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Abstract 
In this paper, we have declined the formalism of the method of the Modified 
Atomic Orbital Theory (MAOT) applied to the calculations of energies of 
doubly excited states 2snp, 3snp, and 4snp Helium-like systems. Then we also 
applied the variational procedure of the Modified Atomic Orbital Theory to 
the computations of total energies, excitation energies of doubly-excited states 
2snp, 3snp, 4snp types of Helium-like systems. The results obtained in this 
work are in good agreement with the experimental and theoretical values 
available. 
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1. Introduction 

Much theoretical research has revealed that the helium atom exhibits a strong 
electron-electron correlation. Since the early experiment by Madden and Codl-
ing [1], Madden and Ederer [2], and theoretical explanation by Cooper et al. [3], 
doubly-excited states of helium-like atoms have been the target of a number of 
theoretical approaches. The increasing interest of physicists in these studies over 
the years is connected with the understanding of collisional and radiational 
processes which take place in hot astrophysical and laboratory plasma [4]. The 
greatest attention has been concentrated on the study of doubly-excited states 
[5]. Some of these doubly-excited states in two-electron systems have been iden-
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tified in the solar flare [6] and in the solar corona [7] and revealed experimen-
tally by the studies of double Rydberg resonances in negative ions of rare gases 
[8] [9]. The investigations of the intrashell S states of two-electron systems are 
advanced and due to the group theoretical method [10] [11] which allowed in-
trashell states to be approximately classified and some of these properties were 
studied [12] [13]. 

So, most atomic spectra can be treated in term of singly excitation of singly or 
mixed configurations [14] [15]. After Herrick and Sinanoglu [11], higher-energy 
Rydberg envelopes contain doubly-excited states which are generally labelled in 
the usual spectroscopic notation ( ) 2 1, SNl nl Lπ+′  with , 1,n N N= +  . In these 
notations, N and n denote respectively the principal quantum numbers of the 
inner and the outer electron, l and l’ are respectively orbital quantum numbers, S 
the total spin, L the total angular momentum and π the parity of the system. 

Various methods have been performed to understand electron-electron cor-
relation effects in doubly ( ) 2 1, SNl nl Lπ+′  excited states of He-like systems. Al-
though many accurate data have been tabulated for these doubly excited states, 
the methods used require in general, complexity in the Variationnal procedure 
along with the use of computational codes. 

Many theoretical studies have been done on doubly-excited states ( ) 2 1, SNl nl Lπ+′ . 
Among these methods, we have the theoretical and experimental methods 
[16]-[23]. The variational method of time-independent perturbation from Ray 
and Mukherjee was applied for the calculation of the total energies of the 2s2, 2p2 
and 3d2 states of He, Li+, Be2+, and B3+ [24]. Sakho used the semi-empirical pro-
cedure of the Screening Constant by Unit Nuclear Chargemethod (SCUNC) to 
calculate the energies of doubly excited states (Nsnp) 1Po helium-like systems 
[25]. 

In all these ab initio methods, energies of ( ) 2 1, SNl nl Lπ+′  doubly-excited 
states of He isoelectronic sequence can’t be expressed in an analytical formula. 
In addition, most of these preceding methods require large basis-set calculations 
involving a fair amount of mathematics complexity. 

The Modified Atomic Orbital Theory is a purely theoretical method initiated 
by Sakho [26]. This theory stems from Slater’s orbital theory [27]. This theory 
(MAOT) has been known for its simplicity, as it is a very suitable calculation 
method that has yielded enormous results from simple semi-empirical formulas 
without resorting to a computer program in solving resonant photoionization 
problems. It was subsequently that Sakho [25] studied the resonance energies of 
the Rydberg series of 2s22p4 (1D2) ns, nd, 2s22p4 (1S0) ns, nd, and 2s22p5 (3P2) 
states from of the metastable 2s22p5 (2P1/2) state and the ground 2s22p5 (2P3/2) 
state of the Ne+ ion. Thus the variational principle, which is a purely theoretical 
method, takes advantage of the principle of variation. This variational method is 
a computational technique to provide approximate solutions to solving the 
Schrödinger equation. In the following, after a brief review of Slater’s orbital 
theory, we apply for the first time the variational procedure of the Modified 
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Atomic Orbitals Theory to the calculations of total energies, excitation energies 
of doubly excited 2snp, 3snp, 4snp states of types helium-like systems. This pro-
cedure consists of determining the variational parameter α  and the screening 
constant σ , from the construction of a correlated wave function. 

