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Abstract 
Considered under their standard form, the fifth-order KdV equations are a 
sort of reading table on which new prototypes of higher order solitary waves 
residing there, have been uncovered and revealed to broad daylight. The ma-
thematical tool that made it possible to explore and analyze this equation is 
the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit 
Bogning' functions. The analytical form of the solutions chosen in this ma-
nuscript is particular in the sense that it contains within its bosom, a package 
of solitary waves made up of three solitons, especially, the bright type soliton, 
the hybrid soliton and the dark type soliton which we estimate capable in 
their interactions of generating new hybrid or multi-form solitons. Existence 
conditions of the obtained solitons have been determined. It emerges that, 
these existence conditions of the chosen ansatz could open the way to other 
new varieties of fifth-order KdV equations including to which it will be one of 
the solutions. Some of the obtained solitons are exact solutions. Intense nu-
merical simulations highlighted numerical stability and confirmed the hybrid 
character of the obtained solutions. These results will help to model new non-
linear wave phenomena, in plasma media and in fluid dynamics, especially, 
on the shallow water surface. 
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1. Introduction 

Many natural phenomena regularly occur in the universe. These phenomena can 
in certain cases be destructive for the environment in which they take place. For 
example, the cases of the propagation of the nonlinear excitations in fluid dy-
namics which sometimes, are manifested by tsunamis, hurricanes, tidal bore, 
and so on, and which very often are devastating when surge is across on the con-
tinent without warning. These different phenomena as presented in this case 
(among so many others) constitute real and permanent threats to our existence 
on the earth planet. It is following this observation that, a great number of re-
searchers in particular, physicists and mathematicians, deploy themselves in 
everyday life in order to design and make available mathematical models [1] [2] 
[3] [4] [5] in an attempt to analyze, understand and explain these phenomena 
that can be observed in various fields such as nonlinear optics, mechanics, biol-
ogy, and so on. Most of these models are nonlinear partial differential equations 
(NPDEs). From all these equations, we are interested, in this manuscript, in the 
one whose history throughout the last two centuries is intimately linked from 
the outset to the remarkable scientific discovery made in August 1834 [6] by 
John Scott Russell and who shows up under the form 

2 0.t x x xx xxx xxxxxw w w w w ww wα β γ+ + + + =                (1) 

Equation (1) is the standard form of the well-known fifth-order KdV (fKdV) 
equations [7]-[13] where , ,α β γ  are real and nonzero arbitrary parameters, 
( ),w x t  is a sufficiently differentiable function, and, x, t are both independent 

spatial and temporal coordinates respectively. xxxw  and xxxxxw  are the two dis-
persive terms involved in this equation. Equation (1) is susceptible to a radical 
change in its characteristics due to the arbitrary and varied characters of the 
values that the parameters , ,α β γ  can take. This changing and arbitrary cha-
racter of the values that these different parameters can take gives rise to a varia-
bility of the fKdV equations [7] which are of particular interest in the literature 
and of which the best known are the Lax equation, the Ito equation, the Caud-
rey-Dodd-Gibbon (CDG) equation, the Sawada-Kotera (SK) equation and the 
Kaup-Kuperschmidt (KP) equation. Basically, the KdV equation models the 
propagation of weakly nonlinear dispersive waves in various fields such as plas-
ma physics [14], waves of small amplitudes and long wavelengths on the surface 
of shallow waters (incompressible irrotational inviscid fluid) [15] [16] [17], the 
laser beam propagation [18], and so on. It is fundamental to point out here that 
the NPDEs admit different types of solutions, the most robust of which are soli-
tary waves (solitons). However, one of the major difficulties remains the deter-
mination of the exact, approximate or forced solutions of these equations. In re-
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cent decades, numerous works have proposed various methods [19]-[26] of res-
olution in order to understand and explain phenomena which occur in systems 
whose dynamics are governed by these NLPDEs. Despite all this progress, a lot 
of work remains to be done because many other phenomena at the origin of the 
new predictable or unpredictable behaviors of these different systems still have 
to be detected, understood and explained in order to guarantee all of humanity a 
future safely. 

So, in this manuscript, One tracks down, using the Bogning-Djeumen Tcha-
ho-Kofané method (BDKm) extended to the new implicit Bogning’ (iB) func-
tions, new prototypes of solitary waves of the standard KdV equation while 
revealing the hybrid character of these waves. Section 2 will be devoted to the 
brief description of the BDKm including new implicit Bogning’ functions 
(iB-functions) while, Section 3 will focus on finding the analytical solutions 
coupled with an intense numerical simulation. Section 4 will provide the gist of 
discussions. A conclusion followed by a perspective will complete this work in 
Section 5.  

2. The BDKm Theory  

This section takes care of highlighting all the mechanisms necessary for the im-
plementation of the BDKm including iB-functions which will allow in section 3, 
to unearth new prototypes of the solitary wave solutions of Equation (1).  

