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Abstract 
Motivated by developing a simple model to calculate the diffusion coefficient 
in moderate friction region, a simplified model is proposed to deal with the 
diffusion of Brownian particles in a periodic potential. Where the internal 
noise is a Gaussian white noise, and the basic cell of the periodic potential is 
composed of a parabolic potential linked with a harmonic potential. When 
the particles cross the joint point of the potential, a time coarse-graining 
scheme is used to obtain a simple analytical expression of the probability dis-
tribution. The particles drift and diffuse from the first barrier to the second 
barrier, the passing probability over the second barrier corresponding to the 
escape rate becomes decrease serves as the long-jump probability. The theo-
retical result is confirmed by numerical simulation results. The approach can 
be extended to color noise case. 
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1. Introduction 

The diffusion of Brownian particles in a spatially periodic potential is a topic of 
great interest in many scientific areas of physics, chemistry, and biology [1] [2] 
[3]. Much effort has been devoted to the study of Brownian motion in periodic 
potentials. The diffusion coefficient has been investigated through numerical, 
simulation, and analytic approaches. 

The matrix-continued-fraction method was employed to investigate the 
Brownian motion in one and two-dimensional periodic potentials. The diffusion 
coefficient was obtained through numerical calculation of the dynamic structure 
factor [4] [5] [6] [7]. Some characteristics of the diffusion coefficient were found, 
such as the resonant diffusion in one-dimensional periodic potential due to the 
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interplay between two oscillatory motions [4], the anomalous dependence of the 
diffusion coefficient on the friction D σγ −∝  with 1σ <  in a coupled two- 
dimensional potential [5]. It is found that the coupling between two degrees of 
freedom always reduces the multiple-jump probability and then lowers the dif-
fusion coefficient [6]. The diffusion-path approximation and quasi-2D approxi-
mation were examined by numerical results [7]. The former strongly overesti-
mates the diffusion coefficient at large couplings, and the latter always gives ra-
ther good results. 

Many diffusion features of Brownian particles in a periodic potential have 
been revealed by numerical simulations. For nonseparable and anisotropic po-
tentials, molecular dynamics simulation found that the diffusion coefficient 
presents different dependence on friction in low friction regime as compared 
with separable potentials, which is directly related to the occurrence of long 
jumps [8]. For two-dimensional periodic or random potentials, superdiffusion, 
large-step diffusion, normal diffusion, and subdiffusion were observed through 
Langevin simulations [9]. These rich varieties of behaviors emerge naturally from 
an ordinary Langevin equation for a system described by ordinary canonical 
Maxwell-Boltzmann statistics, without injecting special assumptions such as Levy 
flights or special memory effects into models of surface diffusion. The Langevin 
simulation results show that the diffusion coefficient behaves as D σγ −∝  with 
0 1 3σ< <  in a two-dimensional periodic potential due to the coupling be-
tween the x and y degrees of freedom [10]. 

Some analytical approaches have been developed to study the diffusion of 
Brownian particles in a periodic potential. By expanding the distribution func-
tion into suitable eigenfunctions, a general method was given in Ref. [11] to cal-
culate the distribution and correlation function of the diffusive motion of par-
ticles in a one-dimensional periodic potential. The one-dimensional diffusion in 
potentials which have a finite number of jumps in their value and in their deriv-
ative was investigated. The jump conditions of the eigenfunctions of the corres-
ponding Fokker-Planck-operator were derived and applied to a periodic poten-
tial [12]. The modified PGH theory [13] is applied to the motion of a particle 
moving on a periodic potential influenced by friction and Gaussian thermal 
noise [14], a uniform expression for the diffusion coefficient valid for any fric-
tion value was derived, and the finite barrier corrections were also taken into 
account. A semiclassical theory for the diffusion of a particle moving on a peri-
odic potential was presented in Ref. [15]. The analytical expressions for the dif-
fusion coefficient and and hopping length distribution are valid for memory 
friction and any value of friction. Two kinds of approximate schemes, the qua-
si-2D approximation and the effective potential approach were employed to 
calculate the two-dimensional diffusion rate constant of a particle driven by a 
white or colored noise [16]. The theoretical result is qualitatively in agreement 
with the numerical result. Kramers theory was used to derive simple expressions 
for the hopping distribution in multidimensional activated surface diffusion 
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[17]. The derived expressions are valid on condition that the average energy loss 
of the particle as it goes from one barrier to the next is of the order of Bk T  or 
more. 