2. Theory 
2.1. Brief Description of the Modified Atomic Orbitals Theory 

In the context of the Modified Atomic Orbitals Theory (MAOT), the total ener-
gy of a ( )ν  —given orbital is expressed as Rydberg units [28]. 

( )
( ) 2

2

Z
E

σ
ν

ν

−  = −


 .                     (1) 

For the ( ) 2 1, SNl nl Lπ+′  doubly excited states, the total energy of an atomic 
system of many M electrons is expressed as follows 

( ) 22 1

2
1

S
M i

i i

Z L
E

πσ

ν

+

=

 − = −∑ .                   (2) 

2.2. Construction of the Wave Function 

In the construction of the correlated wave function, a product of hydrogen-type 
wave functions is performed in which variational parameters are introduced. 
Thus, in the case of atomic systems, these criteria are generally determined by 
the screen effects exerted by the electrons on each other by the spin-orbit inte-
raction, etc. 

The hydrogen wave functions for , , ln l m  states are radial and have the 
same shape. They are non-normed and it’s obtained from the radial coordinates 
(r) and an exponential factor. 

So for different states, we get: 
For 4s (l = 0): 
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For 4p (l = 1): 
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For 3s (l = 0): 
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For 3p (l = 1): 
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For 2s (l = 0): 

( ) 0

3
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For 2p (l = 1): 
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To build the wave functions of ( ) 2 1, SNl nl Lπ+′  type, the product of the radial 
portions Rn,l(r) is produced while considering the electrons (1) and (2) heliumo-
id systems, whose radial coordinates are respectively r1 and r2. As part of the in-
dependent particle model where electronic correlation phenomena are neg-
lected, (Coulombian repulsion, spin-orbit interaction, etc.), the product of the 
functions is given as follows: 

For the function 2s2p: 
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For the function 3s3p: 
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For the function 4s4p: 
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Taking into account the phenomena of electron-electron correlation effects 
occurring in He-like systems, the nuclear charge of the exponential factor is 
substituted in favor of the effective charge Z*, and in atomic unit, the Bohr ra-
dius a0 = 1. 

So these functions become: 
For the wave function 2snp: 

( )
( )

*
1 2

1 2
0 0

2snp 1 e
2

Z r r
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a a
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For the wave function 3snp: 

( )
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For the wave function 4snp: 

( )
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where the effective charge number Z* is given by: 

( )* ,
1

Nl nl
Z Z

Z
σ ′ 

= − 
 

                    (15) 

With ( ),Nl nlσ ′  the screen constant relating to these states. 

2.3. Determining the Screen Constant 

To determine the screen constant, we start from the relation: 

( ) ( )
( ) ( )
( ) ( )

H
E H

α α
α α

α α

Ψ Ψ
= =

Ψ Ψ
               (16) 

And Hamiltonian of the helium isoelectronic series in given by (in atomic 
units): 

1 2
1 2 12

1 1 1
2 2

Z ZH
r r r

= − ∆ − ∆ − − +                  (17) 

The average value of this expression (17), while using the closure relation re-
flecting the fact that the 1 2,r r  kets are continuous bases in the state space of 
the two electrons: 

3 3
1 2 1 2 1 2d d , , 1lr r r r r r =∫∫                     (18) 

From this relation we can from (21): 
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The development of (19) gives: 

( ) ( ) ( )
( ) ( )

3 3 *
1 2 1 2 1 2

3 3 *
1 2 1 2 1 2
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ˆd d , , , ,