2.1. iB-Functions  

These iB-functions [23] [27] [28] [29] have been highlighted thanks to the mul-
tiple research works [22] [23] [28]-[44] produced for more than a decade. It is 
during the repeated constructions of solitary wave solutions of certain types of 
equations in wave mechanics presenting dispersion terms coupled with 
non-linear terms (which can be of different orders) via the BDKm, that the fas-
cinating properties of these functions were detected by Bogning Jean Roger. 
These iB-functions are noted [23] [27] [28] [29]  
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The left member is the implicit form and the right member is the explicit form 
of the iB-functions, where ( ), 0;1;2; ;i i pα =   are the parameters associated to 
the independent variables ( ), 0;1;2; ;ix i p=  , m is the power of the numera-
tor, n that of the denominator. In one dimensional, according to the choice of 
the parameter iα , Equation (2), is reduces under the form  

( ) ( )
( )

( ) ( ),

sinh
sinh sech ,

cosh

m
m n

n m n

x
J x x x

x
α

α α α
α

= =             (3) 

where m and n are keeping the same characteristics as in Equation (2), α  is a 
constant associated to the independent variable x. We associate here some of the 

https://doi.org/10.4236/ojapps.2021.111008


C. T. D. Tchaho et al. 
 

 

DOI: 10.4236/ojapps.2021.111008 106 Open Journal of Applied Sciences 
 

fundamental properties of these functions, whose a large majority of which will 
be useful in the rest of this manuscript under the respective forms  

1 1
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It is important to note here that this function in its trigonometric form is 
written as  

( ) ( ) ( )
( ),

sin
cos

m
m

n m n

x
J ix i

x
=                       (12) 

although we should not use it for this work, but for the knowledge of the reader. 
For a better understanding of the properties of these functions, it is needful to 
refer to [21] [25] [26] [27] where they are widely explained.  

2.2. Implementation of the BDKm  

The BDKm which has been proposed by three Cameroonian researchers finds its 
implementation field in nonlinear physics, wave mechanics, mathematics phys-
ics, and others. It is better suited for solving certain types of NPDEs of the form 
[22] [23] [28]-[44]  

( )( )2 2, , , , , , , , , , 0,t x tt xx ttt xxx
t

X Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ =         (13) 

where ( ),x tΦ  is an unknown function to be determined, X is some function of 
Φ  and its derivatives with respect to x and X includes the highest order deriva-
tives and the nonlinear terms. Generally, the solution sought is of the form 

( ), 0
p

ij i j k kkJ xλ α
=∑ . As in the logic of a only variable, we can set the change of 

variable 
0

p
k kk xξ α

=
= ∑ . But in the case where we have a function of x and t; 

( ),x tΦ , we can pose the change of variable x tξ ν= − . Thus, ( ),x tΦ  becomes 
( )ξΦ  where ν  is the speed of the wave and Equation (13) becomes in these 

conditions  
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( )2, , , , , 0.ODEX ′ ′′ ′Ω Ω Ω Ω Ω =                    (14) 

Equation (14) is an ordinary differential equation (ODE), where ′Ω , ′Ω  
represent respectively the first and second derivatives of the envelope Ω  with 
respect to ξ . According to Equation (3), the solution we are trying to construct 
can be expressed as  

( ) ( ), ,ij j i
ij

Jξ µ ηξΩ = ∑                         (15) 

where η  is a real constant and ijµ  are the unknown constants to be deter-
mined. So, the combination of Equations (14) and (15) gives the main equation  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,0 ,1 ,0

,1 0,0

, , , , , ,

, , , , 0,

n ij n m ij m k ij k
ijn ijm ijk

l ij l ij
ijl ij

A J B J C J

D J E J

µ η ν ηξ µ η ν ηξ µ η ν ηξ

µ η ν ηξ µ η ν ηξ

−

−

+ +

+ + =

∑ ∑ ∑

∑ ∑
 (16) 

where , , ,i j k l  are positive natural integers and ,n m  the real numbers [23] 
[27] [28] [29]. It can be noted here that Equation (16) is the one from which all 
the possible analyzes result. The identification of coefficients  

( ) ( ) ( ) ( ) ( ), , , , , , , , , , , , , ,n ij m ij k ij l ij ijA B C D Eµ η ν µ η ν µ η ν µ η ν µ η ν  at zero makes it 
possible to obtain the ranges of equations whose the resolutions could allow to 
obtain the expressions of the unknown coefficients ijµ . It is important to point 
out here that, the resolution of this series of equations often leads to exact solu-
tions [30] [38] for certain models and according to the form of the considered 
ansatz while, for other models and according to the form of the chosen ansatz , it 
(resolution) leads to approximate or forced solutions. In the case of approximate 
or forced solutions, the priority in the order of resolution is given to those from 
the highest clues of ( ),0nJ ηξ , then to those of the highest clues of ( ),1mJ ηξ . 
But, otherwise we go to those from the coefficients of lowest clues of ( ),0kJ ηξ−  
and ( ),1lJ ηξ− . Here, the priority makes reference to the series that permits to 
obtain good results or merely that tends more to the sought exact solution. Very 
often, the series of equations obtained by identifying at zero the coefficient of 

( ),0nJ ηξ  gives satisfaction. On the opposite, the last series of equations given 
by the coefficient of ( )0,0J ηξ  is not very important because it is considered 
rather like a confused domain for the obtainable good solutions. So, this resolu-
tion permits to obtain the possible expressions of the coefficients ijµ  of Equa-
tion (15) as a function of the parameters ,η ν , and those supplied by Equation 
(13), and then of the constraints which may result therefrom. Thus, the ansatz 
given in Equation (15) can be supported by Equation (13) as a solution. Recent-
ly, this method was used in [36] [37] and in [42] [43] [44] to construct hybrid 
solitary waves for the generalized Kuramoto-Sivashinsky equation, Multi-form 
solitary wave solutions of the KdV-Burgers-Kuaramoto equation and solitary 
wave solutions which propagate through transmission media such as electrical 
lines, respectively. Now, we apply it again to the standard form of the well-known 
fifth-order KDV equation [7].  
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3. Results 

This part of the work is grouped into two subsections. The first subsection deals 
with the construction of the analytical hybrid solitary wave solutions of Equation 
(1). The second sub-section, for its part, is working on an intense numerical si-
mulation in order to reassure itself of the stability of the obtained solutions with 
a view to a probable future application and for a possible confirmation of the 
hybrid characters (planned when choosing of the ansatz given by Equation (18) 
below) of these obtained solutions.  

