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Abstract 
The paper presents a simplified 3D-model for active vibration control of ro-
tating machines with active machine foot mounts on soft foundations, consi-
dering static and moment unbalance. After the model is mathematical de-
scribed in the time domain, it is transferred into the Fourier domain, where 
the frequencies response functions regarding bearing housing vibrations, foun-
dation vibrations and actuator forces are derived. Afterwards, the mathemat-
ical coherences are described in the Laplace domain and a worst case proce-
dure is presented to analyze the vibration stability. For special controller struc-
tures in combination with certain feedback strategies, a calculation method is 
shown, where the controller parameters can be directly implemented into the 
stiffness matrix, damping matrix and mass matrix. Additionally a numerical 
example is presented, where the vibration stability and the frequency response 
functions are analyzed. 
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1. Introduction 

In praxis, large rotating machines are often fixed directly on soft foundations. 
e.g. elastic steel frame foundations, which sometimes lead to problems regarding 
vibrations, caused by resonances and instability [1]-[7]. In many technical ap-
plications, active vibration control is used to solve vibration problems [8]-[20]. 
Ushijima and Kumakawa analyzed in [12] Piezo-Actuators, used as active engine 
mounts for vibration control for high vibrations. Ulbrich investigated in [13] 
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different actuator concepts especially for rotating machinery and compared them 
regarding their effectiveness. Also Sun (et al.) investigated in [14] vibration con-
trol of car active suspensions, but with electrohydraulic actuators. Sohn (et al.) 
presented in [15] experimental investigations to evaluate an electromagnetic ac-
tuator. Zhang (et al.) presented in [16] a review of the current status and deve-
lopmental progress of active engine mounts, where a theoretical model, a finite- 
element model, and experimental modelling of electromagnetic active engine 
mounts are shown. In this paper now, the active vibration system includes active 
machine foot mounts—actuators, which are put between the machine feet and 
the foundation, acting only in vertical direction—vibration sensors, which are 
mounted at each machine foot, detecting the vertical vibrations, and a separate 
controller for each actuator (Figure 1). This concept was basically investigated 
in [21], but only for induction motors and it was only based on a plane 2D-model. 
In [22] a general 3D model for rotating machines mounted on actuators was 
presented, but only for rigid foundations. In this paper now, the 3D model is 
enhanced for soft foundations, e.g. steel frame foundations. An additional large 
enhancement of this paper is, compared to [22], that the excitations are here not 
only forces and moments with constant amplitudes and arbitrary frequencies, 
acting separately at the x, y, z-axes, but a rotating unbalance force and a rotating 
unbalance moment, described by complex rotating vectors. Furthermore, the 
damping coefficients are here dependent on the whirling angular frequency, whe-
reas in [22] the damping coefficients have been considered constant as a simpli-
fication. 

2. Vibration Model 

The model, which is used here, is a simplified 3D model (Figure 2). The mass 
and the moments of inertia of the machine are concentrated at the center of 
gravity S. The rotor and stator have hereby the same center of gravity. The an-
gular frequency Ω represents the rotational angular frequency of the rotor. The 
stiffness of the rotor, of the bearings, of the bearing support and of the stator is 
supposed to be infinitely high. Following definitions are made: 

 

 
Figure 1. Rotating machine (induction motor) mounted on a soft foundation with actua-
tors. 
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Figure 2. Simplified 3D-model of rotating machine on a soft foundation with actuators. 

 
• The mass srm  of the machine consists of the mass sm  of the stator and of the 

mass rm  of the rotor and is included in the mass matrix, as a single mass. 

sr s rm m m= +                          (1) 

• The moments of inertia sryθ  and srzθ , consisting of syθ  and szθ  (the mo-
ments of inertia of the stator at the y-axis and z-axis) and of ry rz rzyθ θ θ= =  
(the moments of inertia of the rotor at the y-axis and z-axis), are also in-
cluded in the mass matrix. 

sry sy rzyθ θ θ= + ; srz sz rzyθ θ θ= +                   (2) 

• However, the moment of inertia of the stator at the x-axis sxθ  and the moment 
of inertia of the rotor at the x-axis rxθ  have to be used separately, because sxθ  
has to be included in the mass matrix, and rxθ  in the gyroscopic matrix. 

• Additionally rm  and rzyθ  and rxθ  have to be handled separately, because 
they have to be considered in the excitation vectors, which are described by 

( )u tf  and ( )u tm . 
At the centre of gravity S the two excitation vectors ( )u tf  and ( )u tm  are 

positioned. The vector ( )u tf  represents the rotating force cause by a static un-
balance of the rotor, due to a mass eccentricity ê  with phase shift of eϕ . The 
vector ( )u tm  represents the rotating moment caused by a moment unbalance of 
the rotor, due to a tilt—angle α̂  with phase shift of ϕα —of the rotor mass on 
the shaft. The center of the bearing housings are described by point DB  (on the 
drive side) and by point NB  (on the non-drive side). The boreholes of the ma-
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chine feet are defined by the points DLA , DRA , NLA  and NRA . Index D stands 
for drive side, index N for non-drive side and index L for left side and index R 
for right side: 

,i D N= ; ,j L R=                        (3) 

The mass aaDLm , aaDRm , aaNLm  and aaNRm  present the mass of each ama-
teur of the actuators and asDLm , asDRm , asNLm  and asNRm  the mass of each 
stator of the actuators. In the stiffness and damping matrix of each actuator only 
translational stiffness and damping is considered, referring to [22]: 

azij azij

aij ayij aij ayij

axij axij

0 0 0 0
0 0 ; 0 0
0 0 0 0

c d
c d

c d

   
   = =   
      

C D            (4) 

The coefficients azijc , ayijc  and axijc  are the stiffness coefficients of the ac-
tuators and the coefficients azijd , ayijd  and axijd  are the damping coefficient of 
the actuators. For each foundation point, also only translational stiffness and 
damping of the foundation is considered in the stiffness and damping matrix: 

fzij fzij

fij fyij fij fyij

fxij fxij

0 0 0 0
0 0 ; 0 0
0 0 0 0

c d
c d

c d

   
   = =   
      

C D            (5) 

The coefficients fzijc , fyijc  and fxijc  are the stiffness coefficients of the foun-
dation and the coefficients fzijd , fyijd  and fxijd  are the damping coefficient of 
the foundation. Nine global coordinate systems are used here, one at the centre 
of gravity S and one for each machine foot point ( DLA , DRA , NLA , NRA ) and 
one for each foundation point ( DLF , DRF , NLF , NRF ). By using a vibration 
sensor for each machine foot, the vertical machine foot displacements or veloci-
ties or accelerations can be detected and then lead back to separate controllers 
( rDLC , rDRC , rNLC  and rNRC ). These controllers create then suitable signals 
for producing vertical actuator forces ( azDLf , azDRf , azNLf  and azNRf ). The 
controller structure of each controller may be different. The structure of each 
controller is described in the Laplace domain, by a transfer function, with the 
Laplace variable s: 

Controller rijC : ( )
μ,ij,γ

0
cij,γ

ν,ij,γ
0

m

n

b s
G s

a s

µ

µ

ν

ν

=

=

⋅
=

⋅

∑

∑
               (6) 