E r r r r r r
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∫∫
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             (20) 

The normalization constant denoted N is given by: 

( ) ( ) ( )3 3 *
1 2 1 2 1 2

ˆd d , , , ,NE r r r r H r rα α α= Ψ Ψ∫∫            (21) 

And from this relation (24), we obtain: 

( ) 23 3
1 2 1 2d d , ,N r r r r α= ∫∫                    (22) 

To facilitate the development of these expressions, we made a change of varia-
ble of some parameters of the Equation (20). It was later that we posed in ellip-
tical coordinates: 

( ) ( )1 2 1 2 12; ;s r r t r r u r= + = − =                  (23) 

And the element of elementary volume gives: 

( )3 3 2 2 2
1 2d d d 2 d d dr r s t u s t uτ π= = −                (24) 

Applying these changes of variables in Equation (23) the preceding expression 
of the normalization constant denoted N is in elliptic coordinate: 

( ) ( )

( ) ( )

2 2 2
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2 2 2 2 2 2 2

d d d 2
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s u

NE s u t u s t
s t u u
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∫ ∫ ∫
  (25) 

Since we did not take into account the Coulomb repulsion, so: 0
u

∂Ψ
=

∂
. 

The normalization constant becomes: 

( ) ( )
2 2

2 2 2 2 2

0 0 0

d d d 4
s u

NE s u t u s t Zsu s t
s t

α
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∫ ∫ ∫  (26) 

To determine the values of the screen constant σ  and the variational para-
meter α , we start from this equation, which is the sum of three integral data as 
follows: 

( ) ( ) ( ) ( )1 2 3NE E E Eα α α α= + +                 (27) 

The development of this expression (27) makes it possible to obtain the value 
of σ  and α  by the formula: 

( )d
0

d
i

i

E α
α

=                          (28) 

The expressions corresponding to ( )1E α , ( )2E α , and ( )3E α , are: 

( ) ( )
2

2 2
1
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d d d
s u

E s u t u s t
s

α
∞ ∂Ψ = − × ∂ ∫ ∫ ∫               (29) 
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( ) ( )
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The normalization constant is as follows: 

( )2 2 2

0 0 0

d d d
s u

N s u t u s t
∞

= − ×Ψ∫ ∫ ∫                  (32) 

With these changes of variables, the correlated wave functions of the states 
2snp, 3snp, and 4snp become: 
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ss t s z t z α−Ψ = − × − × × + × − ×           (33) 
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3. Results and Discussions 

In this part, the procedure consists of determining the final expressions of ener-
gies, the value of the variational parameter α , and the screen constant σ . 
Since the calculations used are very complex, and require a lot of changes of va-
riables, with matrices to be manipulated, we have found it necessary to make a 
first call to a computer program with the software matlab. In this program, we 
first defined the parameter s, t, u, α, and z of Equation (23), the expression of the 
derivative as a function of each parameter, and the square of its derivatives. In a 
second step, the expressions of (E1, E2, E3 and N) of the Equations (29)-(32), as 
well as their factorials were defined and detailed expression by expression. Then, 
to simplify some parameters, a matrix calculation was carried out in this pro-
gram, and relations between these matrices were made to obtain a simple ex-
pression of the Equation (27) in order to apply the formula of the Equation (28) 
to have the approximate values of the screen constant σ  and the variational 
parameter α . 

3.1. Expression of the Total Energies 

In the case of the variational calculation of the Modified Atomic Orbital theory 
(MAOT, the expression of the total energy of the doubly-excited states (Nsnp) of 
an orbital is given by the formula (in Rydberg): 
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( )
( )( ) ( )( )2 2

2 2

s p
s p

Z n Z n
E N n

N n
σ σ   − −

   = − −
   
   

          (36) 

With N n≠  and ( ) ( )s pn nσ σ= . 
In some cases, a corrective factor may be added to this expression to obtain 

results that are closer to those found in the literature consulted. 
Thus the expressions of the states 2snp, 3snp, and 4snp are detailed as follows: 

