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Abstract

The paper presents a simplified 3D-model for active vibration control of ro-
tating machines with active machine foot mounts on soft foundations, consi-
dering static and moment unbalance. After the model is mathematical de-
scribed in the time domain, it is transferred into the Fourier domain, where
the frequencies response functions regarding bearing housing vibrations, foun-
dation vibrations and actuator forces are derived. Afterwards, the mathemat-
ical coherences are described in the Laplace domain and a worst case proce-
dure is presented to analyze the vibration stability. For special controller struc-
tures in combination with certain feedback strategies, a calculation method is
shown, where the controller parameters can be directly implemented into the
stiffness matrix, damping matrix and mass matrix. Additionally a numerical
example is presented, where the vibration stability and the frequency response
functions are analyzed.
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1. Introduction

In praxis, large rotating machines are often fixed directly on soft foundations.
e.g. elastic steel frame foundations, which sometimes lead to problems regarding
vibrations, caused by resonances and instability [1]-[7]. In many technical ap-
plications, active vibration control is used to solve vibration problems [8]-[20].
Ushijima and Kumakawa analyzed in [12] Piezo-Actuators, used as active engine

mounts for vibration control for high vibrations. Ulbrich investigated in [13]
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different actuator concepts especially for rotating machinery and compared them
regarding their effectiveness. Also Sun (et al) investigated in [14] vibration con-
trol of car active suspensions, but with electrohydraulic actuators. Sohn (et al)
presented in [15] experimental investigations to evaluate an electromagnetic ac-
tuator. Zhang (et al.) presented in [16] a review of the current status and deve-
lopmental progress of active engine mounts, where a theoretical model, a finite-
element model, and experimental modelling of electromagnetic active engine
mounts are shown. In this paper now, the active vibration system includes active
machine foot mounts—actuators, which are put between the machine feet and
the foundation, acting only in vertical direction—vibration sensors, which are
mounted at each machine foot, detecting the vertical vibrations, and a separate
controller for each actuator (Figure 1). This concept was basically investigated
in [21], but only for induction motors and it was only based on a plane 2D-model.
In [22] a general 3D model for rotating machines mounted on actuators was
presented, but only for rigid foundations. In this paper now, the 3D model is
enhanced for soft foundations, e.g. steel frame foundations. An additional large
enhancement of this paper is, compared to [22], that the excitations are here not
only forces and moments with constant amplitudes and arbitrary frequencies,
acting separately at the x, y, z-axes, but a rotating unbalance force and a rotating
unbalance moment, described by complex rotating vectors. Furthermore, the
damping coefficients are here dependent on the whirling angular frequency, whe-
reas in [22] the damping coefficients have been considered constant as a simpli-

fication.

2. Vibration Model

The model, which is used here, is a simplified 3D model (Figure 2). The mass
and the moments of inertia of the machine are concentrated at the center of
gravity S. The rotor and stator have hereby the same center of gravity. The an-
gular frequency Q represents the rotational angular frequency of the rotor. The
stiffness of the rotor, of the bearings, of the bearing support and of the stator is

supposed to be infinitely high. Following definitions are made:
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Figure 1. Rotating machine (induction motor) mounted on a soft foundation with actua-
tors.
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Figure 2. Simplified 3D-model of rotating machine on a soft foundation with actuators.

e Themass m, of the machine consists of the mass m, of the stator and of the

mass m, of the rotor and is included in the mass matrix, as a single mass.
m, =m,+m, (1)

and 6,

ments of inertia of the stator at the y-axis and z-axis) and of 6, =6, =6_

e The moments of inertia ¢, and 6, , consisting of 6, (the mo-
(the moments of inertia of the rotor at the y-axis and z-axis), are also in-

cluded in the mass matrix.

6,=0,+6,; 6.,=0,+06

sry sy 1y ; S1Z 1zy (2)

¢ However, the moment of inertia of the stator at the x-axis 6, and the moment

of inertia of the rotor at the x-axis 6, have to be used separately, because 6,

has to be included in the mass matrix, and 6, in the gyroscopic matrix.

e Additionally m, and 6,
they have to be considered in the excitation vectors, which are described by
£, (¢t) and m,(1).

At the centre of gravity S the two excitation vectors f, (l‘) and m, (t) are

and 6, have to be handled separately, because

positioned. The vector f, (t) represents the rotating force cause by a static un-
balance of the rotor, due to a mass eccentricity é with phase shift of ¢,. The
vector m, (t) represents the rotating moment caused by a moment unbalance of
the rotor, due to a tilt—angle & with phase shift of ¢, —of the rotor mass on
the shaft. The center of the bearing housings are described by point B, (on the

drive side) and by point B, (on the non-drive side). The boreholes of the ma-
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chine feet are defined by the points A4, , 4,,, A4, and A .Index D stands
for drive side, index N for non-drive side and index L for left side and index R

for right side:
i=D,N; j=L,R (3)

The mass m; , Mypp> My and m,, present the mass of each ama-
teur of the actuators and m,, , My, My and m,,, the mass of each
stator of the actuators. In the stiffness and damping matrix of each actuator only

translational stiffness and damping is considered, referring to [22]:

Cazij 0 0 dazij 0 0
Ci=| 0 ¢ O0Dy;=|0 dg, 0 (4)
0 0 c 0 0 d
The coefficients ¢,;, ¢,; and ¢, are the stiffness coefficients of the ac-

tuators and the coefficients d d,; and d

the actuators. For each foundation point, also only translational stiffness and

i > wij are the damping coefficient of

damping of the foundation is considered in the stiffness and damping matrix:

Cyp 00 d; 0 0
Ci=| 0 ¢y 0 [(Dy=| 0 dy 0 (5)
0 0 cfxij 0 0 dfxij

The coefficients c¢;,;;, ¢y, and cg; are the stiffness coefficients of the foun-
dy; and d

the foundation. Nine global coordinate systems are used here, one at the centre

dation and the coefficients d are the damping coeftficient of

f7ij > fiij
of gravity S and one for each machine foot point (A, , Apz> Ay > Ay ) and
one for each foundation point ( F; , Foz, Fy > g )- By using a vibration
sensor for each machine foot, the vertical machine foot displacements or veloci-
ties or accelerations can be detected and then lead back to separate controllers
(Cp> Cpr> Cyn and Cyg ). These controllers create then suitable signals
for producing vertical actuator forces ( f.,; > fuor> Sunr and fiag ). The
controller structure of each controller may be different. The structure of each
controller is described in the Laplace domain, by a transfer function, with the