The constants μ,ij,γb  and ν,ij,γa  are hereby the constants of the polynomial 
functions. To describe different feedback strategies the index γ  is used, refer-
ring to [22]: 

aDL aDR aNL aNR

z,aDL z,aDR z,aNL z,aNR

0 : No feedback (open control loops)
: Feedback of the vertical motor feet displacements , , ,
: Feedback of the vertical motor feet velocities , , ,
: Feedback of the 

z z z z z
v v v v v
a

γ =

z,aDL z,aDR z,aNL z,aNRvertial motor feet accelerations , , ,a a a a








 (7) 
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The mechanical damping coefficients of the actuators azij ayij axij, ,d d d  and of the 
foundation fzij fyij fxij, ,d d d  can be derived by the corresponding mechanical loss 
factor aijtanδ  for the actuators and fijtanδ  for the foundation, by the corres-
ponding stiffness aqijc  and fqijc  and by the whirling frequency Fω , referring 
to [4] [7] and [21]: 

aqij aij fqij fij
aqij fqij

F F

tan tan
; with : , ,

c c
d d q x y z

δ δ
ω ω

= = =
⋅ ⋅

         (8) 

For analysis of the forced vibration due to unbalance, the whirling angular 
frequency is equal to the rotor angular frequency Fω = Ω . For analysis of natu-
ral vibrations with marginal decay, the whirling angular frequency is defined as 
the correspondent natural angular frequency, as a simplification, referring to [4]. 

3. Mathematical Description 
3.1. Description in the Time Domain 

A linearization regarding the machine feet displacements is possible, because 
only small displacements occur due to the excitations. Therefore, kinematic con-
straints can be used to express the movement of the motor feet, as well as the 
displacements of the bearing housing points DB  and NB , by the movement of 
the center point S, referring to [22]. The vibration system can be described by 
following differential equation: 

( ) u u a⋅ + + ⋅ + ⋅ = + +M q D G q C q f m f�� �               (9) 

The vectors uf  and um  are the vectors of excitation and the vector af  is 
the vector of the actuator forces. The vector q  contains the coordinates for 
displacements and rotations of the machine centre point S and for displacements 
of the foundation points. 

( )
]

s s s sz sy sx fDL fDR fNL fNR

T
fDL fDR fNL fNR fDL fDR fNL fNR

; ; ; ; ; ; ; ; ; ;

; ; ; ; ; ; ;

t z y x z z z z

y y y y x x x x

ϕ ϕ ϕ= q
          (10) 

The matrix M  represents the mass matrix, the matrix D  the damping ma-
trix and the matrix C  the stiffness matrix: 

1,1 1,18 1,1 1,18 1,1 1,18

18,1 18,18 18,1 18,18 18,1 18,18

; ;
m m d d c c

m m d d c c

     
     = = =     
     … … …     

M D C
� � �

� � � � � � � � �   (11) 

The coefficients of the matrices are presented in the Appendix. The gyroscopic 
matrix G  can be written by: 

1 12

1 12

1 12

rx 1 12

rx 1 12

1 12

12 1 12 1 12 1 12 1 12 1 12 1 12

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

θ
θ

×

×

×

×

×

×

× × × × × ×

 
 
 
 
 = Ω⋅
 

−Ω⋅ 
 
 
  

0
0
0
0
0
0

0 0 0 0 0 0 0

G        (12) 
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The vector 12 1×0 , represents the zero-vector with 12 1
12 1

×
× ∈0  , the vector 

1 12×0  the zero-vector with 1 12
1 12

×
× ∈0   and the matrix 120  the zero-matrix with 

12 12
12

×∈0  . The unbalance force vector ( )u tf , caused by static unbalance eu , 
can be described by: 

( ) [ ] e

ee e e

T 2
u 1 12 r

ˆ

ˆ1; j;0;0;0;0;
j

j j t

u u e

t m e e e
ϕ

ϕ

⋅

⋅ ⋅Ω⋅
×

= ⋅

= − ⋅Ω ⋅ ⋅ ⋅ ⋅
P

f ��������������
0          (13) 

and the unbalance moment vector ( )u tm , caused by the moment unbalance 
uα , by: 

( ) [ ] ( )T 2
u 1 12 rzy rx

ˆ

ˆ0;0;0;1; j;0;
j

j j t

u u e

t e eα

ϕ

ϕθ θ α
⋅α α

α α

⋅ ⋅Ω⋅
×

= ⋅

= − ⋅Ω ⋅ − ⋅ ⋅ ⋅
P

m
������������ � ��� ��

0       (14) 

The actuator force vector af  is split into the actuator force vector for each 
machine foot: 

( ) ( ) ( ) ( ) ( )a aDL aDR aNL aNRt t t t t= + + +f f f f f            (15) 

with the actuator force vectors: 

( ) ( ) [ ]
aDL

T
aDL azDL D L 1 81;0;0;0; ; ; 1;0;0;0;t f t a b ×= ⋅ − −

P

f
���������������

0          (16) 

( ) ( ) [ ]
aDR

T
aDR azDR D R 1 81;0;0;0; ; ;0; 1;0;0;t f t a b ×= ⋅ −

P

f
�������������

0          (17) 

( ) ( ) [ ]
aNL

T
aNL azNL N L 1 81;0;0;0; ; ;0;0; 1;0;t f t a b ×= ⋅ − − −

P

f
���������������

0         (18) 

( ) ( ) [ ]
aNR

T
aNR azNR N R 1 81;0;0;0; ; ;0;0;0; 1;t f t a b ×= ⋅ − −

P

f
���������������

0          (19) 

The vector 1 8×0  represents the zero-vector with 1 8
1 8

×
× ∈0  . The vectors 

aDLP , aDRP , aNLP  and aNRP  are the actuator force transmission vectors. Now, 
a state space formulation is used (Figure 3), based on [17] [18] [19] [20]. 

For avoiding mix-up with the stiffness matrix C  and damping matrix D , 
index “st” is used for the matrices of the state space. According to Figure 3, the 
state space vector ( )tx  and the output vector ( )ty  can be written as follows, 
referring to [22]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T
; ; ; ;t t t t t t t= =      x q q y q q q� � ��           (20) 

 

 
Figure 3. State space model for active vibration control with negative feedback of the 
output vector, considering excitation due to static unbalance and moment unbalance. 
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The system matrix stA , the input matrix stB , the output matrix stC , and the 
straight-way matrix stD  can be written as: 

( )

( )

18 18 18
st st1 1 1

18 18 18

st 18 18 st 18
1 1 1

;

;

− − −

− − −

   
= =   − ⋅ − ⋅ +   
   
   = =   
   − ⋅ − ⋅ +   

I
A B

M C M D G M

I
C I D

M C M D G M

0 0

0 0
0 0

          (21) 

with the zero-matrix 18 18
18

×∈0   and the unit-matrix 18 18
18

×∈I  . Therefore, the 
state space equations can be described by: 

( ) ( ) ( ) ( ) ( )st st u u at t t t t= ⋅ + ⋅ + +  x A x B f m f�            (22) 

( ) ( ) ( ) ( ) ( )st st u u at t t t t= ⋅ + ⋅ + +  y C x D f m f            (23) 

By using a controller matrix st,γT  (Figure 3)—which will be defined later— 
the actuator force vector ( )a tf  can be described by: 