• For the state 2snp: 

( )
( )( ) ( )( )2 2

2 2

s p
2s2p

Z n Z n
E

N n
σ σ   − −
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          (37) 

With ( ) ( )ns npσ σ=  and N n= . 
• For the state 3snp: 
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( )( ) ( )( )2 2

2 2

s p
3s3p

Z n Z n
E

N n
σ σ   − −

   = − −
   
   

           (38) 

With ( ) ( )s pn nσ σ=  et N n= . 
• For the state 4snp: 

( )
( )( ) ( )( )2 2

2 2

s p
4s4p

Z n Z n
E

N n
σ σ   − −

   = − −
   
   

           (39) 

With ( ) ( )s pn nσ σ=  and N n= . 

3.2. Expression of the Variational Parameter α 

The determination of the variational parameter α comes from the expression 
(28) with: 

( )
3

1

i
i

i

E
E

N
α

=

 =  
 

∑                        (40) 

Thus the calculation program is presented in the Appendix, and the varia-
tional parameter α  of the states 2s2p, 3s3p and 4s4p is given as follows: 

( ),
1

Nl nln l l Z
n Z

σ
α

′ ′+ +
= − 

 
                 (41) 

For the state 2s2p: 

( )2
3 1 12s2p 1
2 2

Z
Z

α  ≈ − × 
 

                   (42) 

With ( )2s2p 0.5σ = . 
For the state 3s3p: 

( )3
4 3 13s3p 1
3 12

Z
Z

α  ≈ − × 
 

                  (43) 

With ( )3s3p 0.25σ = . 
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For the state 4s4p: 

( )4
5 3 14s4p 1
4 7

Z
Z

α  ≈ − × 
 

                   (44) 

With ( )4s4p 0.428σ = . 

3.3. Results and Discussion 

In this work, the results obtained are compared with those found in the theoret-
ical and experimental literature. We have calculated the total energies of the 
states (3snp 1Po), (2snp 1Po), (4snp 1Po) as well as the excitation energies of the 
states (3snp 1Po), (2snp 1Po), (4snp 1Po). For the states (3snp 1Po) the total ener-
gies are given in Rydberg and in eV, shown in Table 1 (1 eV = 13.605698 Ryd) 
shown in Table 2. For the (2snp 1Po), (4snp 1Po) states, their results are given in 
eV and represented in Table 3 and Table 4 respectively. Equations (37), (38), 
(39) have been used for the calculation of its total states energies (3snp 1Po), 
(2snp 1Po), (4snp 1Po) respectively. About excitations energies, we have taken the 
energies of the ground state given by Frankowski and Pekeris [29]. These ener-
gies are given in ua (1 ua = 2 Rydberg) their values are given as follows: He 
(−2.90372), Li+ (−7.27991), Be2+ (−13.65556), Be3+ (−22.03097). 

In Tables 1-4, we used the variational computation of the modified atomic 
orbitals theory (MAOT) of the energies doubly-excited states (3snp 1Po), (2snp 1Po), 
(4snp 1Po). We compared the results obtained with theoretical results for all of 
these states, and experimental results existing only for the (3s3p 1Po), (2s2p 1Po), 
helium (He) states of Kossmann et al. [17], (2s2p 1Po), lithium (Li+) from Diehl 
et al. [19], and (4s4p 1Po) from Woodru et al. [30]. The theoretical results to 
which we have compared our results are those of Sakho et al. [25], Ivanov and 
Safronova [15], Drake and Dalgarno [22], Ho [18], Biaye et al. [21], Bachau  

 
Table 1. The total energies of the doubly excited states of (Nsnp) 1Po helium-like systems (Z = 2 to 10) in 
Rydberg (1 Ryd = 13.60569 eV). 