3.1. Analytical Higher Order Solitary Wave Solutions 

By considering the change of variable ( ) ( ),w x t ψ ξ=  where x tξ ν= −  and 
ν  the wave speed, Equation (1) becomes  

2
2 3 5 0,ξ ξ ξ ξ ξ ξ ξνψ αψ ψ βψ ψ γψ ψ ψ− − − − =                (17) 

where 
s

s sξ
ψψ
ξ
∂

=
∂

. We are looking for the solutions under the form  

( ) ( ) ( ) ( ) ( )1,0 1,0 1,1 2,2 ,aJ bJ J cJψ ξ ηξ ηξ ηξ ηξ= + +            (18) 

where a,b and c are real constants to be determined later, η , the inverse of the 
width of each component of Equation (18). It should be noted here that Equa-
tion (18) has a peculiarity in the sense that it is a collection of solitons taken in-
dividually in the two main families of existing solitary waves, namely the bright 
family and the dark family to make it a package [23] [27] [28] [29]. To be more 
precise, the first term of Equation (18) is a bright represented by the sech func-
tion, the second term is a hybrid soliton obtained by performing the product of a 
bright by a dark represented by sech tanh×  and the third term is a dark 
represented by tanh2. One just has to represent each of the terms to realize it. In 
this context, we believe that this mixture can be at the origin of interactions (or 
competitions) between these different components and generate hybrid struc-
tures, this, in relation to the values taken by the coefficients , ,a b c  and the pa-
rameters ,η ν  of the wave, as well as those taken by the parameters , ,α β γ  of 
the considered system. Following all that has just been said, we continue with 
our investigations by inserting Equation (18) into Equation (17) to produce of 
ranges main equation and contracted under the form  

( ) ( ) ( ) ( ),0 ,1, , , , , , , , , , , , , , 0,u u v v
u v

K a b c J Z a b c Jα β γ η ν ηξ α β γ η ν ηξ+ =∑ ∑  (19) 

where { }1;2;3;4;5;6;7u∈ ; { }2;3;4;5;6;7v∈ . So, Equation (19) has delivered 
in its formulation, two ranges of equations in the terms of ( ),0uJ αξ , and 

( ),1vJ αξ , thus constituting the most important ranges according to the imple-
mentation of the above BDKm. In this context, priority in solving is given to the 
equations from the first range that is to say, the equations from the coefficients of 
the terms in ( ) { },0 , 1;2;3;4;5;6;7uJ uαξ ∈  due to the complexity of the equa-
tions of the second range. Thus, by identifying at zero the different coefficients 

{ }, 1;2;3;4;5;6;7uK u∈  of the terms in  
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( ) { },0 , 1;2;3;4;5;6;7uJ uαξ ∈  and the different coefficients  
{ }, 2;3;4;5;6;7vZ v∈  of the terms in ( ) { },1 , 2;3;4;5;6;7vJ vαξ ∈ , we obtain 

the both series of algebraic equations of unknowns a,b and c as being 
the term in ( )7,0J αξ ,  

( )2 2 3 3 52 6 24 48 720 0,b c c bηα ηα η β η γ η − − + − =             (20) 

the term in ( )6,0J αξ ,  

( )3 310 30 10 0,c abη β η γ ηα+ + =                    (21) 

the term in ( )5,0J αξ ,  

( )2 2 2 3 3 513 4 3 28 76 840 0,c a b c bηα ηα ηα η β η γ η − − + + + =        (22) 

the term in ( )4,0J αξ ,  

( )3 314 11 27 0c abηα η β η γ− − − =                   (23) 

the term in ( )3,0J αξ ,  

( )2 2 2 3 3 53 8 6 29 2 182 0,a b c c bηα ηα ηα η β η γ ην η + − − + + − =       (24) 

the term in ( )2,0J αξ ,  

( )3 34 2 2 0,c abηα η β η γ+ + =                    (25) 

the term in ( )1,0J αξ ,  

( )2 3 5 0,c c bηα η γ η ην+ + − =                    (26) 

the term in ( )7,1J αξ ,  

( ) ( )3 3 2 3 2 3 3 2 56 24 2 6 12 24 720 0,b c b c c cη β η γ ηα ηα η β η γ η+ − + − + − =    (27) 

the term in ( )6,1J αξ ,  

( )2 2 3 3 55 5 10 30 59 0,c b c aηα ηα η β η γ η − + + + =            (28) 

the term in ( )5,1J αξ ,  

( ) ( )
( )

3 3 3 2 3 3 2

3 3 2 2 2 5

4 8 32 2 6

8 20 4 8 480 0,

c c a

b a c b c c

ηα η β η γ η β η γ

η β η γ ηα ηα η

+ + − +

− + − − + =
         (29) 

the term in ( )4,1J αξ ,  

( )2 2 2 3 3 53 6 6 15 60 0a b c c aηα ηα ηα η β η γ η + − − + − =          (30) 

the term in ( )3,1J αξ ,  

( ) ( )
( )

