapes of the DSR, SoRc and ESratio estimators are 
strikingly similar, with all three being linear with positive slope for all sufficient-
ly large return values, thereby indicating linearly increasing performance for 
such values. On the other hand, the DSR and Sortino ratio influence functions 
both decrease quadratically for increasingly large negative returns, while the 
ESratio decreases only linearly for all sufficiently large negative returns. It is 
likely preferable to use an expected quadratic shortfall (EQS) in the denominator 
an EQSratio performance estimator. 

The VaR ratio influence function is linear except for the relatively small jump 
at the returns distribution quantile value for which the VaR influence has a jump 
discontinuity, and as such its shape is determined primarily by the sample mean 

https://doi.org/10.4236/jmf.2021.111002


S. Y. Zhang et al. 
 

 

DOI: 10.4236/jmf.2021.111002 31 Journal of Mathematical Finance 
 

estimator in the numerator of the VaR ratio. This feature of the VaR ratio makes 
it quite uninteresting as a performance estimator. Finally, the Rachev ratio in-
fluence function shows that all sufficiently large positive returns give rise to li-
nearly increasing performance, and all sufficiently small negative returns give 
rise to linearly decreasing performance similar to that of the ES ratio. In contrast 
to the ES ratio, for which the linearly increasing influence for positive returns is 
due to the mean in the numerator, the more rapid linearly increasing slope of 
the Rachev ratio for positive returns is due to measuring the gain in performance 
with an upper tail expected value. This characteristic was considered to be an at-
tractive one for portfolio optimization purposes by Z. Rachev, see Biglova et al. 
[21]. 

Plotting the influence functions of the performance estimators in Figure 2 
was done using the Risk and Performance Estimators Influence Functions 
(RPEIF) R package available at the CRAN link  
https://cran.r-project.org/web/packages/RPEIF/index.html, where a Reference 
Manual and a Vignette are provided. 

5. IF Based Standard Error Methods  

The foundation of the influence function based standard error computation is 
the estimator influence function based series representation (10). The remainder 
term in that representation goes to zero as the sample size n goes to infinity, and 
one expects that the estimator representation 

( ) ( )
1

1ˆ ˆ; ,
n

n t
t

F IF r F
n

θ θ θ
=

− = ∑                     (37) 

without remainder will be a good approximation for the sample sizes typically 
encountered in portfolio risk and performance analysis.4 It follows that the va-
riance of n̂θ  is approximated by 

( ) ( )
1

1ˆ ˆvar var ; , .
n

n t
t

IF r F
n

θ θ
=

 =   
∑                  (38) 

when the returns tr  are serially dependent, e.g., when the tr  are a first order 
autoregression, or when the tr  are uncorrelated but dependent as in the case of 
a GARCH(1, 1) model, one needs to account for the covariances between terms 

( )ˆ; ,tIF r Fθ  and ( )ˆ; ,uIF r Fθ  for t u≠  in computing ( )ˆvar nθ . We remark 
further on this general case in Section 7, and concentrate on the idealized case 
where the returns are i.i.d. 

For i.i.d. returns, the terms ( )ˆ; ,tIF r Fθ  and ( )ˆ; ,uIF r Fθ  in the above 
summation are independent for t u≠ , and in this case the above estimator va-
riance expression reduces to 

( ) ( ) ( )2 2
1 1

1 1ˆ ˆ ˆvar var ; , ; ,n IF r F E IF r F
n n

θ θ θ   = =            (39) 

where we have used the zero expectation property (9). 

 

 

4A justification for dropping the remainder term in (10) can be found in Section 3.7 of [3]. 
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It is well-known in the robust statistics literature that the asymptotic variance 
( )V θ  of a consistent estimator n̂θ  is given by5 

( ) ( )2
1

ˆ; , .V E IF r Fθ θ =                        (40) 

See for example Section 3.7 of [3]. Use of ( )V θ  in (40) gives the estimator 
finite sample variance approximation 

( ) ( )1ˆvar n V
n

θ θ=                         (41) 

and taking the square root, with the unknown θ  replaced by its estimate n̂θ  
gives the estimator asymptotic variance based standard error (SE) formula 

( ) ( )
1 21ˆ ˆ .avar n nSE V

n
θ θ =   

                    (42) 

5.1. IF Based Asymptotic Variance Formulas 

Asymptotic variance formulas ( )V θ  have been derived in the theoretical eco-
nometric and quantitative finance literature for most, if not all, of the risk and 
performance estimators that one might want to use. On the other hand, asymp-
totic variance formulas of risk and performance estimators are easily derived 
using the IF based asymptotic variance formula (40). We illustrate this below for 
the case of the standard deviation and Sharpe ratio estimators, and provide de-
rivations in Appendix A2 for the other estimators treated herein, along with li-
terature references to asymptotic mathematical statistics derivations. 