( ) ( )a st,γt t= − ⋅f T y                       (24) 

3.2. Description in the Fourier-Domain for Excitation by  
Unbalance 

For deriving the frequency response matrix of the system, Equations (22), (23) 
and (24) are transferred in the Fourier-domain: 

( ) ( ) ( ) ( ) ( )st st u u aj j j j j jω ω ω ω ω ω⋅ = ⋅ + ⋅ + +  X A X B F M F     (25) 

( ) ( ) ( ) ( ) ( )st st u u aj j j j jω ω ω ω ω= ⋅ + ⋅ + +  Y C X D F M F       (26) 

( ) ( )a st,γj jω ω= − ⋅F T Y                     (27) 

With these equations follows the output vector: 

( ) ( )( )
( ) ( ) ( )

11
54 st 36 st st st st ,γ

1
st 36 st st st u u

j j

j j j

ω ω

ω ω ω

−
−

−

 = + ⋅ ⋅ − ⋅ + ⋅  
 ⋅ ⋅ ⋅ − ⋅ + ⋅ +   

Y I C I A B D T

C I A B D F M
   (28) 

with the unit-matrices 54 54
54

×∈I   and 36 36
36

×∈I  . With the definition 

( ) ( )γj jω ω=Y Y                       (29) 

it is highlighted, that the output vector ( )jωY  dependents on the different feed- 
back strategies(7), represented by the controller matrix st,γT . The controller ma-
trix st,γT  can now be derived, based on [22]. 

[ ]
[ ]
[ ]
[ ]

18 18 18

z 18 18
st,γ

18 v 18

18 18 a

for 0
for
for
for

z
v
a

γ
γ
γ
γ

 =
 ==  =
 =

T
T

T
T

0 0 0
0 0

0 0
0 0

                (30) 

with the matrix γT , also described in the Fourier-domain with ( )cij,γG jω , which 
are the frequency response functions of the controllers, based on the controller 
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transfer functions (6) with s jω→ : 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )
( )

cDL,γ cDR,γ cNL,γ cNR,γ

D cDL,γ cDR,γ N cNL,γ cNR,γ

γ R cDR,γ cNR,γ L cDL,γ cNL,γ

cDL,γ

cDR,γ

cNL,γ

cNR

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0

0 0 0

0 0 0
0 0 0
0 0 0

G j G j G j G j

a G j G j a G j G j

j b G j G j b G j G j

G j
G j
G j
G

ω ω ω ω

ω ω ω ω

ω ω ω ω

ω
ω
ω

+ + +

   ⋅ + − ⋅ +   
   = ⋅ + − ⋅ Ω +   

−

−

−

−

T

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

,γ

8 1 8 1 8 1 8 1

D cDL,γ cDR,γ N cNL,γ cNR,γ

2 2
D cDL,γ cDR,γ N cNL,γ cNR,γ

D R cDR,γ L cDL,γ N L cNL,γ R cNR

0 0 0

0
0
0

j

a G j G j a G j G j

a G j G j a G j G j

a b G j b G j a b G j b G

ω

ω ω ω ω

ω ω ω ω

ω ω ω

× × × ×




















   ⋅ + − ⋅ +   

   ⋅ + + ⋅ +   
 ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅ 

�

�

0 0 0 0

( )
( )
( )
( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,γ

D cDL,γ

D cDR,γ

N cNL,γ

N cNR,γ

8 1

R cDR,γ cNR,γ L cDL,γ cNL,γ 1 12

1 12

1 12

1 12

D R cDR,γ L cDL,γ N L cNL,γ R cNR,γ 1 12

L

0
0
0

j

a G j
a G j

a G j
a G j

b G j G j b G j G j

a b G j b G j a b G j b G j

b

ω

ω
ω
ω
ω

ω ω ω ω

ω ω ω ω

×

×

×

×

×

×

  
− ⋅

− ⋅

⋅

⋅

   ⋅ + − +   

   ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅   

⋅

�

�

0

0

0
0
0
0

( ) ( ) ( ) ( )
( )
( )
( )
( )

2 2
cDL,γ cNL,γ R cDR,γ cNR,γ 1 12

L cDL,γ 1 12

R cDR,γ 1 12

L cNL,γ 1 12

R cNR,γ 1 12

8 1 8 12

G j G j b G j G j

b G j
b G j
b G j
b G j

ω ω ω ω

ω
ω
ω
ω

×

×

×

×

×

× ×











    ⋅ + + ⋅ +    
⋅ 


− ⋅ 

⋅

− ⋅



0

0
0
0
0

0 0
 (31) 

With: ( ) ( ) ( ) 18 18
z v a, ,j j jω ω ω ×∈T T T   and ( ) 18 18

0 18jω ×= ∈T 0   and with 
the zero-matrix 8 12

8 12
×

× ∈0  . Now, the output vector ( )jωYγ  can be calcu-
lated by: 

( ) ( ) ( ) ( )γ γ u uj j j jω ω ω ω= ⋅ +  Y G F M              (32) 
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and the frequency response matrix ( )γ jωG  can be written by: 

( ) ( )( )
( )

11
γ 54 st 36 st st st st ,γ

1
st 36 st st st

j j

j

ω ω

ω

−
−

−

 = + ⋅ ⋅ − ⋅ + ⋅  
 ⋅ ⋅ ⋅ − ⋅ + 

G I C I A B D T

C I A B D
       (33) 

The frequency response vector for each single kind of excitation can now be 
derived, with following Fouier-transformations, with the Dirac-delta function 
δ : 

( ) ( ){ }

( )

e

e

e

e

2
u u e r

2
e r

ˆ

ˆ 2

j j t

u

j

u

j t m e e e

m e e

ϕ

ϕ

ω

δ ω

⋅ ⋅Ω⋅

⋅

  = = ⋅Ω ⋅ ⋅ ⋅ ⋅ 
  

= ⋅Ω ⋅ ⋅ ⋅ ⋅ π ⋅ −Ω

F f P

P

�����

�����

 
        (34) 

( ) ( ){ } ( )

( ) ( )

2
u u rzy rx

2
rzy rx

ˆ

ˆ 2

j j t

u

j

u

j t e e

e

α

α

ϕ

ϕ

ω θ θ α

θ θ α δ ω
α

α

⋅ ⋅Ω⋅
α

⋅
α

 
 = = ⋅Ω ⋅ − ⋅ ⋅ ⋅ 
  

= ⋅Ω ⋅ − ⋅ ⋅ ⋅ π ⋅ −Ω

M m P

P

���������

���������

 

    (35) 

Further on, the index κ  is used for both kinds of unbalance, representing 
the excitations: 

e,κ = α                           (36) 

The output vector ( )γ,κ jωY  for each kind of unbalance can be calculated by: 

( ) ( )
( )

( )
γ ,κ

2
γ,κ γ κ κ 2

j

j j u
ω

ω ω δ ω= ⋅ ⋅Ω ⋅ ⋅ π ⋅ −Ω
G

Y G P
�������

           (37) 

Using the sifting property of the Dirac delta function ( )δ ω −Ω , the Fouri-
er-transformed output vector for each kind of unbalance follows: 

( ) ( )
( )