3 3 2 3 3 2 3 3 2

2 2 5

2 2 8

2 2 2 32 0,

a b c c

a c b c c

η γ η β η γ η β ηα η γ

ηα ηα ην η

+ + + − −

+ + + − =
          (31) 

the term in ( )2,1J αξ ,  

( )2 3 5 0.c c aηα η γ η νη+ + − =                   (32) 

At look to the structuring of the equations unveiled by this range, one can eas-
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ily make the choices of the different families of the solutions to be constructed. 
Thus, in order to obtain non-trivial solutions, we will distinguish four cases from 
families of solutions, notably the case 0, 0a b≠ ≠ ; the case 0, 0a b= ≠ ; the 
case 0, 0b a= ≠  and the case 0, 0a b= = . Thus, these investigations plunge us 
straight into what is essential in Subsection 3.1.  

3.1.1. First Family of Solutions: Case: a ≠ 0; b ≠ 0 
From Equations (21), (23) and (25), one obtains, respectively  

2 23 ,c η β η γ
α
+

= −                          (33) 

2 211 27
14

c η β η γ
α
+

= −                         (34) 

and  
2 2

,
2

c η β η γ
α
+

= −                          (35) 

with 0α ≠ . By setting the equality c c=  between Equations (33) and (35) on 
the one hand, then, between Equations (34) and (35) on the other hand, it comes 
the constraint verified by the parameters γ  and β  below  

5β γ= −                             (36) 

The insertion of Equation (36) into one of Equations (33), (34) and (35) gives  

22 ,c γη
α

=                            (37) 

It emerges from Equation (37) that, the coefficient c is a linear function of pa-
rameter γ  or that c is a hyperbolic function of parameter ( )0α α ≠  or that c 
is a parabolic function of the inverse of the width at half height η  of the soli-
tons, that one is searches to constructing according to the fact that the choice of 
the variable be worn on one of the parameters ,γ α  or η . These observations 
sufficiently show what will be the importance of the impact of the variations of 
the coefficient c on the formation of the wave structures that we will obtain. By 
continuing, the insertion of Equation (37) into Equation (20) and Equation (26) 
gives, successively  

2
2 4 4

2

160 360 ,b γη η
αα

= − +                     (38) 

2
2 21360 60 ;

6
b η α γ α γ

α
= ± −                   (39) 

and  

4 46 .γν η η
α

= +                         (40) 

Equation (40) reveals that the speed ν  has almost the same variations as in 
the case of Equation (37) with respect to the parameters ,γ β  and η . Taking 
into account Equations (37) and (38) in the Equation (22) gives, respectively  
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2
2 4 4

2

126 60 ,a γη η
αα

= −                       (41) 

and  
2

2 21326 60 ; .
30

a η γ α α γ
α

= ± −                    (42) 

It is important to emphasize here that, the two conditions which validate  

Equations (39) and (42) impose on to take 2 21 13;
6 30

α γ γ ∈   
 and 0α ≠ . And  

also, Equations (36), (37), (38), (40) and (41) verify Equation (24). We thus ob-
tain the first family of solutions under the form  

( ) ( )

( ) ( ) ( )

2
2

1,0

2
2 2

1,0 1,1 2,2

26 60

360 60 2 ,

J

J J J

ηψ ξ γ α ηξ
α
η γα γ ηξ ηξ η ηξ
α α

= ± −

± − +

    (43) 

with 2 21 13;
6 30

α γ γ ∈   
 and 5β γ= − . It is very significant to underline here  

that, this family of solutions given by Equation (43) through its condition of  

existence: 2 21 135 ; ;
6 30

γ β α γ γ = − ∈   
, opens the way to other new varieties of  

fifth-order KdV equations [5] including her will be solution.  

3.1.2. Second Family of Solutions: Case: a b0; 0= ≠  
Under this condition, Equations (21), (23) and (25) are verified. However, Equa-
tion (26) gives  

2 2 4c cν α η γ η= + +                         (44) 

while Equation (20) gives, successively  

( )2 2 4
2 2

12 24 360
3

c
b c

η β η γ η

α

+ +
= +                 (45) 

and  

( )2 2 4
2

12 24 360
3 ,

c
b c

η β η γ η

α

+ +
= ± +                (46) 

with 0α ≠ . Next, Equations (22) and (24) become respectively  

( )2 2 3 3 513 3 28 76 840 0c b cηα ηα η β η γ η− + + + =            (47) 

and  

( )2 2 3 3 58 6 29 2 182 0c b cηα ηα η β η γ ην η− + − + + − =          (48) 

On the one hand, by taking into account of Equation (45) in the Equation 
(47), and on the other hand, the insertion of Equations (44) and (45) in Equation 
(48) lead to the same quadratic equation in c which is written  

2 0,rc pc q+ + =                          (49) 
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with 2 2, 2r pα η γ η β= = −  and 460q η= − . Equation (49) has as discriminant  

( )24 42 240 .η γ β η α∆ = − +                     (50) 

Looking at the architecture of Equation (50), a discussion according to the 
constraints linking γ  and β  becomes necessary. So, this discussion concerns  

the cases 2 ; 0γ β α= 
 and the case 

( )22
2 ;

240
γ β

γ β α
−

≠ ≥ − . From this in-

vestigation, the second family of solutions gives rise to two subfamilies.  
1) First subfamily of the second family of solutions: case: 2 ; 0γ β α= 