Standard Deviation Asymptotic Variance 
The standard deviation influence function is given by, and so we immediately 

have 

( ) ( ) ( )
22 42 4

2
ˆ

2 4n

r E r
V E

µ σ µ σ
σ

σ σ

 − − − −
= = 

  
            (43) 

where ( )4
4E r µ µ− =  is the fourth central moment. 

Sharpe Ratio Asymptotic Variance 
Using the Sharpe ratio influence function formula (27), we find the well-known 

result 
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2
2

2

2 2 2
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44 3

24
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1
22

1 2
4 24 2
1

1
4

n
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SR SR SR SRE r
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µ µ
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µ µ
σ σ

 = − − + − +  

= + + − − −

−
= − +

        (44) 

 

 

5Asymptotic normality of n̂θ  is the condition that ( ) ( )( )ˆ 0,d
nn N Vθ θ θ− →  where the d→  

means convergence in distribution, i.e., the sequence of distribution functions of the left hand side 
converge to a normal distribution function with mean zero and variance ( )V θ . 
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where ( )3 3
3k E r µ σ= −  is the coefficient of skewness and 4

4 4k µ σ=  is 
kurtosis. 

Influence Functions Have a Built-In Delta Method 
An important aspect of the influence function based method of obtaining an 

estimator asymptotic variance formula is that the standard delta methods used 
to obtain the asymptotic variance of a nonlinear transformation of an estimator 
or estimators is a “built-in” feature. For example, the usual classical method of 
obtaining the asymptotic variance of the standard deviation estimator is to first 
derive the sample variance asymptotic variance, which is the numerator expres-
sion in (43), and then use the delta method applied to the square root of the va-
riance to obtain the divisor 24σ  in (43). With IF based method, the delta me-
thod is not needed. For the Sharpe ratio asymptotic variance, a more involved 
bivariate delta method, that requires the covariance matrix for the numerator 
and denominator estimates in the Sharpe ratio, has traditionally been used.6 But 
the result (44) is derived more simply and gives the same result as that obtained 
by the bivariate delta method. This aspect of the influence function approach for 
obtaining an asymptotic variance formula should not be totally surprising since 
both the influence function and the delta method involve a derivative lineariza-
tion. 

5.2. SE Computational Alternatives 

The SE computational method (42) based on deriving an asymptotic variance 
expression using (40) is a common method of computing an estimator standard 
error. A very simple alternative to that approach that does not require use of the 
asymptotic variance formula is to use the sample mean estimate of (39) with the 
unknown risk or performance value and IF nuisance parameters replaced by 
their sample estimates. The resulting estimator direct IF based standard error 
formula is 

( ) ( )2
1 2

1

1 1ˆ ˆ;
n

dirIF n t n
t

SE IF r
nn

θ θ
=

 = ⋅   
∑               (45) 

where the influence function argument F is dropped for notational convenience. 
For i.i.d. returns, the weak law of large numbers implies that the argument of the 
square root above is a consistent estimator of the estimator asymptotic variance 
(40) when ( )2 ˆ;t nIF r θ  has a finite variance. Consequently, one expects the per-
formance of the above SE computational method to be not much different than 
the method (42) for sample sizes commonly used for computing risk and per-
formance estimators. In fact, it turns out that for some risk and performance es-
timators that the two SE methods result in exactly the same result. This is the 
case for the standard deviation (SD), Sharpe ratio (SR) and expected shortfall 
(ES) estimators, as we show below for SD and SR. A proof for ES is provided in 
Appendix A1. 