( )
γ ,κ

2
γ,κ γ κ κ 2

j

j j uω δ ω
Ω

= Ω ⋅ ⋅Ω ⋅ ⋅ π ⋅ −Ω
G

Y G P
�������

           (38) 

Now, the inverse transformation of this Fourier-transformed output vector 
( )γ,κ jωY  back into the time-domain can be done: 

( ) ( ){ } ( )
( )

( )

( )
( )

γ ,κ

γ ,κ

γ ,κ

1 1 2
γ,κ γ,κ γ κ κ

2
γ κ κ

ˆ

2
j

j t

j

t j j u

j u e

ω δ ω− −

Ω

Ω

Ω

 
 = = Ω ⋅ ⋅Ω ⋅ ⋅ π ⋅ −Ω 
 
 

Ω ⋅ ⋅Ω ⋅ ⋅=

G

G

y

y Y G P

G P

�������

������
���������

�

 

  (39) 

It is useful to relate the amplitude output vector on the respective unbalance: 

( )
( )γ ,κ

γ,κ 2
γ,κ ,ref γ κ

κ

ˆ
ˆ

j

j
u

Ω

= = Ω ⋅ ⋅Ω
G

y
y G P

�������
                (40) 
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At this point it is important to mention, that beside the gyroscopic matrix G  
also the damping matrix D  depends on the rotary angular frequency Ω. The 
reason is that for forced vibration due to the unbalance, the whirling angular 
frequency Fω  for the mechanical damping coefficients (8), is equal to the rota-
ry angular frequency Ω ( Fω = Ω ).Therefore, the matrices stA  and stC  are al-
so functions of the rotor angular frequency Ω. The frequency response matrix 

( )γ jΩG  can now be formulated by: 

( ) ( ) ( )( )( ) ( )

( ) ( )( )

11
γ 54 st 36 st st st st ,γ

1
st 36 st st st

j j j

j A

−−

−

 Ω = + Ω ⋅ ⋅ Ω − Ω ⋅ + ⋅ Ω  
 ⋅ Ω ⋅ ⋅ Ω − Ω ⋅ +  

G I C I A B D T

C I B D
 (41) 

With this matrix, the frequency response vector ( )γ,κ jΩG  for both kinds of 
unbalance can be described: 

( ) ( )γ,κ 2
γ,κ γ κ

κ

ˆ
j j

u
Ω = = Ω ⋅ ⋅Ω

y
G G P                (42) 

With this frequency response vector ( )γ,κ jΩG  and the kinematic constraints 
in [22], the response functions for vibration velocities of the bearing housings, 
and of the foundation points can be derived, as well as the response functions for 
the actuator forces, based on [22]. The equations are shown in the Appendix. 

3.3. Stability Analysis 

Due to the use of active vibration control, a stability analysis is very important, 
therefore the poles of the system have to be derived. Based on [22], the poles can 
be calculated by solving the following equation: 

( ) ( )( ) 1
36 st st st ,γ 54 st st ,γ stdet 0s s

− ⋅ − + ⋅ ⋅ + ⋅ ⋅ =  
I s A B T I D T C      (43) 

However, this direct procedure is only possible if the matrices stA  and stC  
are independent of the whirling angular frequency Fω , which is here not the 
case, because the damping coefficients depend here on Fω . The whirling angu-
lar frequency Fω  corresponds here—when calculating the pols—to the natural 
angular frequency and therefore to the imaginary part of the complex poles. 
Therefore, the use of the damping coefficient lead here to a causality problem. 
Therefore, a worst case procedure is here derived to investigate the stability of 
the system. The basic requirements are: 
• The mechanical damping of the actuators and the foundation is low, which 

should be usually the case, so that the mechanical loss factors for the actua-
tors and the foundation fulfill following conditions: 

aijtan 0.2δ <  and fijtan 0.2δ <                  (44) 

• The modal mass of the foundation is so low, that only the first six natural vi-
bration modes have to be taken into account. 

• The first six natural vibration modes have conjugate complex poles. 
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Therefore, following worst case procedure is derived to calculate the pols ns , 
which is shown in Figure 4. In the first step, the pols are calculated without 
damping ( =D 0 ) and with open control loops ( ( )st, sγ =T 0 ). 

Then, the natural angular frequency of the 6th conjugate complex pole pair 6ω
—which is set to be equal to the whirling angular frequency Fω —is considered, 
for calculating the damping coefficients aqijd  and fqijd . Afterwards, the pols are 
calculated again, considering damping ( ≠D 0 ) and the closed control loop op-
eration ( ( )st, sγ ≠T 0 ). The corresponding conjugate complex pol pair *

6s  is 
again taken into account for deriving the new damping coefficients. Finally the 
pols are calculated with the modified damping matrix D . If the change of the 
whirling angular frequency is too large (e.g. more than 5%) this approach can be 
repeated in loops. This procedure presents a worst case scenario regarding insta-
bility, because the natural angular frequency of the highest considerable mode 
(here mode 6) is used for calculating the damping coefficients, which lead to the  
lowest damping coefficients. 

 

 
Figure 4. Flow diagram for calculating the pols of the vibration system. 
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3.4. Mathematical Description for Special Controllers 

In this section, special controllers—standard controllers (P-, I-, PI-, PD-(ideal), 
PID-(ideal) controllers)—are analyzed. Therefore, the control parameter can now 
be directly implemented into the mass matrix and/or the damping matrix and/or 
the stiffness matrix, which can be seen in Figure 5, referring to [22]. 

Therefore, the differential equation can be described now by: 

( ) u u⋅ + + ⋅ + ⋅ = +�� � �� �M q D G q C q f m                   (45) 

By implementing the control parameters into the mass matrix, M�  becomes 

conM . When they are implemented into the damping matrix, D�  becomes conD , 
and if they are implemented into the stiffness matrix, C�  becomes conC . The 
structure of these matrices is shown in (49). Following definitions are used, re-
ferring to [22]: 

For the mass matrix conC : con con=M Ψ  and mψ =   (46) 

For the damping matrix conD : con con=D Ψ  and dψ =   (47) 

For the stiffness matrix conC :  con con=C Ψ  and cψ =   (48) 

The matrices with the integrated controller parameters are formulated by: 
 

 
Figure 5. Matrices, depending on standard controller structures and different feedback 
strategies, referring to [22]. 
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1,1 ψDL ψDR ψNL ψNR 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

5,1 D ψDL ψDR N ψNL ψNR 5,2 5,3 5,4

6,1 R ψDR ψNR L ψDL ψNL 6,2 6,3 6,4con

7,1 ψDL 7

K K K K

a K K a K K

b K K b K K
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ψ ψ ψ ψ
ψ ψ ψ ψ
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10,1 ψNR 10,2 10,3 10,4

11,1, ,18,1 11,2, ,18,2 11,3, ,18,3 11,4, ,18,4
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+
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
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ψ
ψ

ψ ψ
 (49) 

The controller parameters ψijK  depend on the controller structure and the 
chosen feedback strategy (Figure 5). The combination in Figure 5 marked with 
“” cannot be deduced, if the differential equation system (45) shall be used. If 
the control parameters are identical, the cells with identical color lead to the 
same differential equation. The inhomogeneous differential equation (45) can 
now be solved, based on the common approach. 
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4. Numerical Example 

Now, a numerical example is presented, where the vibration stability, as well as 
the forced vibrations of a rotating machine are analyzed. 