 
Due to the fact that 2 ; 0γ β α= 

, the discriminant becomes 4240 0η α∆ =   
because 0c ≠ . Therefore, Equation (49) admits as solution  

22 15 ,c η α
α

= ±                         (51) 

Equation (51) shows that, for a given value of α , the coefficient c is a para-
bolic function of the width at half height of each component of Equation (18). 
Thenceforward, the first subfamily of the second family of solutions is written 
considering Equation (46) under the form  

( )
( )

( ) ( )

( )

2 2 4
2

1,0 1,1

2

2,2

12 24 360
3

2 15 ,

c
c J J

J

η β η γ η
ψ ξ ηξ ηξ

α
η α ηξ
α

+ +
= ± +

±

      (52) 

where c is given by Equation (51). This solution presages interactions between hy-
brid and dark components of Equation (18). Which, in view of the constitution of 
the hybrid component of Equation (18), could generate bright, bright-dark, 
dark-bright, dark type structures, and so on, provided that 2 ; 0α β α= 

.  
2) Second subfamily of the second family of solutions: case:  

( )22
2 ;

240
γ β

γ β α
−

≠ ≥ −  

Under these conditions, the discriminant is that given by Equation (50). So, 
for 0∆ ≥ , the expression of c solution of Equation (49) that we are looking for 
is in the form  

( )22 22 2 240
,

2 2
pc

r
η β η γ γ β α

α
− ± − +− ± ∆

= =             (53) 

Therefore, the second subfamily of the second family of solutions is written 
considering Equation (46) as being  

( )
( )

( ) ( )

( )
( )

2 2 4
2

1,0 1,1

22 2

2,2

12 24 360
3

2 2 240
,

2

c
c J J

J

η β η γ η
ψ ξ ηξ ηξ

α

η β η γ γ β α
ηξ

α

+ +
= ± +

− ± − +
+

      (54) 

where c is given by Equation (53). This solution presages interactions between 
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hybrid and dark components of Equation (18). Which, in view of the constitu-
tion of the hybrid component of Equation (18), could generate bright, 
bright-dark, dark-bright, dark type structures, and so on, provided that  

( )22
2 ;

240
γ β

α β α
−

= ≥ − . We cannot forget to point out, in the case of this  

second family of solutions of Equation (1) that: 
- the first subfamily given by Equation (52) through its condition of existence: 

2 ; 0γ β α= 
, opens the way to other new varieties of fifth-order KdV equa-

tions [5] including her will be solution; 
- the second subfamily given by Equation (54) through its condition of existence:  

( )22
2 ;

240
γ β

γ β α
−

≠ ≥ −  and 0α ≠ , opens the way to other new varieties of  

fifth-order KdV equations [5] including her will be solution. Now, One looks 
what is about the third family of solutions of the Equation (1).  

3.1.3. Third Family of Solutions: Case: b a0; 0= ≠  
For 0b =  and 0a ≠ , all the equations from (20) to (26) are verified for any 
nonzero values of the real coefficients ;a c  and those of the parameters 

; ; ;α β γ η  and ν . According to the implementation of the BDKm as explained 
in Section 2, the third family of solutions can be approximated by the following 
expression  

( ) ( ) ( )1,0 2,2 ,aJ cJψ ξ ηξ ηξ= +                   (55) 

with *a∈ℜ  and *c∈ℜ . Equation (55) presages interactions between bright 
and hybrid components of Equation (18). Which, in view of the constitution of 
the hybrid component of Equation (18), could generate bright, bright-dark, 
dark-bright, dark type structures, and so on, for nonzero values of ;a c  and 
those of the parameters , , ,α β γ η  and ν . To fix the a priori ideas, a study of 
the numerical stability of the obtained solutions is necessary.  

3.1.4. Fourth Family of Solutions: Case: a b0; 0= =  
By considering this condition, Equations (20) to (26) are verified. However, ac-
cording to the BDK method, it is important in this case to examine what infor-
mation can we derive from the equations of the second range (terms in 

( ) { },1 , 2;3;4;5;6;7vJ vαξ ∈ ). In this context, Equations (28), (30) and (32) are 
checked while, Equations (27), (29) and (31) are reduced to, respectively  

( )2 2 2 46 12 360 0,c cα η β η γ η+ + + =                 (56) 

( )2 2 2 42 8 120 0c cα η β η γ η+ + + =                  (57) 

and  
2 2 44 16 0.c cα η γ η ν+ + − =                     (58) 

Equation (56) is a quadratic equation of the unknown coefficient c and the 
discriminant of which is given by  
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( )2436 2 40 .η β γ α ∆ = + −                      (59) 

From the architecture of Equation (59), the discussions according to the con-
straints between the parameters γ  and β  is necessary and thus offering two 
subfamilies of solutions for this fourth family, in particular, the subfamily cha-
racterized by 2 ; 0β γ α= − 

 and the subfamily characterized by  

( )22
2 ;

40
β γ

β γ α
+

≠ − ≤ .  