 

 

6See for example, Mertens [24]. 
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Standard Deviation SE 
Using the standard deviation asymptotic variance formula (43) in the stan-

dard error formula (42), we replace σ  with the sample volatility estimate ˆnσ  
(the square root of the sample variance estimate with divisor n) and replace 4µ   

with the plug-in estimate ( )4
4, 1

1ˆ ˆn
n t nt r

n
µ µ

=
= −∑  where ˆnµ  is the sample mean 

estimate. This results in the asymptotic variance based standard error formula 

( )
( )4

4,

1 2

2

ˆ ˆ1ˆ .
ˆ2

n n
avar n
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On the other hand, use of the standard deviation influence function formula 
(15) in the standard error formula (45) results in the direct IF based standard 
error formula 
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−
=

∑

∑
     (47) 

Thus for the standard deviation estimator, the asymptotic variance based the 
asymptotic variance method and the direct IF method give exactly the same SE 
formulas. 

Sharpe Ratio SE 
Using the Sharpe ratio asymptotic variance formula (42) in the standard error 

formula (44) and representing the unknown quantities by their sample estimates 
gives 

( )  

2
24

3

ˆ 11 ˆ1
4n n navar

kSE SR k SR SR
n

 −
= − ⋅ +  

 
              (48) 

where the sample estimates above are  ( )ˆ ˆn n f nSR rµ σ= − ,  

( ) ( )
1 33

3 1
ˆ ˆ ˆn

n i ntk n rσ µ
−

=
= −∑ , and ( ) ( )

1 44
4 1

ˆ ˆ ˆn
n i nik n rσ µ

−

=
= −∑ . 

Ont the other hand use of the Sharpe ratio influence function formula (27) in 
the standard error formula (45), with unknown quantities replaced by their 
sample estimates, results in 
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Thus ( )navarSE SR  and ( )ndirIFSE SR  are identical expressions. Note that 
we use a divisor of n for all sample based estimators, and if for example one in-
sisted on using a divisor of 1n −  for the sample variance/standard deviation, 
then the above equivalence of methods would not hold. But in that case it is easy  

to show that the difference between the two methods is 

211
2

SR n − 
 

. 

In Appendix A1 it is shown that for the expected shortfall (ES) estimator, the 

avarSE  and dirIFSE  are identical, and note that confirming that the same is true 
of the value-at-risk (VaR) estimator is quite easy. It is not clear at present 
whether or not the “avar” and “dirIF” methods are identical for any risk or per-
formance estimator, but it seems unlikely. However, if ( )2

1
ˆ; ,IF r Fθ  has an  

absolute moment of order 2p ≥ , then ( )2
1

1 ˆ;n
tt IF r

n
θ

=∑  converges to  

( ) ( )2
1

ˆ; ,V E IF r Fθ θ =    at a rate 2pn− , as was shown by Brillinger [25]. Thus 
one expects the difference between these two quantities to be small for sample 
sizes of 100 or greater for the case the reasonable case where 2p = , and even 
smaller when 2p > . For example, in the case of the Sharpe ratio we will have 

2p =  if the returns have a finite absolute fourth moment. 
Given the simplicity of the direct IF method of computing a risk or perfor-

mance estimator standard error, which does not make use of an asymptotic va-
riance formula, one may ask why bother with those formulas? One reason is that 
those formulas provide an understanding of how the values of risk and perfor-
mance estimates, the distribution parameters, and the risk manager’s choice of 
discretionary parameters (e.g., tail probabilities and threshold of lower partial 
moments, etc.) influence the asymptotic variance, and hence computed SE val-
ues based on notional returns distribution parameter values. For example, in the 
case of the Sharpe ratio SE formula (48), an analyst can plug in notional values 
for the unknown Sharpe ratio, skewness and excess kurtosis. 

However, for computing standard errors of returns based risk and perfor-
mance estimators, use of the direct IF formula (45) has the potential to become 
standard practice. This is the method that is implemented as a user option for 
the special case of i.i.d. returns in the Risk and Performance Estimator Standard 
Errors (RPESE) R package available at  
https://cran.r-project.org/web/packages/RPESE/index.html, where a Reference 
Manual and Vignette are provided. 