Laplace variable s

m

Z bu,ij,v -s”

. _ #=0
Controller Cy: G, (S)_n— (6)
av,ij,y -
v=0
The constants b,;, and a,;  are hereby the constants of the polynomial

functions. To describe different feedback strategies the index » is used, refer-
ring to [22]:

0: No feedback (open control loops)

z : Feedback of the vertical motor feet displacements z,p; , Z,px » Zat. » Zanr )

v: Feedback of the vertical motor feet velocities v, 5, ,V, .pr > Vaans > Vaang

a : Feedback of the vertial motor feet accelerations a, ,p; , @, .op > @, ant > @rang
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d,i,d

azij > “ayij > “ axij

and of the

foundation d;,dy;,dy; can be derived by the corresponding mechanical loss

The mechanical damping coefficients of the actuators d

factor tand,; for the actuators and tandy; for the foundation, by the corres-
ponding stiffness ¢

to [4] [7] and [21]:

i and ¢ and by the whirling frequency @, referring

q. - Cyqij - tan §aij _ _ Crg -tan éﬁj

aqij — o Y%fgij —
), ,
F F

with:g=x,y,z (8)

For analysis of the forced vibration due to unbalance, the whirling angular
frequency is equal to the rotor angular frequency @, =€ . For analysis of natu-
ral vibrations with marginal decay, the whirling angular frequency is defined as

the correspondent natural angular frequency, as a simplification, referring to [4].

3. Mathematical Description
3.1. Description in the Time Domain

A linearization regarding the machine feet displacements is possible, because
only small displacements occur due to the excitations. Therefore, kinematic con-
straints can be used to express the movement of the motor feet, as well as the
displacements of the bearing housing points B, and B, , by the movement of
the center point S, referring to [22]. The vibration system can be described by

following differential equation:
M-G+(D+G)-¢+C-q=f,+m, + f, 9)

The vectors f, and m, are the vectors of excitation and the vector f, is
the vector of the actuator forces. The vector g contains the coordinates for
displacements and rotations of the machine centre point Sand for displacements

of the foundation points.

(1) = 20005, 00 3 001 P Zip 2w 5 2o 2 (10)

T
nyL;nyR;nyL;nyR;foL;xtDR;foL;xtNR]
The matrix M represents the mass matrix, the matrix D the damping ma-
trix and the matrix C the stiffness matrix:
mp;oc Mg d1,1 dl,lS Ci "t G
M=| : iD= @ - o=l . : (11)

Mgy .. Mgy dl8,1 dls,ls Cigg -+ Cigg

The coefficients of the matrices are presented in the Appendix. The gyroscopic
matrix G can be written by:

0 0

0 0 0 0,
0 0 0 0 0 0 0,,
0 0 0 0 0 0 0,,
G=| 0 0 0 0 Q-0 0 0,, (12)
0 0 0 -Q-6, 0 0 0,,
0 0 0 0 0 0 0,,
1000 0y 01y 0, 0 0py 0 |
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The vector 0,,,, represents the zero-vector with 0,,, eR"™, the vector
0,,, thezero-vector with 0,,, € R*" and the matrix 0, the zero-matrix with

0,, e R, The unbalance force vector f, (t) , caused by static unbalance u,,

can be described by:
£(0)=[1-50,0,0;0;0, , ] - Q% -m, -é-&"% & (13)
P, Uy =ty -/

and the unbalance moment vector m, (t), caused by the moment unbalance

u, ,by:
mu (t) = [09 07 O) 1: __]9 05 01><12 ]T : Qz : (grzy - erx ) : d : ej"/’a : e/"Q't (14)
P Uy Zﬁa‘ej%‘

The actuator force vector f, is split into the actuator force vector for each

machine foot:

fel(t):faDL(t)+ aDR(t)+ aNL(t)+ aNR(t) (15)
with the actuator force vectors:

Lo ()= Fopr (£)-[1505050; 05—, 3-1;0;0;0;0, ] (16)

PpL
Lo (1) = Lo (1)-[150:0;0; 3305150050, ] (17)

Pipr
S (1) = Foar (£)-[15050;0;—ay;—b; 50;0;-1;0;0, ]T (18)

PN
S () = fimr (£)[150;0;0;—ay ;b 5 0; 0,0, 150, ]T (19)

PNk

The vector 0, represents the zero-vector with 0,, € R"™ . The vectors
P

aDL >

a state space formulation is used (Figure 3), based on [17] [18] [19] [20].

P,., Py, and P,; are the actuator force transmission vectors. Now,

For avoiding mix-up with the stiffness matrix C and damping matrix D,
index “st”is used for the matrices of the state space. According to Figure 3, the
state space vector x(t) and the output vector y(t) can be written as follows,

referring to [22]:

x(1)=[q(1:4(0)] + »())=[q(0):d(1):ii(r)] (20)

mu(t) Dst
ZCR SN IR Ny S EONPRI S01
fa(®
Agt
Ty -1

Figure 3. State space model for active vibration control with negative feedback of the
output vector, considering excitation due to static unbalance and moment unbalance.
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The system matrix A, , the input matrix B, , the output matrix C,, and the

straight-way matrix D, can be written as:

y __ 0, I __ B __018_
st -1 -1 s st T -1
-M~-C -M -(D+G)_ | M~ |
I, 0, | [0, ] (21)
Csl = 018 118 5 Dst = 018
_—M’] C -M"' (D+G)| M

with the zero-matrix 0, € R"™"* and the unit-matrix I,; € R""®. Therefore, the

state space equations can be described by:
x(t)=A, - x(t)+ B, [ f, (t)+m, (t)+ £, ()] (22)
y(t)=Cy-x(t)+ D, [ f,(t)+m, (t)+ £, (1)] (23)

By using a controller matrix 7~ (Figure 3)—which will be defined later—

the actuator force vector f, (t) can be described by:

fi(t)=-T,,-y(2) (24)

3.2. Description in the Fourier-Domain for Excitation by
Unbalance

For deriving the frequency response matrix of the system, Equations (22), (23)

and (24) are transferred in the Fourier-domain:
X(jo) jo=A,-X(jo)+B,-[F,(jo)+M,(jo)+F,(jo)]  (25)
Y(jo)=C,-X(jw)+D, [F,(jo)+M,(jo)+F,(jo)] (26)
F,(jo)=-T,,-Y(jo) (27)