1) First subfamily of the fourth family of solutions: case: 2 ; 0β γ α= − 
 

Under the condition 2 ; 0β γ α= − 
, Equation (59) leads to  

41440 0η α∆ = −   and then, Equation (56) has as solution  

2 106 .
2

c αη
α α
∆ −

= ± = ±                       (60) 

The insertion of Equation (60) in Equations (57) and (58), and, taking into 
account the constraint 2β γ= −  give successively  

21
10

α γ= −                             (61) 

and  

4 4
2240 360 .
γ

ν η η
γ

= ± −                       (62) 

So, we get this first subfamily of the fourth family of solutions of Equation (1) 
considering Equation (61) in the form  

( ) ( )2
2,2260 .J

γ
ψ ξ η ηξ

γ
= ±                     (63) 

Equation (63) shows that the fKdV equation has dark solitary wave solutions 
with a amplitude which is a parabolic function of the width at half height of the 
soliton for a given value of 0γ ≠ .  

2) Second subfamily of the fourth family of solutions: case:  

( )22
2 ;

40
β γ

β γ α
+

≠ − ≤  

For 
( )22

2 ;
40

β γ
β γ α

+
≠ − ≤  and 0∆ ≥ , the solution of Equation (56) is  

written  

( ) ( )22 23 6 3 2 40
.c

η β η γ η β γ α

α

− + ± + −
=              (64) 

Then, Equation (58) gives  
2 2 44 16 ,c cν α η γ η= + +                       (65) 

where c is given by Equation (64) and should verify Equation (57). Thus, the 
second subfamily of the second family of solutions of Equation (1) has as ex-
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pression  

( )
( ) ( )

( )
22 2

2,2

3 6 3 2 40
,J

η β η γ η β γ α
ψ ξ ηξ

α

− + ± + −
=         (66) 

where 0α ≠ . As in the case of Equation (63), the result given by Equation (66) 
also indicates that Equation (1) admits dark type solitons as solutions. 

It should be said here that the solutions given by Equations (63) and (66) are 
exact solutions of Equation (1) of which one of the classes had been proposed in 
[12] through the tanh method. We can retain here that, for certain solutions 
constructed in this subsection by using the discriminant ∆ , only the cases 

0∆ ≥  are interesting because complex solutions are not part of the aims of this 
work.  

3.2. Numerical Simulations 

This section is dedicated to the numerical simulations aiming to make observa-
ble, reliable and applicable the obtained solutions. They (numerical simulations) 
also aim to confirm the theoretical predictions on the hybrid characters of the 
new prototypes of the obtained solitary waves within the framework of this 
work. To implement all of this, and knowing that the boundary conditions of the 
profiles of the solutions constructed in this manuscript are not identical at the 
two borders. We have used the MATLAB toolbox pdepe [45] which solves ini-
tial-boundary value problems for parabolic-elliptic PDEs in 1-D, with zero flux 
boundary conditions. We have also used spatially extended grids in others to 
minimize boundary reflections that could induce spurious effects. It is also ne-
cessary to point out here that, these boundary conditions are appropriate to the 
profiles of the solutions studied in this work, instead of the periodic boundary 
conditions which require that when a wave passes from one end (of the compu-
tational spatial grid) to the other which is opposite to it, it should keep the same 
properties.  

We cannot continue this study without providing the reader with elements 
useful for a good understanding of the different spatiotemporal evolution curves 
obtained. For example, to obtain Figure 1(a), we have set  

0.0257; 0.00192; 0.0179; 0.245; 6a b c α β= = − = = =  to infer  
1.2; 0.000049492; 0.0363γ ν η= − = − =  of Equations (36), (40) and (41) respec-

tively. In this context, discussions become necessary.  

4. Discussions 

From all that has been formulated in the previous lines, two poles clearly emerge 
and on which our discussions will focus. The first pole will be on the analytical 
results, while, the second pole will revolve around results revealed by numerical 
simulations. Thus: 

*Speaking of analytical results, we can see that the existence conditions of the 
solutions given by Equations (43); (52) and (54), respectively, offer possibilities  
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Figure 1. Robust dynamics for the hybrid solitary waves given by Equation (43). (a): 0.0257a = ; 0.00192b = − ; 0.0179c = ; 

0.245α = ; 6β = ; 0.000049492ν = − ; 0.0363η = ; 1.2γ = − . (b): 0.0257a = − ; 0.00192b = − ; 0.0179c = − ; 0.245α = ; 
6β = ; 0.000049492ν = − ; 0.0363η = ; 1.2γ = − . (c): 0.0217a = ; 0.00192b = − ; 0.0249c = ; 0.256α = ; 6β = ; 
0.000037911ν = − ; 0.0344η = ; 1.2γ = − . (d): 0.0217a = − ; 0.00192b = − ; 0.0249c = − ; 0.256α = ; 6β = − ; 

0.00040707ν = ; 0.0344η = ; 1.2γ = . 
 

to develop varieties of the fifth-order KdV equations by simply modifying [7] the 
real values of the parameters ,α β  and γ . Note here that all these varieties 
obtained must admit the ansatz given by Equation (18) as an approximate solu-
tion. To be a little clearer, one of the well-known fifth-order KdV equations is 
that of Lax, and which is characterized by:  

( ) 22 ; 3 10 .β γ α γ= =                           (67) 

For example, if 10γ = , we obtain 20β =  and 30α = , successively. Thus, 
Equation (1) becomes:  

230 20 10 0t x x xx xxx xxxxxω ω ω ω ω ωω ω+ + + + =                 (68) 

Equation (68) is indeed the Lax equation which is one of the varieties of equa-
tions which derive from Equation (1) with values of parameters ,α β  and γ  
given above. If we go back to our results: 
- the solution given by Equation (43) has the existence condition  
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2 21 135 ; ;
6 30

β γ α γ γ = − ∈   
. For 20γ = , we have 100β = −  and 100α = .  