6. Performance of IF Based Standard Error Method  

In order to get a sense of the accuracy of risk and performance estimator stan-
dard errors, and ensuing confidence interval error rates, computed using the 
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formula (45), we carried out Monte Carlo simulation studies for the SD, SemiSD, 
SR and DSR estimators. The standard errors labeled EIFSE  in following discus-
sion are computed with the RPESE R package for computing standard errors of 
risk and performance estimators using the estimator influence function (EIF) 
method. We focus here on the SR and DSR, and provide simulation results for 
the SD and SemiSD estimators in Appendix A3. Our Monte Carlo study com-
pares the expected values of the computed standard errors with “true” standard 
errors obtained by direct simulation, and reports: 1) the absolute and percent 
bias of the computed standard errors, and 2) the error rates of 95% confidence 
intervals based on the standard errors. The details of the simulations are as fol-
lows for the case of Sharpe ratio standard errors at sample sizes 60,120,240N = , 
for normal and t-distributed returns and with Sharpe ratios 0.2SR =  and 

0.5SR = . 
The simulation process is as follows for the case of normally distributed re-

turns: 
(1) Simulate a sample of size N from the return distribution ( )2,F N µ σ

 
with 0.01µ = , with 0.05σ =  for 0.2SR = , and 0.02σ =  for 0.5SR = . 

(2) Estimate the sample mean µ̂  and sample standard deviation σ̂ , and 

compute the Sharpe Ratio estimate 
ˆ

ˆ
fr

SR
µ
σ
−

=  with risk free rate 0fr = . 

(3) Repeat (1) and (2) 30000M =  times, resulting in Sharpe ratio estimates 
  

1 2, , , MSR SR SR , and calculate the “true” standard error MCSE  of the Sharpe 
ratio as the sample standard deviation of those M estimates. 

(4) For each of the M simulated returns of length N we compute the standard 
error of Sharpe Ratio based on the formula 45, thereby obtaining the computed 
standard errors 1 2, , , MSE SE SE , and then calculate the mean EIFSE  of those 
M results as the performance of our standard error method. 

(5) Calculate the SE method bias EIF MCSE Bias SE SE= − , and the SE method 
percent bias 100 MCSE Bias SE× . 

(6) Based on a normal distribution approximation for the  , 1, 2, ,iSR i M=  , 
calculate a nominal 5% error rate confidence interval for each  
 , 1, 2, ,iSR i M=   as  ( )2, 1 2, 1,i in i n iSR t SE SR t SEα α− −− + , where 1 2, 1nt α− −  is the 
( )1 2α− -th quantile of the t-distribution with 1n −  degrees of freedom, and 
calculate the error rate as the fraction of the M replicates for which the replicate 
confidence interval does not contain the true Sharpe ratio SR. 

We repeat the above Monte Carlo simulation for the same three sample sizes 
using t-distributed returns with degrees of freedom (dof) equal to 5, which is a 
fairly fat-tailed distribution, 0.01µ = , and t distribution scale parameter s is 
chosen such that the Sharpe ratio of the t-distributed of returns are 0.2 and 0.5 as 
in the normal distribution case. 

The results are displayed in Table 3. It is evident that the MC and EIF SE’s 
decrease and their Pct. Bias values get smaller as the sample size increases, and 
the error rates decrease toward their nominal 5% value as the sample sizes in-
crease. The SE’s and error rates depend only very slightly on the SR value for  
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Table 3. Monte Carlo simulation study of Sharpe ratio standard error estimate.  

Dist. Scale N SR SR Pct Bias SEMC SEEIF SE Pct Bias Error Rate 

Normal 0.05 60 0.2 1.4% 0.1322 0.1297 −1.9% 5.0% 

Normal 0.05 120 0.2 0.4% 0.0924 0.0919 −0.5% 4.8% 

Normal 0.05 240 0.2 0.0% 0.0650 0.0651 0.1% 4.8% 

Normal 0.02 60 0.5 1.3% 0.1392 0.1356 −2.6% 5.1% 

Normal 0.02 120 0.5 0.5% 0.0971 0.0963 −0.8% 4.9% 

Normal 0.02 240 0.5 0.2% 0.0684 0.0683 −0.1% 4.8% 

t (5) 0.039 60 0.2 1.9% 0.1346 0.1287 −4.4% 5.5% 

t (5) 0.039 120 0.2 0.6% 0.0948 0.0920 −2.9% 5.4% 

t (5) 0.039 240 0.2 0.0% 0.0673 0.0656 −2.5% 5.5% 

t (5) 0.0155 60 0.5 3.0% 0.1505 0.1397 −7.2% 6.5% 

t (5) 0.0155 120 0.5 1.6% 0.1067 0.1012 −5.2% 6.0% 

t (5) 0.0155 240 0.5 0.8% 0.0766 0.0730 −4.7% 6.0% 

 
normal distributions, but more so for the t-distributions. Except for sample size 
60, the SE’s are less than half the value of the SR and sometimes considerably less 
than one half at the larger sample sizes and the larger SR value. As such, the SE’s 
are quite serviceable except at sample size 60. 