4.1. Boundary Conditions 

The data of the rotating machine are shown in Table 1. As it can be seen, the 
rotating machine has a symmetrical machine design (bL = bR; aD = aN). 

The foundation is a simplified steel frame foundation, which consists of two 
I-beams (green), which are stiffened by additional welded steel sheets (brown) in 
the area of the machine feet (cyan), and fixed (red) to ground (Figure 6). No  

 
Table 1. Data of the rotating machine. 

Mass of the stator 
s 7200 kgm =  

Mass of the rotor 
r 1900 kgm =  

Mass inertia of the stator at the x-axis 2
sx 1500 kg mθ = ⋅  

Mass inertia of the stator at the y-axis 2
sy 2800 kg mθ = ⋅  

Mass inertia of the stator at the z-axis 2
sz 2800 kg mθ = ⋅  

Mass inertia of the rotor at the x-axis 2
rx 50 kg mθ = ⋅  

Mass inertia of the rotor at the y-axis 2
ry 100 kg mθ = ⋅  

Mass inertia of the rotor at the z-axis 2
rz 100 kg mθ = ⋅  

Height of the centre of gravity S 560 mmh =  

Horizontal (y-direction) distance from DLA  and NLA  to S L 530 mmb =  

Horizontal (y-direction) distance from DRA  and NRA  to S R 530 mmb =  

Axial (x-direction) distance from DLA  and DRA  to S D 700 mma =  

Axial (x-direction) distance from NLA  and NRA  to S N 700 mma =  

Axial (x-direction) distance from DB  to S D 1000 mml =  

Axial (x-direction) distance from NB  to S N 1000 mml =  
 

 
Figure 6. Simplified model of the steel frame foundation. 
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stiffening effect in the area of the machine feet is considered, so that a low stiff-
ness of the steel frame foundation is considered here, as a worst case. 

The substitute foundation stiffness, which is necessary to use the model in 
Table 2, is derived by a finite element analysis of the foundation, but still pre-
senting a simplification. 

In this example only three actuators are used, two on drive-side, left and right 
(DL, DR) and only one actuator on non-drive side left (NL) (Table 3). The 
fourth actuator on the non-drive side right (NR) is exchanged by a stiff element. 

The data of the stiff element is shown in Table 4. 
For the control system, I-controllers with feedbacks of the vertical machine 

feet accelerations are chosen, so that following controller transfer function is 
used. 

( ) 0,ij,a
cji,a

b
G s

s
=                        (50) 

 
Table 2. Data of the foundation. 

Kind of beam 
I-Profil DIN 1025 
—S235JR-IPB 180 

Number of stiffening sheets 16 

Thickness of stiffening sheets 14 mmt =  

Modal mass of foundation ( f fDL fDR fNL fNRm m m m m= = = = ) f 10 kgm =  

Mechanical loss factor ( f fDL fDR fNL fNRtan tan tan tan tanδ δ δ δ δ= = = = ) ftan 0.04δ =  

Subsitute stiffness of foundation (machine directly mounted on foundation):  

• fx fxDL fxDR fxNL fxNRc c c c c= = = =  fx 1000 kN mmc =  

• fy fyDL fyDR fyNL fyNRc c c c c= = = =  fy 146 kN mmc =  

• fz fzDL fzDR fzNL fzNRc c c c c= = = =  fz 1440 kN mmc =  

Subsitute stiffness of foundation (machine mounted with actuators on foundation):  

• fx fxDL fxDR fxNL fxNRc c c c c= = = =  fx 42 kN mmc =  

• fy fyDL fyDR fyNL fyNRc c c c c= = = =  fy 20.5 kN mmc =  

• fz fzDL fzDR fzNL fzNRc c c c c= = = =  fz 1440 kN mmc =  
 

Table 3. Data of the actutaors on position DL, DR and NL. 

Mass of the armature aaDL aaDR aaNL 15 kgm m m= = =  

Mass of the stator asDL asDR asNL 35 kgm m m= = =  

Vertical stiffness azDL azDR azNL 10.5 kN mmc c c= = =  

Horizontal stiffness ayDL ayDR ayNL 26.2 kN mmc c c= = =  

Axial stiffness axDL axDR axNL 26.2 kN mmc c c= = =  

Mechanical loss factor aDL aDR aNLtan tan tan 0.04δ δ δ= = =  
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Table 4. Data of the stiff element on position NR. 

Mass (top) aaNR 3 kgm =  

Mass (bottom) asNR 5 kgm =  

Vertical stiffness azNR 2600 kN mmc =  

Horizontal stiffness ayNR 560 kN mmc =  

Axial stiffness axNR 560 kN mmc =  

Mechanical loss factor aNRtan 0.04δ =  
 

Table 5. Data of the controller parameters. 

Controller parameter for DL 0,DL,a 140000 kg sb =  

Controller parameter for DR 0,DR ,a 140000 kg sb =  

Controller parameter for NL 0,NL,a 140000 kg sb =  

Controller parameter for NR 0,NR ,a 0 kg sb =  
 

The data of the control parameters are shown in Table 5. All three control-
lers—for the three actuators—have identical parameters. The control parameter 
for the fourth controller on NR has to be set to zero, because here a stiff element 
is used instead of an actuator. 

Afterwards three different cases are analyzed: 
• Case 1: The rotating machine is directly mounted on the steel frame founda-

tion. 
• Case 2: Three actuators at DL, DR, NL and a stiff element at NR are placed 

between machine feet and foundation. The actuators are only operating pas-
sively (open control loops). 

• Case 3: Same setting as case 2, but the actuators are now operating actively 
(closed control loops). 

4.2. Stability Analysis 

To analyze the stability of the system, the poles are calculated for the three dif-
ferent cases, based on the procedure, described in Figure 4. It can be clearly 
shown, that for all three cases vibration stability exists, because all characteristic 
poles have no positive real parts (Figure 7, Figure 8 and Figure 9). 

When comparing the figures, it is obvious that the damping of the poles can 
be strongly increased by the active vibration control system (case 3), compared 
to case 1 and case 2. 

4.3. Frequency Response Analysis 

Now, the amplitudes of the frequency response functions of bearing housing vi-
bration velocities and of foundation vibration velocities are computed, as well as 
the frequency response functions of the actuator forces, all related to the respective 
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unbalance. The amplitudes of the frequency response functions are calculated in 
[dB] with the reference gauge in Si-Unit, in a frequency range from 1 Hz to 250 
Hz. An additional index d is now introduced for case 1, so that now following 
definitions are used: 

0, , , , ; , ; , ; , , ; ,z v a d i D N j L R q x y z eγ κ α= = = = =          (51) 

Related bearing housing vibration velocities: 
 

 
Figure 7. Poles for case 1, calculated at rotational frequency r 0 Hzf =  and r 250 Hzf = . 
 

 
Figure 8. Poles for case 2, calculated at rotational frequency r 0 Hzf =  and r 250 Hzf = . 
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Figure 9. Poles for case 3, calculated at rotational frequency r 0 Hzf =  and r 250 Hzf = . 
 