With these equations follows the output vector:
-1
. . -1
Y(]a)) = |:IS4 +(Cst .(136 ']a)_Ast) ' Bst +Dst)'1wst,y:|

[ €t jo-Aa,)" B+ D, |[F, (jo)+ M, (jo)]

(28)

with the unit-matrices Iy, € R**** and I,, € R*° . With the definition
Y (jo)=7, (jo) @)

it is highlighted, that the output vector Y( ]a)) dependents on the different feed-
back strategies(7), represented by the controller matrix 7, , . The controller ma-
trix T, cannow be derived, based on [22].
[018 U 018] fory =0
T 0, 0, fory=z
= [ z Y18 18] v (30)
[018 T, 018] fory=v

[018 U ];] fory =a

with the matrix Ty , also described in the Fourier-domain with Gcij,y ( ja)) , which

are the frequency response functions of the controllers, based on the controller
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transfer functions (6) with s — jw:

GepLy (ja’)+GcDR,y (ja))+GcNL,y (jw)+GcNR,y (]a)) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ay [ G, (J©) + G, (@) |y [ iy (J©)+ G, (j@)] 0 00
Tv(]w): by '|:GcDR,y (ja))+GcNR,y (jw)]_bL '[GcDL,y (jQ)+GcNL,y (]a))] 0 0 0
G, (jo) 0 0 0
Gepr (]a)) 0 0 0
Gy (]a)) 0 0 0
G, (J©) 0 0 0
L 05, US|
dp 'I:GcDL,y (]w) + GcDR,y (](0)} —day 'I:GcNL,y (]w) + GcNR,y (]a’):|
0
0
0
ap '|:GcDL,y (ja))+GcDRy ]w ]+aN |:GCNLy ]w Gong.y (]a’)]
maD'[bR “Gopr.y (]a)) by GcDLy Ja) ]+aN |: cNLy —by GcNRy(Ja))]
G v (Ja))
Gepr y (]a))
G v (]w)
Gor y (]w)
U
by - I:GCDR,Y (]w) + GcNR,y (]w)] —b - |:GCDL,y (]a’) + GcNL,y (]w):| 0,1
0 0.1
0 0,1
0 0.,
ay [ b -Gy (@) =B -G, (J@) [+ ay [ B -Gy (@) =B -G, (J@©) | 0112
bﬁ '[GcDL,y (J")) + Gy (Ja))] + bli |:GCDR v (Jw) +Gor y (]a))] 0.2
by G(,DL,V (]a’) 0.,
—br - Gpr (ja)) 0.,
by GcNL,y (Ja’) 0.,
—by GcNR,y Jw) 0., (31)
U 0.2 |

with: T,(jo).T,(jo).T,(jo)eC*"® and T,(jo)=0,cR"™" and with
the zero-matrix 0y, € R*'?. Now, the output vector Y, (jo) can be calcu-
lated by:

YY(jCO) G (jo) [ (jo)+M, (ja))] (32)
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and the frequency response matrix G, ( ]a)) can be written by:

B -1
Gy (ja)):|:154+(cst .(136 'ja)_Ast) ] .Bst +Dst).Tst,y:|

(33)
. -1
'|:Cst.(136']a)_Ast) .Bst+Dst:|

The frequency response vector for each single kind of excitation can now be
derived, with following Fouier-transformations, with the Dirac-delta function
J:

F,(jo)=F{f,()} = F{P. - Q" m -/ ./
(34)
=P, .02 -m, PP '275'5(60—(2)
\—ﬂ/——/

Ue

M, (]60) = f{mu (t)} =F1P, NoX .(,9rzy _gm),&.ej% e
ta (35)
Q,X)-d-e'j"”" '2TE'5((0—Q)

U

:pa.QZ.(g

tzy

Further on, the index K is used for both kinds of unbalance, representing

the excitations:
K=eq (36)
The output vector ¥, ( ja)) for each kind of unbalance can be calculated by:
Y, (jo)=G,(jo) P.-Q*-u 2n-6(0-Q) (37)
LA AL
Gy« (Jjo)
Using the sifting property of the Dirac delta function &(@—Q), the Fouri-
er-transformed output vector for each kind of unbalance follows:
Y, (jo)=G,(jQ)-P.-Q -u 2n-5(0-Q) (38)
LA
Gy (/)
Now, the inverse transformation of this Fourier-transformed output vector

Y, . ( ja)) back into the time-domain can be done:

y () =F ¥, (jo)=F'{G,(jQ) P.-Q -u - 2n-5(0-Q)
|

. o (39)

:Gy(]Q)-PK-Q ‘u-e

Gy« (/9)

j”y,K

It is useful to relate the amplitude output vector on the respective unbalance:

A

j\]y,x,ref = J:;“K = Gy (JQ) : PK : Qz (40)

N

G, (JQ)
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At this point it is important to mention, that beside the gyroscopic matrix G
also the damping matrix D depends on the rotary angular frequency Q. The
reason is that for forced vibration due to the unbalance, the whirling angular
frequency @, for the mechanical damping coefficients (8), is equal to the rota-
ry angular frequency Q (@, = Q ).Therefore, the matrices 4, and C, are al-
so functions of the rotor angular frequency Q. The frequency response matrix

G, (/@) can now be formulated by:
_ -1
Gy (]Q) = |:IS4 +(Cst (Q) -(136 .jQ_Ast (Q)) 1 .Bst + Dst).];t,y (]Q)j|

1 (41)
'|:Cst (Q)(I36 'jQ_Ast (Q))7 'Bst +Dstj|

With this matrix, the frequency response vector G, ( jQ) for both kinds of

unbalance can be described:

. y’V K .
G,.(/0)-22 = (jo)-p. -0 )

K

With this frequency response vector G, ( jQ) and the kinematic constraints
in [22], the response functions for vibration velocities of the bearing housings,
and of the foundation points can be derived, as well as the response functions for

the actuator forces, based on [22]. The equations are shown in the Appendix.