It is clear that the Pct Bias and Error Rate values are finite sample effects, with 
the negative bias in the SE’s and positive bias in the error rates both decreasing 
with increasing sample size. While the error rates for the normal distribution are 
overall acceptable and quite acceptable at sample sizes 120 and 240, it will be de-
sirable to implement a bias correction method for the SE’s and error rates for 
t-distributions. This is a topic for future research. 

The Monte Carlo simulation for the Downside Sharpe ratio (DSR), the stan-
dard deviation (SD) and the semi-standard deviation (SemiSD) are carried out 
in a similar manner as for the Sharpe ratio, and the results are shown in Table 4 
for the DSR. The pattern of the Pct Bias and Error Rate values for the DSR are 
quite similar to those for the SR, and the more negative Pct Bias values and the 
correspondingly higher error rates for the DSR estimate relative to the SR esti-
mate are attributable to the effective sample size differences, i.e., the DSR has 
roughly half the sample size of the SR and correspondingly the Pct Bias values 
for the DSR are about 2  larger than those for the SR. While the error rates 
for the DSR for sample sizes 120 and 240 for the normal distribution are pretty 
acceptable, the error rates for the normal distribution at sample size 60 and the 
t-distribution at all three sample size are in need of some method of finite sam-
ple bias correction to the standard error estimates. This is a topic for further re-
search. 

The Monte Carlo results for the SD and SemiSD are shown in Table A1 and 
Table A2 in Appendix A3. 
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Table 4. Monte Carlo simulation study of downside Sharpe ratio standard error estimate.  

Dist. Scale N DSR DSR Pct Bias SEMC SEEIF SE Pct Bias Rej Prob 

Normal 0.05 60 0.2 2.5% 0.1341 0.1307 −2.5% 5.2% 

Normal 0.05 120 0.2 1.0% 0.0931 0.0924 −0.8% 5.1% 

Normal 0.05 240 0.2 0.3% 0.0653 0.0653 −0.0% 5.0% 

Normal 0.02 60 0.5 2.5% 0.1426 0.1367 −4.1% 6.3% 

Normal 0.02 120 0.5 1.1% 0.0989 0.0973 −1.6% 5.9% 

Normal 0.02 240 0.5 0.5% 0.0694 0.0690 −0.5% 5.7% 

t (5) 0.039 60 0.2 5.8% 0.1440 0.1346 −6.5% 6.4% 

t (5) 0.039 120 0.2 2.8% 0.1012 0.0968 −4.4% 6.3% 

t (5) 0.039 240 0.2 1.3% 0.0720 0.0693 −3.7% 6.5% 

t (5) 0.0155 60 0.5 5.6% 0.1700 0.1505 −11.4% 9.7% 

t (5) 0.0155 120 0.5 3.1% 0.1213 0.1113 −8.3% 9.4% 

t (5) 0.0155 240 0.5 1.6% 0.0879 0.0816 −7.2% 9.4% 

 
The code to replicate the simulation results for the SR, DSR, SD and SemiSD 

estimators is available at  
https://github.com/AnthonyChristidis/InfluenceFunctions_JMF_Simulation. 

7. Serially Dependent Returns 

In the more general case where the , 1, 2, ,tr t n=   are serially correlated, the IF 
transformed returns time series ( ); ,tIF r T F  will generally have serial correla-
tion that needs to be accounted for when computing the variance on the 
right-hand-side of (38). Spectral analysis theory, extensively used in science and 
engineering, shows that the variance of the sum of the values of a serially corre-
lated stationary time series is given by the spectral density of the time series at 
zero frequency. Thus, estimating the variance (38) with serially correlated re-
turns may be accomplished by estimating the spectral density at zero frequency 
of the IF transformed returns time series ( ); ,tIF r T F . Chen and Martin [26] 
used this approach to compute approximate standard errors of risk and perfor-
mance estimators, and showed by application examples and Monte Carlo studies 
that the method works well for several risk and performance estimators. The CM 
method is implemented in the “Risk and Performance Estimator Standard Er-
rors” R package RPESE authored by Christidis [27]. 