States 
 Z 

 
2 3 4 5 6 7 8 9 10 

3s3p 1Po 

−Ep 0.68056 1.68056 3.12500 5.01389 7.34722 10.12500 13.34722 17.01389 21.12500 

−Es 0.66054 1.64784 3.07958 4.95577 7.27640 10.04147 13.25099 16.90496 21.00337 

−Ea 0.67140 1.659 40 3.09000 4.96600 7.28600 10.04800 13.25600 16.91000 21.00000 

−Eb 0.66268 1.67395 3.15417 5.10468 7.52607 10.41871 13.78253 17.61787 21.92494 

3s4p 1Po 

−Ep 0.53168 1.31293 2.44141 3.91710 5.74002 7.91016 10.42752 13.29210 16.50391 

−Es 0.53206 1.31269 2.44053 3.91561 5.73790 7.90742 10.42415 13.28811 16.49930 

−Ea 0.54240 1.31960 2.44400 3.91400 5.73000 7.89600 10.40800 13.26600 16.47200 

3s5p 1Po 
−Ep 0.46278 1.14278 2.12500 3.40944 4.99611 6.88500 9.07611 11.56944 14.36500 

−Es 0.47259 1.15756 2.14475 3.43416 5.02579 6.91965 9.11573 11.61403 14.41455 

P: Present results obtained from Equation (38); s: (Sakho et al., 2010) [26], a: (Bachau et al., 1991) [20]; b: (Biaye et al., 2005) 
[21]. 
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Table 2. The total energies of the doubly excited states of (Nsnp) 1Po types of helium-like 
systems (Z = 2 to 10). Results given in eV (1 Ryd = 13.60569 eV). 

States 
Z 

 2 3 4 5 6 7 8 9 10 

3s3p 1Po 

−Ep 9.26 22.87 42.52 68.22 99.96 137.76 181.60 231.49 287.42 

−Es 9.10 22.47 41.88 67.34 98.85 136.40 180.01 229.66 285.35 

−Eh 8.28 21.14 40.05 65.01 96.01 133.06 176.16 225.30 280.49 

−Ek 9.10 22.33 42.04 67.52 99.03     

−El 9.11 22.54 42.00 67.51      

−Ei 9.10         

3s4p 1Po 
−Ep 7.23 17.86 33.22 53.29 78.10 107.62 141.87 180.85 224.55 

−Es 7.66 18.42 33.90 54.10 79.03 108.68 143.06 182.16 225.98 

3s5p 1Po 
−Ep 6.30 15.55 28.91 46.39 67.98 93.68 123.49 157.41 195.45 

−Es 7.02 16.58 30.25 48.03 69.93 95.94 126.05 160.05 198.63 

P: Present results obtained from Equation (38); s: (Sakho et al., 2008) [25]; h: (Ivanov and Safronova, 1993) 
[16]; i: experimental results (Kossmann et al., 1988) [17]; k: (Wagué, 1987) [31]; l: (Lipsky et al., 1977) [32]. 

 
Table 3. The total energies of the doubly excited states of (Nsnp) 1Po types of helium-like 
systems (Z = 2 to 10). Results given in eV (1 Ryd = 13.60569 eV). 

States 
 Z 

 2 3 4 5 6 7 8 9 10 

2s2p 1Po 

−Ep 17.96 46.88 89.39 145.52 215.25 298.58 395.52 506.07 630.22 

−Es 18.88 47.76 90.24 146.34 216.03 299.33 396.24 506.76 630.88 

Eα 18.86 47.82 90.33 146.40 216.07 299.32 396.18 506.64 630.70 

−Eh 19.42 48.23 90.63 146.66 216.28 299.51 396.34 506.78 630.84 

−Ej 18.87 47.84 90.34 146.42 216.09 299.34 396.20 506.20 630.84 

−Ef,i 18.88i 47.78f        

2s3p 1Po 

−Ep 15.05 37.16 69.09 110.85 162.44 223.86 295.10 376.16 467.06 

−Es 15.95 38.23 70.34 112.28 164.04 225.63 297.05 378.29 469.36 

−Eh 15.95 37.99 69.86 111.55 163.07 224.41 295.59 376.58 467.41 

P: Present results obtained from Equation (37); s: (Sakho et al., 2008) [25]; a: (Ho, 1980) [18]; h: (Ivanov 
and Safronova, 1993) [16]; i: experimental results (Kossmann et al., 1988) [17]; f: Experimental data, (Diehl 
et al., 1999) [19]; j: (Drake and Dalgarno, 1971) [22]. 

 
et al. [20], Sakho et al. [26], Wagué [31], Lipsky et al. [32]. 