( )
( )
( )
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Related foundation vibration velocities: 
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Related actuator forces: 
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4.3.1. Excitation by Static Unbalance 
The amplitude response functions for the bearing housing vibration velocities at 
the drive side and at the non-drive side, related to static unbalance are shown in 
Figure 10. 

The amplitude response functions for the foundation vibration velocities at 
the drive side, related to static unbalance are shown in Figure 11. 

The amplitude response functions for the foundation vibration velocities at 
the non-drive side, related to static unbalance are shown in Figure 12. 

The frequency response functions for the actuator forces, related to static 
 

 
Figure 10. Amplitude response functions for the bearing housing vibration velocities at the drive side and at the non-drive side, 
related to static unbalance eu  for case 1, case 2 and case 3. 
 

 
Figure 11. Amplitude response functions for the foundation vibration velocities at the drive side (left and right), related to static 
unbalance eu  for case 1, case 2 and case 3. 
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Figure 12. Amplitude response functions for the foundation vibration velocities at the non-drive side (left and right), related to 
static unbalance eu  for case 1, case 2 and case 3. 
 

 
Figure 13. Frequency response functions for the actuator forces, related to static unbal-
ance eu  (case 3) at drive side left (DL), drive side right (DR), non-drive side left (NL) 
and non-drive side right (NR). 

 
unbalance are shown in Figure 13. 

4.3.2. Excitation by Moment Unbalance 
The amplitude response functions for the bearing housing vibration velocities at 
the drive side and at the non-drive side, related to moment unbalance are shown 
in Figure 14. 
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The amplitude response functions for the foundation vibration velocities at 
the drive side, related to moment unbalance are shown in Figure 15. 

The amplitude response functions for the foundation vibration velocities at 
the non-drive side, related to moment unbalance are shown in Figure 16. 

The frequency response functions for the actuator forces, related to moment 
unbalance are shown in Figure 17. 

4.3.3. Discussion of the Frequency Response Analysis 
The amplitude response functions for the bearing housing vibration velocities  

 

 
Figure 14. Amplitude response functions for the bearing housing vibration velocities on the drive side and on the non-drive side, 
related to moment unbalance uα  for case 1, case 2 and case 3. 
 

 
Figure 15. Amplitude response functions for the foundation vibration velocities at the drive side (left and right), related to mo-
ment unbalance uα  for case 1, case 2 and case 3. 
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Figure 16. Amplitude response functions for the foundation vibration velocities at the non-drive side (left and right), related to 
moment unbalance uα  for case 1, case 2 and case 3. 
 

 
Figure 17. Frequency response functions for the actuator forces, related to moment un-
balance uα  (case 3) at drive side left (DL), drive side right (DR), non-drive side left (NL) 
and non-drive side right (NR). 

 
for excitation by a static unbalance (Figure 10) show, that in the analyzed rota-
tional frequency range two resonance frequencies occur for case 1—where the 
machine is directly mounted on the steel frame foundation—at about  

r 38.1 Hzf =  and at r 126.4 Hzf = . Figure 10 shows additionally, that no axial 
vibrations occur for case 1, if only a static unbalance is considered. For a mo-
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ment unbalance, three resonance frequencies occur for case 1, at about  

r 82.8 Hzf = , r 110.5 Hzf =  and r 198.5 Hzf =  (Figure 14). The natural mode, 
where the machine mass is mainly rotating at the x-axis—with a natural angular 
frequency of about 1088 rad/s (Figure 7), which means a natural frequency of 
about 173, 2 Hz—leads not to a resonance regarding bearing housing vibrations, 
because this mode shape is hardly excited by these two kinds of unbalance. Be-
cause of the symmetrical machine design and the identical foundation stiffness 
and damping coefficient under each machine feet, the frequency response func-
tions for the bearing housing vibration velocities are identical for the drive side 
and the non-drive side for case 1. If now the machine is mounted on a stiff ele-
ment and on three actuators, operating with open control loops (case 2), the re-
sonance frequencies for the bearing housing vibrations occur at lower frequen-
cies and six different resonance frequencies are obvious, when considering both 
kind of unbalance (Figure 10 and Figure 14). The amplitudes in the resonance 
frequencies are clearly lower for case 2 compared to amplitudes in the resonance 
frequencies for case 1, because the amplitudes of excitation force and of the ex-
citation moment are proportional to 2

rf . When now the control loops are closed— 
which means case 3—most of the resonances regarding the related bearing hous-
ing vibrations (Figure 10 and Figure 14) get well damped—as well as most of 
the related foundation vibrations (Figure 11, Figure 12, Figure 15, Figure 16), 
when comparing the red curves with the blue curves. Therefore, an operation in 
the rotational frequency range from 0 Hz to 80 Hz seems now possible for case 3, 
without off-limits areas regarding rotational frequency. If the machine would be 
mounted directly on the foundation (case 1), this would not be possible, because 
a sharp resonance at 38.1 Hz occurs here due to static unbalance, regarding the 
related bearing housing vibrations (Figure 10) and regarding the related foun-
dation vibrations (Figure 11 and Figure 12). Figure 13 and Figure 17 show the 
frequency response functions regarding the active actuator forces. It can be seen, 
that with increasing rotational frequency also the amplitudes of the actuator 
force frequency response functions increase, because the unbalance force and 
unbalance moment also increase with the rotational frequency. Of course, the 
actuator forces are also strongly influenced by the vibration mode shapes. No ac-
tive actuator force occurs on position NR, because a stiff element is positioned 
there instead of an actuator. If the stiff element would be exchanged by a fourth 
actuator, so that four identical actuators would be used—case 2 gets case 2* and 
case 3 gets case 3* (with four identical control parameters)—a symmetrical sys-
tem would exist. With such a symmetrical system, a vibration mode exists, 
where the machine makes a pure rotating at the z-axis. This mode cannot be in-
fluenced by the actuators anymore, because they are only acting in vertical direc-
tion. This is shown in Figure 18 regarding the amplitude response functions for 
the bearing housing vibration velocities in horizontal direction. The resonance 
frequency at about 18.6 Hz cannot be damped by the control system. Only a mar-
ginal difference between the blue curve and the red curve for horizontal direction  
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Figure 18. Amplitude response functions for the bearing housing vibration velocities on the drive side and on the non-drive side, 
related to moment unbalance uα  for case 1, case 2* and case 3* (*: Four identical actuators are used). 
 

is obvious in Figure 18, which is caused by the gyroscopic effect, leading here to 
a marginal coupling of the vibration modes, so that no absolute pure vibration 
mode at the z-axis occurs. Because of the symmetrical system, the frequency re-
sponse functions for the bearing housing vibration velocities are now identical 
for drive side and non-drive side (Figure 18). 

Therefore, it could be shown, that the method “vibration mode coupling by 
asymmetry”, which was developed and mathematically described in [22] for a ri-
gid foundation, is also transferable for a soft foundation. 