8. Concluding Comments 

We have introduced a new general method for computing standard errors of risk 
and performance estimators that is simple to implement and does not require an 
estimator’s asymptotic variance formula. The method only requires a formula 
for the influence function (IF) of a risk or performance estimator, from which a 
standard error is computed with simple arithmetic operations on the time series 
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of influence function transformed returns. We have derived the influence func-
tion formulas for this purpose for a variety of risk estimators and performance 
ratio estimators, including the most well-known estimators frequently used in 
practice as well as a few that are less frequently used. A considerable benefit of 
the simple IF method of computing an estimator’s standard error is that, if a 
portfolio or risk manager discovers or invents a new risk or performance esti-
mator for which they want to compute a standard error, they can easily derive 
the formula for the estimator’s influence function using only the rules of basic 
calculus. 

Although our IF based SE computational method does not require an asymp-
totic variance formula, such formulas are none-the-less useful in understanding 
how the values of nuisance parameters, e.g., the values of the Sharpe ratio, 
skewness and kurtosis in the case of the Sharpe ratio, affect the accuracy of the 
standard errors (whether computed with our simple method, or via an asymp-
totic variance formula). Fortunately, an estimator’s asymptotic variance formula 
is easily computed as the expected value of the squared IF, Appendix A2 derives 
these formulas for each of the risk and performance estimators considered. An 
important convenience that arises with an IF derivation of an asymptotic va-
riance formula is that it obviates the need for using the classic delta method, 
which is an especially welcome simplification in the case of performance ratios 
for which the bivariate delta method requires derivation of a two-by-two cova-
riance matrix. 

Our Monte Carlo simulation studies of the Sharpe ratio and downside Sharpe 
ratio estimator standard errors and associated confidence interval error rates 
demonstrate the efficacy of the method, as well as the need to develop fi-
nite-sample bias correction formulas for the confidence interval error rates for 
some sample sizes and some distributions. This is a topic for future study. 
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Appendix 

Appendix A1 contains a proof of the equivalence between IF based standard 
errors and a direct approach for the standard error of the expected shortfall. 
Appendix A2 contains the derivation of asymptotic variance formulas using in-
fluence functions for the risk and performance estimators discussed in Sections 3 
and 4 respectively. Appendix A3 contains a simulation study of IF based stan-
dard errors for the standard deviation and the semi-standard deviation. 

A1. Equivalence of Expected Shortfall Standard Error Formulas 

The influence function of expected shortfall, as given by (21), is 

( ) ( ) ( ); ;
I r q

IF r ES F q ES r qα
α α α αα

≤
= − − − ⋅ −             (50) 

and so the asymptotic variance of an expected shortfall estimator is: 

( ) ( ) ( )
2

n

I r q
Var ES E q ES r qα

α α αα∞

  ≤
 = − − − ⋅ −     

             (51) 

 ( )2 2 2
2

1 1 2d 1 2 .
q

r F r q ES q ESα
α α α αα αα −∞

   = + − ⋅ − − ⋅ ⋅ −   
   ∫  (52) 

Let ( ) ( ) ( )1 2 nr r r≤ ≤ ≤  be the ordered values of the observed returns, and let 
x    be the smallest integer greater or equal to x. Then the sample estimate of 

the lower α-quantile and expected shortfall are: 

( )ˆa naq r
  

=                            (53) 



( )
1

1 .
na

a i
i

ES r
na

  

=

= −
  

∑                       (54) 

The standard error formula for Expected Shortfall is: 

 ( ) ( )
 

22 2

1

2

2

1

1 1 1 2ˆ ˆ1 2
n

n i
i

SE ES r q ES q ES
nn

α

α α α αα αα

  

=

    = ⋅ + − ⋅ − − ⋅ ⋅ −    
    

∑  (55) 

where the unknown α-quantile, expected shortfall are replaced by their sample 
estimates. 