3.3. Stability Analysis

Due to the use of active vibration control, a stability analysis is very important,
therefore the poles of the system have to be derived. Based on [22], the poles can

be calculated by solving the following equation:

det[l36 s—A +B,-T, (s)-(I,+D, T, (s))’] : CSJ =0 (43)

S S

However, this direct procedure is only possible if the matrices A4, and C,

are independent of the whirling angular frequency ., which is here not the

st

case, because the damping coefficients depend here on @, . The whirling angu-
lar frequency @, corresponds here—when calculating the pols—to the natural
angular frequency and therefore to the imaginary part of the complex poles.
Therefore, the use of the damping coefficient lead here to a causality problem.
Therefore, a worst case procedure is here derived to investigate the stability of
the system. The basic requirements are:
e The mechanical damping of the actuators and the foundation is low, which
should be usually the case, so that the mechanical loss factors for the actua-

tors and the foundation fulfill following conditions:
tand,; <0.2 and tandy <0.2 (44)
e The modal mass of the foundation is so low, that only the first six natural vi-

bration modes have to be taken into account.

o The first six natural vibration modes have conjugate complex poles.
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Therefore, following worst case procedure is derived to calculate the pols s,
which is shown in Figure 4. In the first step, the pols are calculated without
damping ( D =0 ) and with open control loops (Tw (S) =0).

Then, the natural angular frequency of the 6™ conjugate complex pole pair @,
—which is set to be equal to the whirling angular frequency @, —is considered,
for calculating the damping coefficients d,; and d;. Afterwards, the pols are
calculated again, considering damping (D # 0) and the closed control loop op-
eration (T, (S) #0). The corresponding conjugate complex pol pair s, is
again taken into account for deriving the new damping coefficients. Finally the
pols are calculated with the modified damping matrix D . If the change of the
whirling angular frequency is too large (e.g. more than 5%) this approach can be
repeated in loops. This procedure presents a worst case scenario regarding insta-
bility, because the natural angular frequency of the highest considerable mode
(here mode 6) is used for calculating the damping coefficients, which lead to the

lowest damping coefficients.

M,G,C D=0 Tgy(s) =0

a
<

\ 4

-1
det [136 +S— Agt + By - Tst,y(S) . (154 +Dg; Tst,y(s)) +Ce| =0

v

Se = 1j * we

(})F = (1)6
\
g CaaitNaij o Caii N0t | [ g by
aqij — » Afqij = 1), 1),
WE Wr
D Tst,y(s)
v
-1
P det [136 S — Ast + Bgt - Tsiy(5) - (154 +Dg Tst,y(s)) “Cse[=0
\ 4
Se* = Qg T ]+ We
Tst,y(s)
Wr = (l)6
v
g Caaiitandaij - Cgij - tan O
aqij wF » Ufqij g
D
\ 4
-1
> det [136 5= Agt + By - T () - (154 +Dg Tst,y(s)) <Cst| =0 [«
\ 4
[ s ]
Figure 4. Flow diagram for calculating the pols of the vibration system.
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3.4. Mathematical Description for Special Controllers

In this section, special controllers—standard controllers (P-, I-, PI-, PD-(ideal),
PID-(ideal) controllers)—are analyzed. Therefore, the control parameter can now
be directly implemented into the mass matrix and/or the damping matrix and/or
the stiffness matrix, which can be seen in Figure 5, referring to [22].

Therefore, the differential equation can be described now by:
M-q’+(ﬁ+G)-q+é~q=fu+mu (45)
By implementing the control parameters into the mass matrix, M becomes
M, . When they are implemented into the damping matrix, D becomes D, ,
and if they are implemented into the stiffness matrix, € becomes C,,. The

structure of these matrices is shown in (49). Following definitions are used, re-

ferring to [22]:

For the mass matrix C,,: M_, =¥, and y=m (46)
For the damping matrix D_,: D, =%, and y=d (47)
For the stiffness matrix C,_ : C..=%, and y=c (48)

The matrices with the integrated controller parameters are formulated by:

y=z y=v y=a y=0
Controllers | Displacement Velocity Acceleration | Open control
feedback feedback feedback Loops
M=M M=M M=M,
P b=D D=D, b=p
c=c, c=c c=c

PD (ideal)

ST T
1] I 1]
a9 =

PID (ideal)

Figure 5. Matrices, depending on standard controller structures and different feedback
strategies, referring to [22].
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v+ KwDL + KwDR + K\VNL + K\VNR Via Vi3 Via
Vo Vi Vs Vs
LEN LER) LX) LEW!
Vas Vi Vs Vaa
Vs, tap - [KwDL + K\uDR :| —ay- |:K\|/NL + K\yNR ] Vso Vs Vsa
Y., =| Vs, +by ’[KWDR +K\|1NR:|_bL '|:KWDL +K\|1NL] Vo Ve Ve
Vaoi— K\yDL Vi Vis V74
Ws1— K\VDR Vs Vs Vg4
Vo, — K\uNL Vo, Vo3 Voa
Viea — K\uNR V9o Vi3 Vioa
L Viit8. Vigis2 WYisess WYiia,...is4
Vs tap '[K\yDL + K\yDR ] —ay '[KWNL + K\uNR :|
Vs
LEX
Vas

wss+ap [KwDL + K, or ] +ay [KwNL +K J
TWes tap '[bR Kpp =By 'KWDL]"'aN '|:bL K by 'K\VNR].“
Vo5 —ap Kypp
Wgs —dp 'KWDR
Wys +ay 'KWNL

Vips Tay 'KWNR

Viis,.18,5
Viet by '[KWDR + K\yNR :| —-b, '[KWDL + K\yNL] Vi7..118
Vie Vir..018
LEX; Vi7,.318
%3 Wig.as
Wse Tap '[bR Kypr —bp 'K\yDL] tay '|:bL Ko —by 'KWNR:I Vsa..5.1s
Ve +bf ’|:KWDL + K\yNL ] + bli '[KWDR + KwNR Vo618
Wae+b Ky Vi3:708
Vse —by 'KWDR Vs7..8.18
Yooty 'KWNL Vo798
Yioe —by ’KWNR Yi0,7,--10,18 (49)
ViL6,--18,6 ViL,1s18

The controller parameters K, ; depend on the controller structure and the

chosen feedback strategy (Figure 5). The combination in Figure 5 marked with

«

” cannot be deduced, if the differential equation system (45) shall be used. If
the control parameters are identical, the cells with identical color lead to the
same differential equation. The inhomogeneous differential equation (45) can

now be solved, based on the common approach.
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4. Numerical Example

Now, a numerical example is presented, where the vibration stability, as well as
the forced vibrations of a rotating machine are analyzed.