5. Conclusion 

The paper presents a simplified 3D-model for active vibration control of rotating 
machines with active machine foot mounts on soft foundations, considering 
static and moment unbalance. After the model was mathematical described in 
the time domain, it was transferred into the Fourier domain, where the frequen-
cies response functions regarding bearing housing vibrations, foundation vibra-
tions and actuator forces have been derived. Afterwards, the mathematical co-
herences have been described in the Laplace domain and a worst case procedure 
was derived to analyze the vibration stability. For special controller structures in 
combination with certain feedback strategies, a calculation method was shown, 
where the controller parameters can directly be implemented into the stiffness 
matrix, damping matrix and mass matrix. Additionally a numerical example was 
presented, where the vibration stability and the frequency response functions 
have been analyzed. It could be shown, that with the active vibration control sys-
tem all vibration modes can be damped well, so that an operation in the rota-
tional frequency range from 0 Hz to 80 Hz is possible without off-limits areas.  
Finally it could be demonstrated, that the method “vibration mode coupling by 
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asymmetry”, which was developed and mathematically described in [22] for a ri-
gid foundation, is also transferable for soft foundations. The numerical example 
was also used, to validate the presented model with a finite element analysis by 
comparing the results. However also a validation by measurement is planned. 
Therefore, a test bed for an 11 kW induction motor, mounted on a soft steel 
frame foundation with actuators, has been built and first experimental investiga-
tions have been deduced [23], showing good congruence with the presented 3D- 
model. 
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Appendix: 
A1. Coefficients of the Matrices 

Coefficients of the mass matrix M: 

1,1 2,2 3,3 sr aaDL aaDR aaNL aaNRm m m m m m m m= = = + + + +                (55) 

( ) ( )1,5 5,1 D aaDL aaDR N aaNL aaNRm m a m m a m m= = ⋅ + − ⋅ +                 (56) 

( ) ( )1,6 6,1 R aaDR aaNR L aaDL aaNLm m b m m b m m= = ⋅ + − ⋅ +                 (57) 

( ) ( )2,4 4,2 D aaDL aaDR N aaNL aaNRm m a m m a m m= = − ⋅ + + ⋅ +               (58) 

( )2,6 6,2 aaDL aaDR aaNL aaNRm m h m m m m= = − ⋅ + + +                     (59) 

( ) ( )3,4 4,3 R aaDR aaNR L aaDL aaNLm m b m m b m m= = − ⋅ + + ⋅ +                (60) 

( )3,5 5,3 aaDL aaDR aaNL aaNRm m h m m m m= = ⋅ + + +                      (61) 

( ) ( )
( ) ( )

2 2
4,4 srz L aaDL aaNL R aaDR aaNR

2 2
D aaDL aaDR N aaNL aaNR

m b m m b m m

a m m a m m

θ= + ⋅ + + ⋅ +

+ ⋅ + + ⋅ +
                 (62) 

( ) ( )4,5 5,4 L aaDL aaNL R aaDR aaNRm m h b m m h b m m= = ⋅ ⋅ + − ⋅ ⋅ +            (63) 

( ) ( )4,6 6,4 D aaDL aaDR N aaNL aaNRm m h a m m h a m m= = ⋅ ⋅ + − ⋅ ⋅ +            (64) 

( ) ( )
( )

2 2
5,5 sry D aaDL aaDR N aaNL aaNR

2
aaDL aaDR aaNL aaNR

m a m m a m m

h m m m m

θ= + ⋅ + + ⋅ +

+ ⋅ + + +
                (65) 

( ) ( )5,6 6,5 D R aaDR L aaDL N L aaNL R aaNRm m a b m b m a b m b m= = ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅   (66) 

( ) ( )
( )

2 2
6,6 sx L aaDL aaNL R aaDR aaNR

2
aaDL aaDR aaNL aaNR

m b m m b m m

h m m m m

θ= + ⋅ + + ⋅ +

+ ⋅ + + +
                 (67) 

7,7 11,11 15,15 fDL asDLm m m m m= = = +                                (68) 

8,8 12,12 16,16 fDR asDRm m m m m= = = +                                (69) 

9,9 13,13 17,17 fNL asNLm m m m m= = = +                                (70) 

10,10 14,14 18,18 fNR asNRm m m m m= = = +                               (71) 

The other coefficients are zero. 
Coefficients of the stiffness matrix C: 

1,1 azDL azDR azNL azNRc c c c c= + + +                         (72) 

( ) ( )1,5 5,1 D azDL azDR N azNL azNRc c a c c a c c= = ⋅ + − ⋅ +           (73) 

( ) ( )1,6 6,1 R azDR azNR L azDL azNLc c b c c b c c= = ⋅ + − ⋅ +           (74) 

1,7 7,1 azDLc c c= = −                                    (75) 

1,8 8,1 azDRc c c= = −                                    (76) 

1,9 9,1 azNLc c c= = −                                    (77) 

1,10 10,1 azNRc c c= = −                                   (78) 

2,2 ayDL ayDR ayNL ayNRc c c c c= + + +                         (79) 
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( ) ( )2,4 4,2 N ayNL ayNR D ayDL ayDRc c a c c a c c= = ⋅ + − ⋅ +                (80) 

( )2,6 6,2 ayDL ayDR ayNL ayNRc c h c c c c= = − ⋅ + + +                     (81) 

2,11 11,2 ayDLc c c= = −                                         (82) 

2,12 12,2 ayDRc c c= = −                                         (83) 

2,13 13,2 ayNLc c c= = −                                         (84) 

2,14 14,2 ayNRc c c= = −                                         (85) 

3,3 axDL axDR axNL axNRc c c c c= + + +                               (86) 

( ) ( )3,4 4,3 L axDL axNL R axDR axNRc c b c c b c c= = ⋅ + − ⋅ +                 (87) 

( )3,5 5,3 axDL axDR axNL axNRc c h c c c c= = ⋅ + + +                      (88) 

3,15 15,3 axDLc c c= = −                                         (89) 

3,16 16,3 axDRc c c= = −                                         (90) 

3,17 17,3 axNLc c c= = −                                         (91) 

3,18 18,3 axNRc c c= = −                                         (92) 

( ) ( )
( ) ( )

2 2
4,4 L axDL axNL R axDR axNR

2 2
D ayDL ayDR N ayNL ayNR

c b c c b c c

a c c a c c

= ⋅ + + ⋅ +

+ ⋅ + + ⋅ +
                   (93) 

( ) ( )4,5 5,4 L axDL axNL R axDR axNRc c h b c c h b c c= = ⋅ ⋅ + − ⋅ ⋅ +             (94) 

( ) ( )4,6 6,4 D ayDL ayDR N ayNL ayNRc c h a c c h a c c= = ⋅ ⋅ + − ⋅ ⋅ +            (95) 

4,11 11,4 ayDL Dc c c a= = ⋅                                       (96) 

4,12 12,4 ayDR Dc c c a= = ⋅                                      (97) 

4,13 13,4 ayNL Nc c c a= = − ⋅                                     (98) 

4,14 14,4 ayNR Nc c c a= = − ⋅                                     (99) 

4,15 15,4 axDL Lc c c b= = − ⋅                                     (100) 

4,16 16,4 axDR Rc c c b= = ⋅                                     (101) 

4,17 17,4 axNL Lc c c b= = − ⋅                                     (102) 

4,18 18,4 axNR Rc c c b= = ⋅                                     (103) 

( ) ( )
( )

2 2
5,5 D azDL azDR N azNL azNR

2
axDL axDR axNL axNR

c a c c a c c

h c c c c

= ⋅ + + ⋅ +

+ ⋅ + + +
                   (104) 