Thus in Table 1, Table 2, containing the states (3snp 1Po), we have calculated 
the total energies of doubly-excited states types (3snp 1Po) ranging from (Z = 2 to 
10) using Equation (38). 

The results found are in perfect agreement with those found in the theoretical 
and experimental literature consulted and quoted above. For the (3s3p 1Po) he-
lium (He) states, we compared our results with those obtained experimentally by 

https://doi.org/10.4236/jmp.2021.122011


A. Diallo et al. 
 

 

DOI: 10.4236/jmp.2021.122011 115 Journal of Modern Physics 
 

Kossman et al. [17], and the results obtained are in perfect agreement. 
In Table 3 and Table 4, containing the states (2snp 1Po), and (4s4p 1Po), we 

used the Equations ((37), (39)) respectively. Then we added to each of these eq-
uations a corrective factor to obtain results equivalent to those found in the 
theoretical and experimental. In Table 3, states (2snp 1Po), we calculated the to-
tal energies of doubly excited states of helium-like systems (Z = 2 to 10). Our 
results found are in good agreement with the theoretical results [16] [22] [25] 
and experimental [17] [19]. 

In Table 4, states (4s4p 1Po), we also calculated the total energies of doub-
ly-excited states of helium-like systems (Z = 2 to 10). The results found are in  

 
Table 4. The total energies of the doubly excited states of (Nsnp) 1Po types of helium-like 
systems (Z = 2 to 10). Results given in eV (1 Ryd = 13.60569 eV). 

State 
Z 

 2 3 4 5 6 7 8 9 10 

4s4p 1Po 

−Ep 5.24 12.91 23.98 38.46 56.33 77.61 102.29 130.37 161.85 

−Es 5.35 13.03 24.10 38.58 56.46 77.75 102.43 132.03 162.00 

Eα 5.29 12.95 24.01 38.46 56.31 77.56 102.43 130.27 161.72 

−Em 5.35         

P: Present results obtained from Equation (39); m: Experimental data, Woodruff and Samson (1982) [30]. 
 

Table 5. Excitation energies of the doubly excited states of (Nsnp) 1Po types of helium-like 
systems (Z = 2 to 5). Results given in eV (1 Ryd = 13.60569 eV; 1 ua = 2 Rydberg). 

States 

 Z 

 2 3 4 5 

2s2p 1Po 

Ep 61.05 151.22 282.19 453.98 

Es 60.13 150.34 281.35 453.15 

Ej 60.13    

Ef, i 60.13i 150.31f   

2s3p 1Po 
Ep 63.97 160.94 302.50 488.64 

Es 63.06 159.87 301.25 487.21 

3s3p 1Po 

Ep 69.75 175.23 329.07 531.28 

Es 69.91 175.63 330.54 532.15 

Ei 69.91    

3s4p 1Po 
Ep 71.78 180.23 338.37 546.20 

Es 71.35 179.68 337.69 545.39 

3s5p 1Po 
Ep 72.72 182.55 342.67 553.11 

Es 71.99 181.52 341.34 551.46 

4s4p 1Po 

Ep 73.78 185.19 347.60 561.04 

Es 73.66 185.07 347.49 560.91 

Em 73.66    
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perfect agreement with those found in the literature consulted. 
In Table 5, we presented the excitation energies of the doubly-excited states of 

(Nsnp 1Po) (N, n ≤ 5) types of helium and its assimilated ions. They are calcu-
lated from the energies of the ground state given by Frankowski and Pekeris 
[29]. The results found in this table are in perfect agreement with the results 
found by the other authors. 