4.1. Boundary Conditions

The data of the rotating machine are shown in Table 1. As it can be seen, the
rotating machine has a symmetrical machine design (b, = bg; ap = ax).

The foundation is a simplified steel frame foundation, which consists of two
I-beams (green), which are stiffened by additional welded steel sheets (brown) in

the area of the machine feet (cyan), and fixed (red) to ground (Figure 6). No

Table 1. Data of the rotating machine.

Mass of the stator m_=7200 kg
Mass of the rotor m,=1900 kg
Mass inertia of the stator at the x-axis 0, =1500kg-m’
Mass inertia of the stator at the y-axis 6, =2800 kg -m’
Mass inertia of the stator at the z-axis 0,=2800kg-m’
Mass inertia of the rotor at the x-axis 6, =50kg-m’
Mass inertia of the rotor at the y-axis 0,=100kg-m’
Mass inertia of the rotor at the z-axis 6, =100kg-m’
Height of the centre of gravity S h =560 mm
Horizontal (y-direction) distance from A4, and 4, toS b, =530 mm
Horizontal (y-direction) distance from 4, and 4, toS by =530 mm
Axial (x-direction) distance from 4, and A4, to S a, =700 mm
Axial (x-direction) distance from 4, and 4, toS a, =700 mm
Axial (x-direction) distance from B to § [, =1000 mm
Axial (x-direction) distance from B, to S I, =1000 mm

Non-drive side

Drive side

Figure 6. Simplified model of the steel frame foundation.
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stiffening effect in the area of the machine feet is considered, so that a low stiff-
ness of the steel frame foundation is considered here, as a worst case.

The substitute foundation stiffness, which is necessary to use the model in
Table 2, is derived by a finite element analysis of the foundation, but still pre-
senting a simplification.

In this example only three actuators are used, two on drive-side, left and right
(DL, DR) and only one actuator on non-drive side left (NL) (Table 3). The
fourth actuator on the non-drive side right (NR) is exchanged by a stiff element.

The data of the stiff element is shown in Table 4.

For the control system, I-controllers with feedbacks of the vertical machine

feet accelerations are chosen, so that following controller transfer function is

used.
G ()= Dose (50)
Ky
Table 2. Data of the foundation.
oo

Number of stiffening sheets 16
Thickness of stiffening sheets t=14 mm
Modal mass of foundation (m, =my, =m, =m, =m,) m, =10kg
Mechanical loss factor ( tan 6, = tand,,, =tand,,, =tand,, =tand,, ) tan o, = 0.04
Subsitute stiffness of foundation (machine directly mounted on foundation):

e Cn TG T Cror T Can T Craw ¢, =1000 kN/mm

e S5 = Chon = Conr = Cyw = Comr ¢, =146 kKN/mm

o Cr = Cont = Coon = Crn = Comn ¢, =1440 kN/mm
Subsitute stiffness of foundation (machine mounted with actuators on foundation):

® G = Cop = Crpn = O = Crm ¢, =42 kN/mm

® Gy T Chon T Chor T G T Cir ¢, =20.5kN/mm

® G, = Chp = Chpr = Cpn = Coar ¢, =1440 kKN/mm

Table 3. Data of the actutaors on position DL, DR and NL.

Mass of the armature

Mass of the stator

Vertical stiffness

Horizontal stiffness

Axial stiffness

Mechanical loss factor

m

‘aaDL.

Ko

CumL

=cC

=m, . =m,, =15kg

‘aaDR

=M, =My =35kg

‘asDR

=c,_ =10.5kN/mm

azDR

Copl = Copr = Cup. = 26.2 KN/mm

ayDL

CaxpL

tan o,

=cC

ayDR ayNL

wor — Canl = 26.2 kN/mm

=tan ¢,

aDR

=tand,, =0.04
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Table 4. Data of the stiff element on position NR.

Mass (top) Mg =3Kkg
Mass (bottom) Mgy =5kg
Vertical stiffness Cone = 2600 KN/mm
Horizontal stiffness Cyxp = 560 KN/mm
Axial stiffness Cpo =560 kKN/mm
Mechanical loss factor tano,, =0.04

Table 5. Data of the controller parameters.

Controller parameter for DL by, =140000 kg/s
Controller parameter for DR By .. = 140000 kg/s
Controller parameter for NL by, =140000 kg/s
Controller parameter for NR bynra =0Kkg/s

The data of the control parameters are shown in Table 5. All three control-
lers—for the three actuators—have identical parameters. The control parameter
for the fourth controller on NR has to be set to zero, because here a stiff element
is used instead of an actuator.

Afterwards three different cases are analyzed:

e Case 1: The rotating machine is directly mounted on the steel frame founda-
tion.

e Case 2: Three actuators at DL, DR, NL and a stiff element at NR are placed
between machine feet and foundation. The actuators are only operating pas-
sively (open control loops).

e Case 3: Same setting as case 2, but the actuators are now operating actively

(closed control loops).

4.2, Stability Analysis

To analyze the stability of the system, the poles are calculated for the three dif-
ferent cases, based on the procedure, described in Figure 4. It can be clearly
shown, that for all three cases vibration stability exists, because all characteristic
poles have no positive real parts (Figure 7, Figure 8 and Figure 9).

When comparing the figures, it is obvious that the damping of the poles can
be strongly increased by the active vibration control system (case 3), compared

to case 1 and case 2.

4.3. Frequency Response Analysis

Now, the amplitudes of the frequency response functions of bearing housing vi-
bration velocities and of foundation vibration velocities are computed, as well as

the frequency response functions of the actuator forces, all related to the respective
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unbalance. The amplitudes of the frequency response functions are calculated in
[dB] with the reference gauge in Si-Unit, in a frequency range from 1 Hz to 250
Hz. An additional index d is now introduced for case 1, so that now following
definitions are used:

y=0,z,v,a,d;i=D,N;j=L,R;q=x,y,z;K =e, (51)

Related bearing housing vibration velocities:

Case l

0.022

| 0.045

I

0.022

-

| 0.045.

