
Journal of Applied Mathematics and Physics, 2021, 9, 127-132 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2021.91009  Jan. 26, 2021 127 Journal of Applied Mathematics and Physics 
 

 
 
 

Mathematical Study of Medicine Propagation in 
Biological Tissue and Some of Its Applications 

N. G. Gulko1, I. T. Selezov2, R. I. Volinsky3 

1Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel 
2Institute of Hydromechanics, NAS of Ukraine, Kiev, Ukraine 
3Department of Geography, Ben-Gurion University of the Negev, Beer-Sheva, Israel 

 
 
 

Abstract 
The paper deals with the problem of the distribution of the medicine (en-
zyme) in the damaged biological tissue where the reaction enzyme—substrat 
takes place. The biological problem is reduced to a singular degenerate ini-
tial-boundary value problem for two coupled ordinary differential equations. 
Analytical solution of the singular degenerated IBV-problem was obtained by 
power series. The solution demonstrates the real situation and found suitable 
to depict the degeneration of singular system, caused by low concentration of 
the enzyme. 
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1. Introduction and Auxiliary Results 

There are many different works dealing with medicine (enzyme) transportation 
to the damaged zone. The mathematical modeling of biological processes often 
leads to highly complex systems involving many state-variables and reactions. 
For a wide range of analysis model complexity can present an insurmountable 
barrier [1]. Methods of model reduction therefore remain a vital topic and a 
widely applicable tool in the analysis and modeling of biochemical system. To 
describe a biochemical reaction of medicine, injected into the tissue, we present 
here mathematical model [2]. The model fully reflects the formation of the en-
zyme-substrate complex in the damaged tissue [3] [4]. It makes possible to dem-
onstrate the real situation and found suitable to depict the degeneration of sin-
gular system, caused by low concentration of the enzyme. The same mathemati-
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cal model was considered also in the previous work [5]. The analytical solution 
of the corresponding Cauchy problem using the power series method and nu-
merical solutions using the Runge-Kutta-Felberg method [6] were obtained for a 
large time scales. Some other authors [7] discus changes in substrate concentra-
tion (decreases with time) and enzyme-extract complex (increases with time). On 
an example the natural rubber bio synthesis process using the Michaelis-Menten 
model the quasi stationary states with constant rates of intermediate reactions in 
a chain were obtained. Conditions of convergence are developed for different situ-
ations in the case of a biochemical reaction were examined [8]. In other work 
“Extensions to Michaelis-Menten Kinetics for Single Parameters” [9] they de-
fined the equation for substrate and product and rate of reaction based on rate 
and time perspectives. Two quadratic equations were developed. The first, repre- 
sents a body entity that gave a useful relationship of enzyme and the second of 
nutrients. By combining Enzymes and Enzyme-substrate complexes values, they 
derive a Michaelis-Menten hyperbolic function and the proportionate rate of reac-
tion and Enzymes values of the quadratics resulting in another Michaelis-Men- 
ten hyperbolic. It was obtained that between these two hyperbolic functions, 
in-competitive inhibitions exist, indicating metabolic activities and growth in terms 
of energy levels. The effect of decomposition to the kinetics of the enzyme reac-
tion based on a microscopic pharmacokinetic model and the application of the 
Monte Carlo method to analyze that explains possible reaction scenarios in dis-
ordered media using the kinetics of the Michaelis-Menten model in pharmacol-
ogy [10]. In [11] complex variables method combined with Monte Carlo method. 

It this paper we provide the overview of the main methods proposed for an 
analytical solution. The solution of the Cauchy problem with initial conditions is 
given for two functions ( )x t  and ( )y t , which is characterized by a singular de-
generacy with respect to the parameter   (Section 2). An analytical method for 
representing the solution by power series was proposed. The functions in power 
series up to the fifth order were calculated (in Section 3). On this basis, solutions 
for changes in the concentration of the substrate and enzyme-substrate complex 
were obtained (in Section 4). Accordingly, when using the Runge-Kutta-Felberg 
method, calculations were carried out up to the 9th order. In the above analysis, 
in contrast to previous studies, it is not required to take into account the limita-
tions on the very small amount of the introduced enzyme  . 

2. The Problem Definition 

The mathematical model can be represented as the Cauchy problem for a system 
of coupled ordinary differential equations for two functions ( )x t , ( )y t  

( )d
d
x x x y
t

µ λ= − + + −                     (2.1) 

( )d
d
y x x y
t

µ= − +                      (2.2) 

with the following initial conditions 
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( ) ( )0 1, 0 0x y= =                       (2.3) 

Equations (2.1) and (2.2) are given in dimensionless form according to the 
formulas 

*
0 0t k e t= , 2

1 0

k
k s

λ = , 1 2

1 0

k k
k s

µ − +
= , ( ) ( )

0

s t
x t

s
= , ( ) ( )

0

c t
y t

e
= , 0

0

e
s

=  

There t it time, s, e and c are the concentrations of the substrate, enzyme and 
substrate-enzyme complex, 0s , 0e , 0c  are relevant initial concentrations, 1k  
and 1k−  describe the rates of the forward and the reverse reactions, 1k  is rate 
of the second reaction. The asterisks are omitted everywhere in formulas for di-
mensionless variables. 