( ) ( )5,6 6,5 D R azDR L azDL N L azNL R azNRc c a b c b c a b c b c= = ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅    (105) 

5,7 7,5 azDL Dc c c a= = − ⋅                                      (106) 

5,8 8,5 azDR Dc c c a= = − ⋅                                      (107) 

5,9 9,5 azNL Nc c c a= = ⋅                                       (108) 

5,10 10,5 azNR Nc c c a= = ⋅                                      (109) 
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5,15 15,5 axDLc c c h= = − ⋅                             (110) 

5,16 16,5 axDRc c c h= = − ⋅                             (111) 

5,17 17,5 axNLc c c h= = − ⋅                             (112) 

5,18 18,5 axNRc c c h= = − ⋅                             (113) 

( ) ( )
( )

2 2
6,6 L azDL azNL R azDR azNR

2
ayDL ayDR ayNL ayNR

c b c c b c c

h c c c c

= ⋅ + + ⋅ +

+ ⋅ + + +
           (114) 

6,7 7,6 azDL Lc c c b= = ⋅                               (115) 

6,8 8,6 azDR Rc c c b= = − ⋅                             (116) 

6,9 9,6 azNL Lc c c b= = ⋅                              (117) 

6,10 10,6 azNR Rc c c b= = − ⋅                            (118) 

6,11 11,6 ayDLc c c h= = ⋅                              (119) 

6,12 12,6 ayDRc c c h= = ⋅                              (120) 

6,13 13,6 ayNLc c c h= = ⋅                              (121) 

6,14 14,6 ayNRc c c h= = ⋅                              (122) 

7,7 fzDL azDLc c c= +                                 (123) 

8,8 fzDR azDRc c c= +                                 (124) 

9,9 fzNL azNLc c c= +                                 (125) 

10,10 fzNR azNRc c c= +                                (126) 

11,11 fyDL ayDLc c c= +                                (127) 

12,12 fyDR ayDRc c c= +                                (128) 

13,13 fyNL ayNLc c c= +                                (129) 

14,14 fyNR ayNRc c c= +                                (130) 

15,15 fxDL axDLc c c= +                                (131) 

16,16 fxDR axDRc c c= +                                (132) 

17,17 fxNL axNLc c c= +                                (133) 

18,18 fxNR axNRc c c= +                                (134) 

The other coefficients are zero. 
Coefficients of the damping matrix D: 
The coefficients of the damping matrix can be easily derived by just replacing 

“c” in the formulas (72)-(134) by “d”. 

A2. Response Functions for the Bearing Housing Vibration Velocities 

• In vertical direction: 

Drive side:  ( ) ( ) ( )ˆγ,vbDz,κ γ,κ D γ,κ19 23G j G j l G jΩ = Ω + ⋅ Ω    (135) 
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Non-drive side:  ( ) ( ) ( )ˆγ,vbNz,κ γ,κ γ,κ19 23NG j G j l G jΩ = Ω − ⋅ Ω    (136) 

• In horizontal direction: 

Drive side:  ( ) ( ) ( )ˆγ,vbDy,κ γ,κ D γ,κ20 22G j G j l G jΩ = Ω − ⋅ Ω    (137) 

Non-drive side:  ( ) ( ) ( )ˆγ,vbNy,κ γ,κ γ,κ20 22NG j G j l G jΩ = Ω + ⋅ Ω    (138) 

• In axial direction: 

Drive side:    ( ) ( )ˆγ,vbDx,κ γ,κ 21G j G jΩ = Ω     (139) 

Non-drive side:    ( ) ( )ˆγ,vbNx,κ γ,κ 21G j G jΩ = Ω     (140) 

The element ( )γ,κ nG jΩ  is the nth element of the frequency response vector 
( )γ,κ jΩG . 

A3. Response Functions for the Foundation Points Velocities 

• In vertical direction: 

Drive side, left:   ( ) ( )ˆγ,vfDLz,κ γ,κ 25G j G jΩ = Ω      (141) 

Drive side right:   ( ) ( )ˆγ,vfDRz,κ γ,κ 26G j G jΩ = Ω      (142) 

Non-drive side, left:  ( ) ( )ˆγ,vfNLz,κ γ,κ 27G j G jΩ = Ω      (143) 

Non-drive side, right:  ( ) ( )ˆγ,vfNRz,κ γ,κ 28G j G jΩ = Ω          (144) 

• In horizontal direction: 

Drive side, left:   ( ) ( )ˆγ,vfDLy,κ γ,κ 29G j G jΩ = Ω     (145) 

Drive side right:  ( ) ( )ˆγ,vfDRy,κ γ,κ 30G j G jΩ = Ω     (146) 

Non-drive side, left:   ( ) ( )ˆγ,vfNLy,κ γ,κ 31G j G jΩ = Ω     (147) 

Non-drive side, right:  ( ) ( )ˆγ,vfNRy,κ γ,κ 32G j G jΩ = Ω     (148) 

• In axial direction: 

Drive side, left:   ( ) ( )ˆγ,vfDLx,κ γ,κ 33G j G jΩ = Ω     (149) 

Drive side right:   ( ) ( )ˆγ,vfDRx,κ γ,κ 34G j G jΩ = Ω     (150) 

Non-drive side, left:  ( ) ( )ˆγ,vfNLx,κ γ,κ 35G j G jΩ = Ω    (151) 

Non-drive side, right:  ( ) ( )ˆγ,vfNRx,κ γ,κ 36G j G jΩ = Ω    (152) 

A4. Response Functions for the Actuator Forces 

Feedback of the motor feet displacements zγ = : 
• For drive side, left: 

( ) ( ) ( ) ( ) ( )ˆ γ,κ L γ,κ D γ,κ cDL,γ1 6 5γ,fazDL,κ
G j G j b G j a G j G j Ω = − Ω − ⋅ Ω + ⋅ Ω ⋅ Ω   (153) 

• For drive side, right: 

( ) ( ) ( ) ( ) ( )ˆ γ,κ R γ,κ D γ,κ cDR,γ1 6 5γ,fazDR,κ
G j G j b G j a G j G j Ω = − Ω + ⋅ Ω + ⋅ Ω ⋅ Ω   (154) 
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• For non-drive side, left: 

( ) ( ) ( ) ( ) ( )ˆ γ,κ L γ,κ N γ,κ cNL,γ1 6 5γ,fazNL,κ
G j G j b G j a G j G j Ω = − Ω − ⋅ Ω − ⋅ Ω ⋅ Ω   (155) 

• For non-drive side, right: 

( ) ( ) ( ) ( ) ( )ˆ γ,κ R γ,κ N γ,κ cNR,γ1 6 5γ,fazNR,κ
G j G j b G j a G j G j Ω = − Ω + ⋅ Ω − ⋅ Ω ⋅ Ω   (156) 

For feedback of the motor feet velocities, index γ  gets v ( vγ = ) and the in-
dex number n of the elements ( )γ,κ nG jΩ  in (153)-(156) has to be changed to 

18n n→ + . For feedback of motor feet accelerations index γ  gets a ( aγ = ) 
and the index number n of the elements ( )γ,κ nG jΩ  in (153)-(156) has to be 
changed to 36n n→ + . For open loop operation index γ  gets 0 ( 0γ = ), and 
the response functions of the actuator forces are zero. 
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