These values taken by the coefficients ,γ β  and α  give rise to another 
equation which derives from Equation (1) and which is written:  

2100 100 20 0t x x xx xxx xxxxxω ω ω ω ω ωω ω+ − + + =             (69) 

and characterized by: 215 ;
4

β γ α α= − =  and whose Equation (18) is an  

approximate solution. 
- next, the solution given by Equation (52) has for existence condition  

1 ; 0
2

β γ α=  . Let us take α  in the form: 21
6

α γ= . So, for 30γ = , we  

have 15; 150β α= = . So we get another form of Equation (1) as  
2150 15 30 0t x x xx xxx xxxxxω ω ω ω ω ωω ω+ + + + =              (70) 

whose solution given by Equation (18) is an approximate solution. 
- eventually, a similar reasoning can also be carried out with the existence  

condition 
( )22

2 ;
240

γ β
γ β α

−
≠ ≥ −  of the solutions given by Equation (54),  

in order to obtain the corresponding fifth-order KdV equations. It is neces-
sary to point out here that the five well-known fifth order KdV equations in 
the literature can be tidy in this latter case. 

It should be point out here that, Equations (69) and (70) are two new forms 
[7] among so many other fifth-order KdV equations that we have just revealed 
through this manuscript and which are characterized by  

2 21 135 ; ;
6 30

β γ α γ γ = − ∈   
 and 2 ; 0γ β α=  , respectively, and whose Equations  

(43) and (52) are respective approximate solutions. From these existence condi-
tions, we can propose new varieties of fifth-order KdV equations by simply al-
tering the values of the different parameters ;α β  and γ . 

*As for the numerical results, it appears by browsing from Figures 1-5 that: 
- Figure 1 displays a set of four hybrid structures that we think are generated 

by balanced interactions between the three constituent solitons of the soliton 
package [23] [27] [28] [29] given by Equation (18). Figure 1(a) and Figure 
1(c) are unfinished intermediate forms of a double-bright soliton while, Fig-
ure 1(b) and Figure 1(d) are unfinished intermediate forms of a double-dark 
soliton respectively, obtained by simply altering the values of the coefficients 
a, b and c. 

- Figure 2 shows the dominant interactions of each of the terms making up 
Equation (18). We can observe this by noting that Figure 2(a) translates the 
domination of the bright soliton structure (first term of Equation (18)) while, 
Figure 2(b) and Figure 2(c) translate the domination of the hybrid soliton 
structure (second term of Equation (18)). Figure 2(d) translates the domina-
tion of the dark-soliton structure (third term of Equation (18)). 

- Figure 3 presents a set of four profiles which reveal through Figure 3(a) and  
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Figure 2. Stable dynamics of the bright-dark solitary waves given by Equation (43). (a): 0.0217a = ; 0.00192b = ; 0.0179c = − ; 

0.256α = ; 6β = − ; 0.000040707ν = ; 0.0344η = ; 1.2γ = . (b): 0.06a = ; 0.0501b = − ; 0.071c = ; 0.07α = ; 3β = − ; 
0.00017923ν = − ; 0.043η = ; 0.6γ = . (c): 0.06a = ; 0.0657b = ; 0.07c = ; 0.076α = ; 3β = − ; 0.00020953ν = − ; 

0.0456η = ; 0.6γ = . (d): 0.0217a = − ; 0.00192b = ; 0.0249c = − ; 0.256α = ; 6β = − ; 0.000040707ν = − ; 0.0344η = ; 
1.2γ = . 

 
Figure 3(b) a dominance of hybrid structures with strong bright-soliton 
tendencies and given by Equation (52), while, Figure 3(c) and Figure 3(d) 
reveal a dominance of hybrid structures with strong dark-soliton tendencies 
and given by Equation (54). All these structures result from the interactions 
between the second term (hybrid soliton) and the third term (dark soliton) of 
Equation (18) in the absence of the first term (bright soliton). 

- Figure 4 reveals four profiles which present improved and balanced forms of 
the structures obtained in Figure 1. Figure 4(a) is an intermediate form of a 
double-bright soliton with balanced vertices while Figure 4(b) is an interme-
diate form of a double-dark soliton with balanced bottoms. On the other 
hand, Figure 4(c) presents an intermediate form of the double-bright soliton 
very evolved towards a bright-soliton with flat peak, then, Figure 4(d) is an 
intermediate form very evolved towards a dark-soliton form with flat bottom. 
One also has to point out here that all these figures are symmetrical with re-
spect to a plane of equation 0x =  and that these properties of symmetry  
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Figure 3. Stable spatiotemporal evolution of the hybrid bright-dark solitary waves given by Equation (52) and (54). (a): 0a = ; 

0.051b = − ; 0.05c = − ; 0.02η = ; 3β = ; 0.7231α = ; 6γ = ; 0.0017ν = ; (b): 0a = ; 0.051b = ; 0.05c = − ; 0.02η = ; 
3β = ; 0.7231α = ; 6γ = ; 0.0017ν = ; (c): 0a = ; 0.0299b = − ; 0.0097c = ; 0.02η = ; 0.09β = − ; 0.0997α = ; 0.08γ = ; 
0.0000098955ν = ; (d): 0a = ; 0.0432b = ; 0.0126c = ; 0.02η = ; 0.09β = − ; 0.0718α = ; 0.8γ = ; 0.000015596ν = . 

 
could be of capital importance in the understanding and the explanation of 
certain phenomena which occur in systems whose dynamics are described by 
Equation (1). 