0.014

0.014

T I
0.003 0.0014 1.4e+03

+ Poles for f, = 0 Hz
X Poles for f. = 250 Hz

I I
0.0095 0.0068 0.0046

1.2e+03
1e+03

800

* *

600

*

400

200

200
400
600
800

1e+03
1.2e+03
0.0046

| 0.0095 0.0068 0.003 0.0014 1.4e+03

-25

-10 -5 0
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Figure 7. Poles for case 1, calculated at rotational frequency f,=0Hz and f, =250Hz.
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Case 2

o
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T
0.0034
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Figure 8. Poles for case 2, calculated at rotational frequency f,=0Hz and f, =250Hz.
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Case 3
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Figure 9. Poles for case 3, calculated at rotational frequency f, =0Hz and f, =250Hz.
G Vbiq,k (]Q)
|G, i ( jQ)|dB =20-log —| LN | (52)
|Gy,\7biq,1< (]Q) ref
lkmi forx=e
-m
with: |G, gq (JOQ)] . = &
4 s ref m/s
1 > fork=a
kg-m
Related foundation vibration velocities:
G Vfijq,K (] Q)|
|G, ssiqn ()|, =20-log G (20 (53)
v,Vfijq, Kk .
o |G7,0ﬁjq,t< (]Q) rof
1 km/ i fork=e
. . g-m
with: |Gy!0ﬁjq)K (]Q) T m/s
1 B fork =«
kg-m
Related actuator forces:
G, i (/)
G, sy (O, =20-log| 2l 54
Jfazij,x B .
Gy,fazij,K (‘]Q) ref
1 " forxk=e
. . _ g-m
with: |G . L (jQ) LT
1 > fork =a
kg-m

DOI: 10.4236/jamp.2021.91006

74 Journal of Applied Mathematics and Physics



https://doi.org/10.4236/jamp.2021.91006

U. Werner

Drive side

4.3.1. Excitation by Static Unbalance
The amplitude response functions for the bearing housing vibration velocities at

the drive side and at the non-drive side, related to static unbalance are shown in

Figure 10.

The amplitude response functions for the foundation vibration velocities at

the drive side, related to static unbalance are shown in Figure 11.

The amplitude response functions for the foundation vibration velocities at

the non-drive side, related to static unbalance are shown in Figure 12.

The frequency response functions for the actuator forces, related to static

Related bearing housing vibrations

Non-Drive side

T

T

T T =

[vertical OFvertical
50+ . 4 50 . b
— |Gagbpze UM 45 — |Gagonze UM 45
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10° 10° 10? 10° 10° 102
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=8 — [Gozboy.e UMy | 400 - |G°r‘7b"yle(l_m|ds ,
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Figure 10. Amplitude response functions for the bearing housing vibration velocities at the drive side and at the non-drive side,

related to static unbalance u, for case 1, case 2 and case 3.

Related foundation vibrations
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DR (Drive side, right)
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Figure 11. Amplitude response functions for the foundation vibration velocities at the drive side (left and right), related to static

unbalance u, for case 1, case 2 and case 3.
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NL (Non-drive side, left)

Related foundation vibrations

NR (Non-drive side, right)
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Figure 12. Amplitude response functions for the foundation vibration velocities at the non-drive side (left and right), related to

static unbalance u, for case 1, case 2 and case 3.

Related actuator forces
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Figure 13. Frequency response functions for the actuator forces, related to static unbal-
ance u, (case 3) at drive side left (DL), drive side right (DR), non-drive side left (NL)

and non-drive side right (NR).

unbalance are shown in Figure 13.

4.3.2. Excitation by Moment Unbalance

The amplitude response functions for the bearing housing vibration velocities at

the drive side and at the non-drive side, related to moment unbalance are shown

in Figure 14.
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The amplitude response functions for the foundation vibration velocities at

the drive side, related to moment unbalance are shown in Figure 15.

The amplitude response functions for the foundation vibration velocities at

the non-drive side, related to moment unbalance are shown in Figure 16.

The frequency response functions for the actuator forces, related to moment

unbalance are shown in Figure 17.

4.3.3. Discussion of the Frequency Response Analysis
The amplitude response functions for the bearing housing vibration velocities

Related bearing housing vibrations
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Figure 14. Amplitude response functions for the bearing housing vibration velocities on the drive side and on the non-drive side,
related to moment unbalance u, for case 1, case 2 and case 3.
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Figure 15. Amplitude response functions for the foundation vibration velocities at the drive side (left and right), related to mo-

ment unbalance u, for case 1, case 2 and case 3.
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Related foundation vibrations
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Figure 16. Amplitude response functions for the foundation vibration velocities at the non-drive side (left and right), related to

moment unbalance u, for case 1, case 2 and case 3.
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Figure 17. Frequency response functions for the actuator forces, related to moment un-
balance u, (case 3) at drive side left (DL), drive side right (DR), non-drive side left (NL)

and non-drive side right (NR).

for excitation by a static unbalance (Figure 10) show, that in the analyzed rota-

tional frequency range two resonance frequencies occur for case 1—where the

machine is directly mounted on the steel frame foundation—at about
f,=38.1Hz andat f, =126.4 Hz. Figure 10 shows additionally, that no axial

vibrations occur for case 1, if only a static unbalance is considered. For a mo-
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ment unbalance, three resonance frequencies occur for case 1, at about

f,=82.8Hz, f, =110.5Hz and f, =198.5 Hz (Figure 14). The natural mode,
where the machine mass is mainly rotating at the x-axis—with a natural angular
frequency of about 1088 rad/s (Figure 7), which means a natural frequency of
about 173, 2 Hz—leads not to a resonance regarding bearing housing vibrations,
because this mode shape is hardly excited by these two kinds of unbalance. Be-
cause of the symmetrical machine design and the identical foundation stiffness
and damping coefficient under each machine feet, the frequency response func-
tions for the bearing housing vibration velocities are identical for the drive side
and the non-drive side for case 1. If now the machine is mounted on a stiff ele-
ment and on three actuators, operating with open control loops (case 2), the re-
sonance frequencies for the bearing housing vibrations occur at lower frequen-
cies and six different resonance frequencies are obvious, when considering both
kind of unbalance (Figure 10 and Figure 14). The amplitudes in the resonance
frequencies are clearly lower for case 2 compared to amplitudes in the resonance
frequencies for case 1, because the amplitudes of excitation force and of the ex-
citation moment are proportional to fr2 . When now the control loops are closed—
which means case 3—most of the resonances regarding the related bearing hous-
ing vibrations (Figure 10 and Figure 14) get well damped—as well as most of
the related foundation vibrations (Figure 11, Figure 12, Figure 15, Figure 16),
when comparing the red curves with the blue curves. Therefore, an operation in
the rotational frequency range from 0 Hz to 80 Hz seems now possible for case 3,
without off-limits areas regarding rotational frequency. If the machine would be
mounted directly on the foundation (case 1), this would not be possible, because
a sharp resonance at 38.1 Hz occurs here due to static unbalance, regarding the
related bearing housing vibrations (Figure 10) and regarding the related foun-
dation vibrations (Figure 11 and Figure 12). Figure 13 and Figure 17 show the
frequency response functions regarding the active actuator forces. It can be seen,
that with increasing rotational frequency also the amplitudes of the actuator
force frequency response functions increase, because the unbalance force and
unbalance moment also increase with the rotational frequency. Of course, the
actuator forces are also strongly influenced by the vibration mode shapes. No ac-
tive actuator force occurs on position NR, because a stiff element is positioned
there instead of an actuator. If the stiff element would be exchanged by a fourth
actuator, so that four identical actuators would be used—case 2 gets case 2* and
case 3 gets case 3* (with four identical control parameters)—a symmetrical sys-
tem would exist. With such a symmetrical system, a vibration mode exists,
where the machine makes a pure rotating at the z-axis. This mode cannot be in-
fluenced by the actuators anymore, because they are only acting in vertical direc-
tion. This is shown in Figure 18 regarding the amplitude response functions for
the bearing housing vibration velocities in horizontal direction. The resonance
frequency at about 18.6 Hz cannot be damped by the control system. Only a mar-