Although some analytical methods have been developed, simple and exact 
method is still deserve explored. Combine the physical picture of diffusion and 
the random walk model, a model to calculate the diffusion coefficient in the 
turnover region of damping is proposed in the present work. The proposed me-
thod provides a simple and exact approach to calculate the diffusion coefficient. 
Based on this approach, the diffusion of Brownian particles in the usual cosine 
periodic potential can be deal with by resort to the perturbation theory. The 
theoretical results for the applied periodic potential are confirmed by Langevin 
simulation results. 

2. A Simplified Model for Calculation of Diffusion Coefficient 

We consider a Brownian particle moving in a periodic potential with a basic cell 
composed of a parabolic potential barrier linked smoothly with a harmonic po-
tential well, which is subjected to a Gaussian white noise. The equation of mo-
tion of the particle reads 

( )1 1,   ,Vx v v v t
m x m

γ ξ∂
= = − − +

∂
                   (1) 

where m is the mass of the Brownian particle, γ  is the damping coefficient, 
and ( )V x  is the periodic potential, its basic cell is given by 

( ) ( )

( )

2 2

22
0

22
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2
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2

1 4 , region III.
2

b b

b b

V m x

V x m x

V m x

ω

ω

ω

 −

= −



− −

              (2) 

The three parts in a basic cell of the piecewise potential are connected 
smoothly at 1 2,c cx x x=  (Figure 1), bV  is the height of the potential barrier, 

1 1cx = , 2 3cx = , 1bV = , 0 1ω = , 1bω = , and 1m =  are taken in the present 
work. Such a potential can serve as a zero-order approximation of a cosine peri-
odic potential. The Gaussian white noise obeys the fluctuation-dissipation theo-
rem: ( ) ( ) ( )2 Bt t m k T t tξ ξ γ δ′ ′= − , Bk  is the Boltzmann constant and T the 
temperature. 

The probability density function in every potential barrier or potential well 
can be obtained exactly. However, the exact form of probability density after sev-
eral step jumps is a high dimension integration due to the particle passes through 
the joint points with stochastic times. The problem is in essence a complex nonli-
near one. To simplify the calculation, we construct a time coarse-grain model: the 
particle passes the joint point 1cx  with mean passage time of the corresponding 
potential barrier region. The initial velocity of the particle starting diffusion 
from the barrier top is set to the average velocity calculated by the Kramers for-
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mula. We label the first potential barrier, the first potential well, and the second 
potential barrier as region I, II, and III, respectively, as shown in Figure 1. The 
transition probability density and probability density in the region I for an initial 
δ  distribution of the probability density reads [18] 

( ) 2 2
1 0 0 1 1 1 1, , ; , ,0 exp ,W x v t x v N x v xvα β γ = − − −            (3) 

where 

( ) ( ) ( )1 1 1 2
1 11 1 22 1 12 1 1 1

1 2

1
1, , , 42 1 2

2
1 .t t t Nα σ β σ γ σ α β γ− − −  = = = = − π

   (4) 

The expressions of the second order moments ijσ  can be found in Ref. [18]. 
The equivalent probability density of the particle at 1cx  is obtained by concen-
trating all probabilities the particle appearing in region I with 0x >  on this 
point at the mean first passage time 1t  according to the coarse-grain approxi-
mation, that is 

( ) ( ) ( )2
01 1 20 1 1 1, , exp ,cW x v t N b v v x xδ = − − −              (5) 

with ( )1 1 1 1 1 1, 2cb v xβ γ β= = − , and 20 11 2N β= π . The mean first passage 
time 1t  is given by 

( )1
1 1 0 00 0

2
1 1

1 10 2
11 1 1

d d d , , ; , ,0

d erf
44

c

t t x vW x v t x v

Nt xγ
α
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∞

∞

∞

=

 
 = −
 − 

π


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∫
             (6) 