It’s trivial to show that the finite sample standard error of the Expected Short-
fall from (55) is exactly identical to that from (45). 

Plugging in the ordered value and re-arranging, the sample average of squared 
influence function is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )
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1 1 1 1
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1 1
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21 1 2
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i i

i i i
i i i i

n n

i i
i i

n

i
i

n

i
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IF r ES F q ES r q q ES r q

n n n n

q ES r q q ES r q
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q
q ES r ES q q ES ES q

n

n

α α
α α α α α α α

α α

α α α α α α

α
α

α α α α α α α α

α

αα

αα

α αα

α

= = = =

= =

=

=

≤ ≤
= + + ⋅ − + + ⋅ ⋅ −

= + + ⋅ − + + ⋅ ⋅ −

= + + + ⋅ + + + ⋅ − −

=

∑ ∑ ∑ ∑

∑ ∑

∑

( )
2 2 21 21 2 .ir q ES q ESα α α αα α

   + − + − ⋅ −   
   

∑

(56) 
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Replace qα  and ESα  with q̂α  and ESα  in the above equation, we get 
standard error formula based on the squared empirical influence function: 

 ( ) ( )

( )
 

2

1

22 2
2

1

1 2

1 2

1 1 ; ;

1 1 1 2ˆ ˆ1 2 .

n

i
t

n

i
i

SE ES IF r ES F
nn

r q ES q ES
n n

α α

α

α α α αα αα

=

=

 = ⋅   

    = + − + − ⋅ −        

∑

∑
   (57) 

Note the equation in (57) is identical to Equation (55). 

A2. Asymptotic Variance of Risk and Performance Estimators 

Here we use influence function based asymptotic variance formula (40) to derive 
the asymptotic variance expressions for the risk and performance estimators of 
Sections (3) and (4), and provide references for standard mathematical statistics 
literature proofs of the formulas. 

Standard Deviation (SD) 
The expression for the standard deviation asymptotic variance was derived in 

Section 5.1, and is included here for completeness: 

( ) ( )4 4

2
ˆ

4n

E r
V

µ σ
σ

σ
− −

=  

where ( )4
4E r µ µ− =  is the fourth central moment. This result may also be 

found in a number of mathematical statistics textbooks 
Semi-Standard Deviation (SSD) 
Using the Semi-Standard deviation influence function formula (17), the 

asymptotic variance of Semi-SD is 

( ) ( ) ( ) ( )
22 2

2 2 4
4 3

2

2
2

4 4
4

r I r SemiMean r SemiSD
V SemiSD E

SemiSD

SemiMean SemiMean SemiSD
SemiSD

µ µ µ

µ σ µ− −

 − ⋅ ≤ − ⋅ ⋅ − −
=  

⋅  
+ ⋅ − ⋅ −

=

 

where 

( ) ( ) ( ) ( )3 4
3 4d and d .x F x x F x

µ µ
µ µ µ µ− −−∞ −∞

= − = −∫ ∫  

See De Capitani [9] for a formal asymptotic normality derivation. 
Lower Partial Moment (LPM1, LPM2) 
Using the LPM influence function formula (19), the asymptotic variance of 

the LPM of order k is 

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2

2
2

2

.

k
k k

k k
k k

k k

V LPM E c r I r c LPM

E c r I r c c r I r c LPM LPM

LPM LPM

 = − ≤ − 
 = − ≤ − − ≤ ⋅ + 

= −

 

For the special case of k = 1, ( ) 2
1 2 1V LPM LPM LPM= − . 

We have found no published asymptotic normal distribution derivation, but it 
should be quite straightforward. 
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Expected Shortfall (ES) 
Using the ES influence function formula (21), the asymptotic variance of ES is 

( ) ( ) ( )

( )

2

2 2 2
2

1 1 2d 1 2 .
q

I r q
V ES E q ES r q

r F r q ES q ESα

α
α α α

α α α α

α

α αα −∞

 ≤
= − − − ⋅ − 

 
   = ⋅ + − ⋅ − − ⋅ ⋅ −   
   ∫

 

For standard mathematical statistics derivation see Stoyanov and Rachev [28]. 
Value-at-Risk (VaR) 
Using the VaR influence function formula (25), the asymptotic variance of 

VaR is 

( ) ( )
( )

( )
( )

2

2

1
.a

I r q
V VaR E

f q f q
α

α α

α α α ≤ − −
= = 

      
 

We note that VaR is sample quantile, i.e., a probability α  order statistics, 
and as such the above asymptotic variance formula is also available in many 
mathematical statistics textbooks. 