ginal difference between the blue curve and the red curve for horizontal direction
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Figure 18. Amplitude response functions for the bearing housing vibration velocities on the drive side and on the non-drive side,

related to moment unbalance u, for case 1, case 2* and case 3* (*: Four identical actuators are used).

is obvious in Figure 18, which is caused by the gyroscopic effect, leading here to
a marginal coupling of the vibration modes, so that no absolute pure vibration
mode at the z-axis occurs. Because of the symmetrical system, the frequency re-
sponse functions for the bearing housing vibration velocities are now identical
for drive side and non-drive side (Figure 18).

Therefore, it could be shown, that the method “vibration mode coupling by
asymmetry”, which was developed and mathematically described in [22] for a ri-

gid foundation, is also transferable for a soft foundation.

5. Conclusion

The paper presents a simplified 3D-model for active vibration control of rotating
machines with active machine foot mounts on soft foundations, considering
static and moment unbalance. After the model was mathematical described in
the time domain, it was transferred into the Fourier domain, where the frequen-
cies response functions regarding bearing housing vibrations, foundation vibra-
tions and actuator forces have been derived. Afterwards, the mathematical co-
herences have been described in the Laplace domain and a worst case procedure
was derived to analyze the vibration stability. For special controller structures in
combination with certain feedback strategies, a calculation method was shown,
where the controller parameters can directly be implemented into the stiffness
matrix, damping matrix and mass matrix. Additionally a numerical example was
presented, where the vibration stability and the frequency response functions
have been analyzed. It could be shown, that with the active vibration control sys-
tem all vibration modes can be damped well, so that an operation in the rota-
tional frequency range from 0 Hz to 80 Hz is possible without off-limits areas.
Finally it could be demonstrated, that the method “vibration mode coupling by
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asymmetry”, which was developed and mathematically described in [22] for a ri-
gid foundation, is also transferable for soft foundations. The numerical example
was also used, to validate the presented model with a finite element analysis by
comparing the results. However also a validation by measurement is planned.
Therefore, a test bed for an 11 kW induction motor, mounted on a soft steel
frame foundation with actuators, has been built and first experimental investiga-
tions have been deduced [23], showing good congruence with the presented 3D-

model.
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Appendix:
A1. Coefficients of the Matrices

Coefficients of the mass matrix A

My, =My, =My3 =My + My +Mypp T Meng T Mg (55)
m s =ms, =dp '(maaDL T Mypr ) —ay '(maaNL + maaNR) (56)
m e =meg, = bR '(maaDR + Mg )_bL '(maaDL + maaNL) (57)
My, =my, =—dp '(maaDL +Myypr ) +tay '(maaNL + maaNR) (58)
My =mg,==h -(maaDL + M e Mg + Mg ) (59)
my, =myy =—by '(maaDR RILCWNY )+ b, '(maaDL RLOWNS ) (60)
mys =ms; =h ‘(maaDL TMypr T My maaNR) (61)

2 2
my 4 = 0., +b; '(maaDL T ML ) +by '(maaDR + maaNR) (62)

+ aI2) : (maaDL + maaDR ) + ali : (maaNL + maaNR )

Mys =Mms, = h 'bL '(maaDL + Myt ) —h 'bR '(maaDR + maaNR) (63)
my e =Mg 4= h-ay, '(maaDL + My, )_ h-ay '(maaNL + Mk ) (64)
mss = esry + a[z) : (maaDL + Myapr )+ arle : (maaNL + Myanr ) (65)
+ hz '(maaDL +Mypr T Mgane T Maanr )
Ms o = Mg 5 = dp '(bR Mg —by 'maaDL)+ ay '(bL Mo, — by 'maaNR) (66)
mg ¢ = 0, + bf '(maaDL + MmN ) + bé '(maaDR + maaNR) (67)
+h?- (maaDL T Mypr + Mapne + Mg )
My g =My =Mys s = Mgy + My (68)
My g =My, 1y = Mg 6 = Mipg T Mg (69)
My g = M3 3 =My 17 = Mg, + Mg (70)
My 10 = Mygpq = Mg gz = Mg T Mg (71)
The other coefficients are zero.
Coefficients of the stiffness matrix C

€1 = CapL F Capr T Canr T Canr (72)

G5 =6,=4dp ‘(CazDL + Canr ) —dy ‘(CazNL F Canr ) (73)

G =Coy = by '(cazDR + Cunr ) -b '(CazDL +Cont ) (74)

C7 =61 = CyupL (75)

Cig = C1 = ~Cupr (76)

Clo =Co1 = ~Coani (77)

Ci10 = €01 = “Canr (78)