4. Conclusion 

In a global way, we applied the variational procedure of the modified atomic or-
bitals theory for the computation of total energies and excitation senergies 
doubly-excited states of the atomic system with several electrons. In order to 
achieve our results, we used a matlab program for the first time to reduce the 
complexity of the calculations. This program allowed us to determine the ap-
proximate expressions of the variational parameter, and of the screen constant. 
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Appendix 
Appendix A: Calculation Procedure for the Determination of the 

Radial Wave Function 

The procedure for determining the radial wave function is given as follows: 

( ) ( )
( )

0

3
2 1

, 3
0 0

1 2

0

1 !2 2 2e
2 !

lzr
na l

n l n l

n lZ Zr ZrR r L
na na nan n l

−
+
+

 − −      =       
+         

     (A1) 

The associated Laguerre polynomials are linked to the Laguerre polynomials 
( )n lL r+  by the Rodrigue formula: 

( ) ( ) ( )d1
d

k
k
n nkL r L r

r
= −                     (A2) 

( ) ( )de e
d

n
r n r

n nL r r
r

−=                     (A3) 

For different values of n and l, the Laguerre polynomials are mutually ortho-
gonal, which then determines the orthogonality of the radial wave functions. 

Let’s give the example of the 4s wave function: 
For the state 4s we have: n = 4, l = 0 

( )( )2 1 1
4 4

2 2 d 2
d

l
n l

o o o

Zr Zr ZrL L L r
na na r na

+
+

     
= ⇒     

     
           (A4) 

And; 

( )
4

4 4

de e
d

r n rL r
r

−=                       (A5) 

By developing this expression, we get: 

( ) ( ) ( )
3 2

3 4 2 3 3 4
4 3 2
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d d
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( ) ( )2 3 4
4 24 96 72 16L r r r r r= − + − +               (A6) 

Then he comes: 

( ) ( )1 2 3
4 4

d 4 24 36 12
d

L L r r r r
r

= = − + × − × +            (A7) 

Which give, 
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  (A8) 

So the determination of the first part of the expression (A1) 
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For n = 4 and l = 0, we have: 
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2 8 242 !

3 1 1
2 2 4 964 24 96 2

n lZ Z
na an n l

Z Z Z
a a a

   − −       = ×        × × × +        
                = × = =             × × ×× ×                  

 (A9) 

( )
( )( )

1 33 2 2

3
0 0

1 !2 1
4 962 !

n lZ Z
na an n l

  − −      =      ×× +         

          (A10) 

Thus, starting from (A8) and (A10); 

( )
3

2 2 3 32

2 3
0 0 0 0

3
2 3 2

2 3
2 3

0 00 0

1 18 34 24
4 96 8

1 18 3224
96 8

Z Zr Z r Z r
a a a a

Z Z Z Zr r r
a aa a

 
   × × × − × − + − +   ×      

 
   = − + −       

     (A11) 

Simplifying by 24 we finally obtain the expression of the radial wave function 
4s as follows: 

0

3
2 32

42 3
4,0 2 3

0 0 0 0

24 31 e
96 4 8 192

Z r
aZ Z Z ZR r r r

a a a a

×
−  

= − + −  
   

       (A12) 

By analogy the wave function 4p is given as follows: 

0

3
2 32

42 3
4,1 2 3

0 0 0 0

5 1 1 e
4 8016 2

Z r
aZ Z Z ZR r r r

a a a a

×
−  

= − +  
   

         (A13) 

Appendix B: Principle of Determining the Screen Constant 

To determine the screen constant, we start from the relation: 

( ) ( )
( ) ( )
( ) ( )

H
E H

α α
α α

α α

Ψ Ψ
= =

Ψ Ψ
               (B1) 
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And the Hamiltonian H (in atomic unit) is: 

1 2
1 2 12

1 1 1+
2 2

z zH
r r r

= − ∆ − ∆ − −                  (B2) 

The average value of this expression (B2), while using the closure relation re-
flecting the fact that the 1 2,r r  kets are continuous bases in the state space of 
the two electrons: 