- Finally, Figure 5 completes the advanced forms presented in Figure 4. This 
is how Figure 5(a) shows a bright soliton structure with a flat peak and Fig-
ure 5(b) shows a dark-soliton structure with a flat bottom. Figure 4 and 
Figure 5 translate the interactions between the first term (bright soliton) and 
the third term (dark soliton) of Equation (18) in the absence of the second 
term (hybrid soliton). 

In summary, we find that, the analytical solutions obtained and of which we 
foresee hybrid characters have given rise to new varieties of fifth-order KdV eq-
uations while numerical simulations have confirmed the hybrid characters of 
most of the structures revealed starting from Figures 1-5. These solutions may 
find their applications in fluid mechanics, quantum mechanics, nonlinear optics, 
and so on. Abdul-Majid Wazwaz in [8] had used the simplified Hirota method 
to derive single, singular and multiple solitons with the auxiliary function, of  

https://doi.org/10.4236/ojapps.2021.111008


C. T. D. Tchaho et al. 
 

 

DOI: 10.4236/ojapps.2021.111008 120 Open Journal of Applied Sciences 
 

 
Figure 4. Robust dynamics of the multi-form solitary waves given by Equation (55). (a): 0.0267a = ; 0b = ; 0.0238c = ; 

0.0013ν = ; 0.9γ = ; 0.6β = ; 0.03η = ; 1α = . (b): 0.0267a = − ; 0b = ; 0.0238c = − ; 0.0013ν = ; 0.9γ = ; 0.6β = ; 
0.03η = ; 1α = . (c): 0.0028a = ; 0b = ; 0.0018c = ; 0.01ν = ; 0.9γ = ; 0.6β = ; 0.03η = ; 1α = . (d): 0.0028a = − ; 
0b = ; 0.0018c = − ; 0.01ν = ; 0.9γ = ; 0.6β = ; 0.03η = ; 1α = . 

 

 
Figure 5. Stable spatiotemporal evolution of bright and dark solitons with a flat top and a flat bottom, respectively, given by Equa-
tion (55). (a): 0.0027a = ; 0b = ; 0.00138c = ; 0.013ν = ; 0.9γ = ; 0.6β = ; 0.03η = ; 1α = . (b): 0.0027a = − ; 0b = ; 

0.00138c = − ; 0.013ν = ; 0.9γ = ; 0.6β = ; 0.03η = ; 1α = . 
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Equation (1). He had also derived periodic solutions and compacton solutions of 
Equation (1) in [13]. Again, Abdul-Majid Wazwaz had used in [12] the 
sine-cosine and the tanh methods to successively derive exact periodic and soli-
ton solutions of Equation (1). Bell shape multi-solitons, dark solitons and dark 
periodic cusp solutions of Equation (1) were found in [10] [11] while, exponen-
tial function solutions were revealed in [9]. It becomes easy to realize that, all 
these proposed solutions of Equation (1) including solutions found in [19] [25], 
are almost entirely different from those obtained in this manuscript.  

5. Conclusion  

In the final analysis, we can say with enthusiasm that, the application of the 
BDKm extended to iB-functions, to the standard form of the fifth-order KdV 
equations, has enabled to reveal new prototypes of solitary waves of higher or-
der, which are for some, approximate hybrid (or multi-form) solutions, and for 
others, exact solutions of this equation. This method is very suitable for the con-
struction of solitary wave solutions of certain types of equations in wave me-
chanics and which have terms of dispersion and terms of nonlinearity. The exis-
tence conditions of some of these solutions made it possible to derive from Equ-
ation (1) (and depending on the values of the parameters and depending on the 
values of the parameters ;α β  and γ ); some new varieties of the standard 
fifth-order KdV equations. Equation (18) is one of their multiple approximated 
solutions. Theoretical forecasts on the hybrid characters of the solutions ob-
tained have been confirmed by intense numerical simulations as evidenced by 
the figures in Subsection 3.2. These figures also made it possible to understand 
that, when solitons are put together in the same package [23] [27] [28] [29], in-
teractions occur between the different components of this package of solitons 
and what subsequently generates structures with hybrid characters. One estimates 
that, new varieties of equations derived from that of standard fifth-order KdV, in-
cluding the new solutions proposed in this manuscript, will allow, during the 
propagations tests in the laboratories, to analyze, understand and explain some 
old or new phenomena which occur or which would occur in the systems whose 
dynamics are governed by Equation (1), in particular during the propagation of 
waves of low amplitudes and long wavelength on the surface of shallow waters 
[15] [16], during the transport of data through non-linear optical fibers and 
many other phenomena in quantum mechanics, in order to better secure our ex-
istence. One also hopes that, the properties of symmetry which certain obtained 
structures have, could be of capital importance in the understanding and the ex-
planation of certain phenomena which occur in systems whose dynamics are 
described by Equation (1). It should also be pointed out that, the possibilities of 
formulating new varieties of fKdV-type equations offered by the results of this 
manuscript will help in the future, to devise new shallow fluid media with im-
proved properties. However, the universe as a whole is being perpetually dy-
namic. We must further explore these models in order to obtain every day new 
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information which is still hidden behind this equation for the benefit of all hu-
manity and which will guarantee at the same time our survival. 
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