Sharpe Ratio (SR) 
The expression for the Sharpe ratio asymptotic variance was derived in Sec-

tion 5.1, and is included here for completeness 

( ) 24
3

1
1

4n
kV SR k SR SR−

= − +  

where ( )3 3
3k E r µ σ= −  is the coefficient of skewness and 4

4 4k µ σ=  is 
kurtosis. For standard derivation see Mertens [24]. 

Downside Sharpe Ratio (DSR) 
Using the DSR influence function formula (29), the asymptotic variance of 

DSR is 
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We have not found a formal asymptotic normal distribution derivation in the 
published literature. 

Sortino Ratio (SoRc) 
Using the Sortino ratio influence function formula (30), the asymptotic va-

riance of Sortino ratio is 
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For a published derivation see De Capitani [9], where ( )E Yµ =  and Y is 
equal to our r c− . 

ES Ratio (ESratio) 
Using the ES Ratio influence function formula (32), the asymptotic variance 

of ES ratio is 
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∫

∫
 

For a standard asymptotic normality derivation see Capitani and Pasquazzi 
[10]. 

VaR Ratio (VaRratio) 
Using the VaR Ratio influence function formula (34), we find the asymptotic 

variance of VaR ratio is 
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For a formal asymptotic normality derivation see Capitani and Pasquazzi [10]. 
Rachev Ratio (RachevRatio) 
Using the Rachev Ratio influence function formula (35), the asymptotic va-

riance of Rachev Ratio is 
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( )( )3 1 .V q EG q ESβ β α α−= − − − −  

We could not find standard asymptotic normality derivation of the above re-
sult in the literature. 

Omega Ratio (Omega) 
Using the Omega ratio influence function formula 36, the asymptotic variance 

of Omega function is 
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Then with 1 ωΩ = +  where ( ) 1cc LPMω µ= − , the above formula be-
comes 
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For an asymptotic derivation see De Capitani [9]. 

A3. Monte Carlo Simulation Results for SD and SemiSD  
Estimators 

The Monte Carlo simulation results below for the standard deviation (SD) and 
semi-standard deviation (SemiSD) estimators was carried out in a similar man-
ner as for the Sharpe ratio (SR) and downside Sharpe ratio (DSR) estimator in 
Section 6, and the results are displayed in Table A1 and Table A2. What is per-
haps a little surprising is the larger finite sample Pct Bias and Error Rate values 
for the SD and SemiSD estimators, as compared with the SR and DSR estimators 
in Section 6. The fourth central moment appearing in the asymptotic variance of 
the SD and SemiSD estimators (see Appendix A2) is likely a cause of this. Some 
research is needed on methods to correct the finite sample biases evident in Ta-
ble A1 and Table A2. 
 
Table A1. Monte Carlo simulation study of standard deviation standard error estimate. 

Dist. Scale N SEMC SEEIF SE Pct Bias Error Rate 

Normal 0.05 60 0.0046 0.0043 −6.1% 5.9% 

Normal 0.05 120 0.0032 0.0031 −3.0% 5.3% 

Normal 0.05 240 0.0023 0.0022 −1.5% 5.4% 

t (5) 0.039 60 0.0075 0.0061 −19.2% 8.3% 

t (5) 0.039 120 0.0055 0.0047 −14.8% 7.3% 

t (5) 0.039 240 0.0041 0.0036 −13.1% 6.7% 

 
Table A2. Monte Carlo simulation study of semi-standard deviation standard error estimate. 

Dist. Scale N SEMC SEEIF SE Pct Bias Error Rate 

Normal 0.072 60 0.0051 0.0048 −5.7% 5.9% 

Normal 0.072 120 0.0036 0.0035 −3.1% 5.6% 

Normal 0.072 240 0.0026 0.0025 −1.8% 5.4% 

t (5) 0.055 60 0.0085 0.0066 −23.0% 8.9% 

t (5) 0.055 120 0.0064 0.0052 −19.6% 7.8% 

t (5) 0.055 240 0.0048 0.0040 −17.2% 7.4% 
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