3. Analytical Solution for Arbitrary Functions 

Equations (2.1) and (2.2) are strongly coupled with nonlinear terms. So, to con-
struct an analytical solutions for the Cauchy problem is not trivial. In this work, 
we use the Michaelis-Menten method for a general case with no restrictions on 
the initial enzyme concentration. For solution of the corresponding Cauchy prob-
lem we use a power series method, applying to the time coordinate. The method 
is valid for a short interactions, wihout any restrictions on the enzime concen-
tration. Now, more relative terms were held in the expansion, than in the in se-
ries in earlier works [5]. The second approach is the numerical solution of the 
problem by the Runge-Kutta-Felberg method, which is valid for long time inter-
vals and large values of parameters and concentrations, i.e., for strong interac-
tions when the values of the enzyme and enzyme-substrate complex are of the 
same order. We present the results in dimensionless form. The results are suitable 
for interactions in the case of any real enzyme and substrate structures. Usually, 
the medicine transported for a sufficiently large distance, the concentration of the 
medicine is significantly decreases. Consequently, the parameter is characterized 
by the initial concentration of the enzyme for which the initial reaction is very 
weak. In this case, problem (2.1) and (2.3) is singularly degenerate, since in this 
case the coefficient of derivative is very small, and the concentration of the en-
zyme is low, and an approximate solution to the singularly degenerate problem 
can be obtained by the method of coalescence asymptotic expansions [4]. In the 
case when the medicine (enzyme) is distributed in the immediate Near the point 
where the concentration is large and no singular degeneration appears, we con-
sider the problem (2.1) and (2.3) for arbitrary parameters. Then the problem 
contains strongly nonlinear systems of differential Equations (2.1) and (2.2) and 
becomes significantly more complicated. 

In this case, the concentrations of the substrate and enzyme are of the same 
order 0 0s e≅ . The order ( )1O=  and initial reaction rate can be calculated 
using the corrected formula: 

2
0 1 0 0

1 2

kV k e s
k k−

≅
+  

Below we present solutions as a series. without restrictions on the concentra-
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tion of enzyme. With the initial conditions (2.3), we obtain the following series 

( ) ( )
0 0

,
k k

k k
k k

k k
x t a t y t b t

=∞ =∞

= =

= =∑ ∑                   (3.4) 

For the small t values those series will converge. From the initial conditions 
(2.3) it follows that 0 01, 0a b= =  and, and then series (3.4) can be represented 
in the form 

( )
0

k
k

k
k

x t a t
=∞

=

= ∑                        (3.5) 

( )
1

k
k

k
k

y t b t
=∞

=

= ∑                        (3.6) 

As we can see, representations (3.5) and (3.6) already satisfy the initial condi-
tions ((3.4). After substituting expansions (3.5), (3.6) into equations (2.1), (2.2), 
we obtain a system of equations containing terms with increasing powers of t. By 
comparing the coefficients for the same powers of t, we obtain expressions for 
the coefficients ka  and kb . Keeping three terms in expansions (3.5) and (3.6) 
we have 

( )1 2
1 1 11, 1
2 2

a a t µ λ= − = − + + −


               (3.7) 

( )2
1 1 1 11
2 2

a µ= − − +
 

                    (3.8) 

As a result, for the functions ( )x t  and ( )y t  we obtain: 

( ) ( ) 21 11 1 1
2

x t t tµ λ = − + + + −  
               (3.9) 

 

 
Figure 1. Comparison of the results obtained by the numerical Runge-Kutta Felberg me-
thod and the power series approach. 
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Figure 2. The change in the concentration of the substrate ( )x t  and the enzyme-sub- 

strate comlex ( )y t  with 1.0µ =  and 0.5λ = . 
 

( ) ( ) 21 1 11 1
2

y t t tµ = − + +    
                (3.10) 

According to (3.4), (3.5) we preserve more terms than (3.7) and (3.8) (k = 
3.5... 9). Expressions are also obtained for the coefficients 3 4 5, ,a a a  and  

3 4 5, ,b b b  (not presented in the current paper) 

4. Analysis of Results 

In Figure 1, the results of the numerical Runge-Kutta-Felberg method and the 
power series approach are presented and compared. According to the results, we 
conclude that for relatively short time periods, the series method gives very good 
approximation, and may be used for descriptions of the expected medicine dis-
tribution, characterize the features of its transportation, subsequent localization 
and its possible impact. From Figure 2, it can be seen that for smaller   value 
provides maximum concentration of the enzyme substrate complex. The maxi-
mum values increase with decreasing of  . 
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