3 3
1 2 1 2 1 2d d , , 1lr r r r r r =∫∫                    (B3) 

From this relation we can from (B3): 

( ) ( ) ( )
( ) ( )

3 3
1 2 1 2 1 2

3 3
1 2 1 2 1 2

d d , ,

ˆd d , ,

E r r r r r r

r r r r H r r

α α α

α α

Ψ × Ψ

= Ψ Ψ

∫∫
∫∫

           (B4) 

The development of (B4) gives: 

( ) ( ) ( )
( ) ( )

3 3 *
1 2 1 2 1 2

3 3 *
1 2 1 2 1 2

d d , , , ,

ˆd d , , , ,

E r r r r r r

r r r r H r r

α α α

α α

Ψ ×Ψ

= Ψ Ψ

∫∫
∫∫

             (B5) 

The normalization constant denoted N is given by: 

( ) ( ) ( )3 3 *
1 2 1 2 1 2

ˆd d , , , ,NE r r r r H r rα α α= Ψ Ψ∫∫            (B6) 

And from this relation (B6), we obtain: 

( ) 23 3
1 2 1 2d d , ,N r r r r α= ∫∫                    (B7) 

To facilitate the development of these expressions, we made a change of varia-
ble of some parameters of the Equation (B5). It was later that we posed in ellip-
tical coordinates: 

( ) ( )1 2 1 2 12; ;s r r t r r u r= + = − =                  (B8) 

And the element of elementary volume gives: 
We know that, 3 3

1 2d d dr rτ =  

( )3 3 2 2 2
1 2d d d 2 d d dr r s t u s t uτ π= = −                (B9) 

Applying these changes of variables in Equation (B7) the preceding expression 
of the normalization constant denoted N is in elliptic coordinate: 

( ) ( )

( ) ( )

2 2 2
2 2

0 0 0

2 2 2 2 2 2 2

d d d 2

4

s u

NE s u t u s t
s t u u

s s t t s u Zsu s t
s t

α
∞   ∂Ψ ∂Ψ ∂Ψ ∂Ψ        = − × + + +         ∂ ∂ ∂ ∂         

∂Ψ ∂Ψ    × − + − −Ψ − +    ∂ ∂  

∫ ∫ ∫
 (B10) 

Since we did not take into account the Coulomb repulsion, so: 0
u

∂Ψ
=

∂
 

The normalization constant becomes: 

( ) ( )
2 2

2 2 2 2 2

0 0 0

d d d 4
s u

NE s u t u s t Zsu s t
s t

α
∞   ∂Ψ ∂Ψ      = − × + −Ψ − +       ∂ ∂      
∫ ∫ ∫  (B11) 
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To determine the values of the screen constant σ  and the variational para-
meter α , we start from this equation, which is the sum of three integral data as 
follows: 

( ) ( ) ( ) ( )1 2 3NE E E Eα α α α= + +                (B12) 

The development of this expression (B12) makes it possible to obtain the val-
ue of σ  and α  by the formula: 

( )d
0

d
i

i

E α
α

=                         (B13) 

The expressions corresponding to ( )1E α , ( )2E α , and ( )3E α , are: 

( ) ( )
2

2 2
1

0 0 0

d d d
s u

E s u t u s t
s

α
∞ ∂Ψ = − × ∂ ∫ ∫ ∫              (B14) 

( ) ( )
2

2 2
2

0 0 0

d d d
s u

E s u t u s t
t

α
∞ ∂Ψ = − × ∂ ∫ ∫ ∫             (B15) 

( ) 2 2 2
3

0 0 0

d d d 4
s u

E s u t Zsu s tα
∞

 = − − + Ψ ∫ ∫ ∫             (B16) 

The normalization constant is as follows: 

( )2 2 2

0 0 0

d d d
s u

N s u t u s t
∞

= − ×Ψ∫ ∫ ∫                 (B17) 

With these changes of variables, we obtain the equations presented above in 
section (2.3): Equation (33; 34; 35). 
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