Cyp = Cypr T Coypr T Capne + Capnr (79)
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Crq =Cyp =ay '(CayNL + Conr )_ ap '(CayDL + Coypr ) (80)
Cr6 =Cs2 = —h '(CayDL +Cypr T Capnr T CayNR) (81)
Co1 =G = CypL (82)
Cr12 = €2 = ~Caypr (83)
Cr13 = C32 = CynL (84)
€14 = Clap = ~Cynr (85)
€33 = CoxpL T Caxpr T Caxn T Caxnr (86)
G4 =C3 = b, ‘(CaxDL +Cant ) —by '(CaxDR * Canr ) (87)
G5 =Cs3=h- (CaxDL FCar T Cant T Caarr ) (88)
G315 = Cis3 = CaxnL (89)
C16 = €63 = ~CaxDR (90)
G317 = G735 = "Cani (91)
Cis = Cs3 = Car (92)
Caq = bi '(caxDL *+Cont ) + bé '(CaxDR * Conr ) (93)
+ alz) ‘(CayDL + Coypr ) + ail '(CayNL + Cynr )
C45 =Cs4 = h 'bL '(CaxDL +Chni ) —h 'bR '(CaxDR + Cpnr ) (94)
Chp =Coq =h-ay '(CayDL + Coypr )_ h-ay '(CayNL + cayNR) (95)
€411 = Ca = CypL "9p (96)
C412 = Ci24 = Caypr "4p (97)
C413 = C34 = —Cyne " AN (98)
Cya = Craq = ~Cynr 9N (99)
Cats = Cisa = ~Cupr "Dy (100)
Cit6 = Ci6a = Canr “Dr (101)
Ci17 =C7.4 = ~CanL by (102)
Cigs = Cisa = Canr " Dr (103)
Css = alz) '(CazDL + Cunr ) + aI%I '(CazNL + CazNR) (104)

2
+ h : (caXDL + CaxDR + caxNL + caXNR )

Cs6 =Ces = dp '(bR “Cunr — b1 'cazDL)+aN '(bL “Cont ~br ‘CazNR) (105)

Cs7 =Cy5 = ~CypL "Ap (106)
Cs8 =Cgs5 = ~Cyupr "dp (107)
Cs9 =Cos5 = CynL "N (108)
Cs10 = Cio5 = Caanr N (109)
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Cs15 = Cis5 = ~CopL “h (110)
Cs16 = Cigs = ~Copr I (111)
Cs517 = Cizs = ~Caop " (112)
Cs18 = Cigs = ~Conr /1 (113)
Co6 = bi '(cazDL +Cant ) +b§ '(CazDR + Canr ) (114)
+h*- (CayDL * Coypr T Can T Cagnr )
Co7 = Cr6 = Copr " D1 (115)
Cos = C36 = ~Cadr by (116)
Coo = Cos = Comr DL (117)
Co,10 = Cio,6 = ~Camnr by (118)
Ce,11 = Cit,6 = CaypL h (119)
Ce12 = Ci2,6 = CayDR h (120)
Cos = Cizg = Capn N (121)
Co14 = Cla6 = Canr h (122)
€17 = CopL T CagpL (123)
C38 = Crpr T Cazpr (124)
Co9 = CrnL T Canr (125)
€100 = Ceanr T Canr (126)
G = CrypL T CapL (127)
Cia12 = Cypr t Coypr (128)
Ciz13 = Cne T Capn (129)
Ciais = Canr T Capnr (130)
Ci515 = CoL T CaxpL (131)
Ci6,16 = Csor T Caxpr (132)
G717 = Cpanr T CaanL (133)
Cis18 = Cranr T Caxnr (134)

The other coefficients are zero.

Coefficients of the damping matrix D:

The coefficients of the damping matrix can be easily derived by just replacing
“c” in the formulas (72)-(134) by “&”.

A2. Response Functions for the Bearing Housing Vibration Velocities

e In vertical direction:

Drive side: G, 4, (/) =G, (/Q), +1 -G, (JQ),, (135)
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Non-drive side: G, 4, (/) =G, (JQ), 1y -G, (JQ),, (136)
e In horizontal direction:
Driveside: G, yp, . (/Q)=G,, (/Q),, ~15 -G, (jQ),, (137)
Non-drive side: G, yx,  (/Q) =G, (jQ),, +1y -G, (JQ),, (138)
e In axial direction:
Drive side: G, anxr (JQ)=G,, (jQ),, (139)
Non-drive side: G, amx (JQ)=G,, (JQ),, (140)

The element G, ( jQ)n is the n™ element of the frequency response vector
G, (/).

A3. Response Functions for the Foundation Points Velocities

e In vertical direction:

Drive side, left: G,ipin (JQ)=G, (JQ), (141)
Drive side right: G, mron (JQ) =G, (JQ),, (142)
Non-drive side, left: G, i, (/Q) =G, (JQ),, (143)
Non-drive side, right: G, o, (JQ) =G, (JQ), (144)

e In horizontal direction:

Drive side, left: G, myx (JQ) =G, (JQ),, (145)
Drive side right: G, ipry (7Q) =G, (JQ),, (146)
Non-drive side, left: G, iy (/) =G, (JQ), (147)
Non-drive side, right: G, nry (JQ) =G, (JQ),, (148)

o Inaxial direction:
Drive side, left: G, (/Q) =G, (JQ),, (149)
Drive side right: G, ioren (/) =G, (JQ),, (150)
Non-drive side, left: G, i (JQ) =G, (JQ)s (151)
Non-drive side, right: G, e (/) =G, (JQ),, (152)

A4. Response Functions for the Actuator Forces

Feedback of the motor feet displacements y=z:

e For drive side, left:
G (JQ) = -G, (jQ), -b -G, (JQ), +ay -G, (jQ), |- G, (JQ) (153)

e For drive side, right:

G o Q) = —[GY’K (jQ), +b -G, (jQ), +ay -G, (jQ), ] Gop, (JQ) (154)
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e For non-drive side, left:
Gy,f‘azNL,K (]Q) = _[GV,K (jQ)l —b 'GV,K (jQ)6 —aN 'GY,K (jQ)s :| ’ GcNL,v (jQ) (155)
e For non-drive side, right:

GyfazNR,K (JQ) = _|:GY,K (JQ)1 +bR : Gy,K (JQ)s —ay- GV,K (JQ)S :| : GcNR,y (]Q) (156)

For feedback of the motor feet velocities, index p gets v(y =v) and the in-
dex number n of the elements Gy’K (jQ)n in (153)-(156) has to be changed to
n—> n+18. For feedback of motor feet accelerations index y gets a (y=a)
and the index number n of the elements Gv’K (jQ)n in (153)-(156) has to be
changed to n — n+36. For open loop operation index y gets 0 (¥ =0), and

the response functions of the actuator forces are zero.
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