The total probability for the particle appearing in region I for 0x >  has been 
normalized as 1. The transition probability density [18] in region II is given by 

( )
( ) ( ) ( )( )( )

2 1 1 1

2 2
2 2 2 2 2 2 2 2

, , ; , ,

exp .

cP x v t x v t

N x x v v x x v vα β γ′ ′ ′ ′= − − − − − − −
       (7) 

 

 
Figure 1. The potential profile. 1 2, ,c cx x   are the joint points of parabolic barriers and 
harmonic potential wells. 
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where 

( ) ( ) ( )
2 11 1 12 1 2 21 1 22 1
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all of these quantities are defined in region II. The probability density in region 
II is then obtained 

( ) ( ) ( )
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The transition probability density in region III is given by 

( )
( ) ( ) ( )( )( )

3 2 2 2

2 2
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All these quantities are defined in region III. The probability density in region 
III is expressed as 

( ) ( ) ( )
1

3 2 2 2 2 2 2 2 3 2 2 2, , d d , , , , ; , , .
t

c ct
W x v t t v v W x v t P x v t x v t

∞
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The escape probability at time t crossing over the second barrier top is 

( ) ( )30
d d , , ,eP t x vW x v t

∞ ∞

−∞
= ∫ ∫                   (14) 

Performing the Gaussian integrations over x and v, the escape probability can 
be expressed as 

( )
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In random walk model, the diffusion coefficient is expressed as [19] [20] 

( )22 ,n
n

D k l k nd P= = ∑                    (16) 

where d is the spatial periodic of the potential, nP  is the probability of n-step 
jumps, and k is the Kramers rate calculated by the Kramers formula in spatial 
diffusion regime, which is still valid for damping out of spatial diffusion regime 
due to the parabolic potential barrier. When the center of the probability packet 
moves toward to the second barrier, the passing probability over the barrier top  

increases rapidly at almost a constant rate d
d

e
e

P
k

t
= , as shown by the numerical  

results. When the center of the probability packet moves back to the potential 
well, the passing probability over the second potential barrier only increases due 
to diffusion and then becomes slow. We take the critical probability cP  that the 
increase of ( )eP t  as a function of time from rapid to slow as the long jump 
probability (more than one step). Thereafter the process in the first basic cell is 
repeated periodically, which is a part of our simplified model. The probabilities 
for n-step jumps is then given by 

( )( )1 1 1, 2,n
n c cP P P n−= − =                    (17) 

such a geometric progression jump probability distribution is a good approxima-
tion for several step jumps, as shown by simulation results (see Fig. 6 of Ref. [8]). 

3. Comparison with Langevin Simulation Results 

To check the accuracy of the diffusion coefficient obtained by the simplified model,  
 

 
Figure 2. The diffusion coefficient as a function of damping. Where the potential barrier 
height 1bV = , the spatial periodic 4d = . (a) for 0.2T = , (b) for 0.3T = , and (c) for 

0.4T = . 
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we simulate the Langevin Equations (1) by second order Runge-Kutta algorithm. 
The number of test particles and the time step are taken as 53 10N = ×  and 

32 10t −∆ = × , respectively. As shown in Figure 2, the theoretical results match 
the simulation results well in moderate friction region. Such a region is common 
in surface diffusion problem. The maximal error for applied parameters is less 
than 6% until lower reduced potential barrier height 2.5b BV k T = . The mod-
erate friction region is called the turnover region in escape theory, which is not 
covered by the original Kramers escape theory. The calculation of escape rate (a 
factor of diffusion coefficient, see Eq. (16)) and diffusion coefficient in this re-
gion is lack of a simple method. 

4. Conclusion 

A simple model is proposed to calculate the diffusion coefficient for Brownian 
particles moving in a periodic potential. The basic cell of the periodic potential is 
composed of a parabolic potential barrier linked with a harmonic potential well 
smoothly, which can serve as a zero-order approximation of a cosine periodic 
potential. Further theoretical results for the common cosine periodic potential 
can be obtained by perturbation theory. The theoretical result for the applied 
potential is confirmed by the simulation result in moderate friction region, which is 
an often encountered region in surface diffusion problem. The proposed ap-
proach can be generalized conveniently to color noise case. 
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