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Abstract 
For a prime p, let 

2n mp
D  be the dihedral group  

12 2 1 1, | 1,
n mpa b a b b ab a
− − −< = = = >  of order 2n mp  and ( , )Cay G S  be a 

connected cubic Cayley graph on G with respect to a generating system of 
three elements S such that S does not contain the identity and 1S S− = . In 
this paper, the automorphism groups of cubic Cayley graphs of dihedral 
groups of order 2n mp  where 2n ≥  and p is odd prime are completely 

given. When 
12{ , , }

n mpS b ab a b
−

≡ , the automorphism group  
2

1
2
2 2

( ( , ))
n m

n m
p

p
Aut Cay G S D

−

−≅   . Except in this case, the automorphism 

group ( ( , ))Aut Cay G S  is the semidirect product ( ) ( , )R G Aut G S  where 
( )R G  is the right regular representation of G and  

( , ) { ( ) | }Aut G S Aut G S Sαα= ∈ = .  
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1. Introduction 

An automorphism of a graph X is a permutation σ  of vertex set of X with the 
property that, for any vertices u and v, we have { , }u vσ σ  is an edge of X if and 
only if { , }u v  is the edge of X. As usual, we use uσ  to denote the image of the 
vertex u under the permutation σ  and { , }u v  to denote the edge joining ver-
tices u and v. All automorphisms of graph X form a group under the composite 
operation of mapping. This group is called the full automorphism group of 
graph X, denoted by A in this paper. 
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For a graph X, we denote vertex set and edge set of X by ( )V X  and 
( )E X . vA  is the stabilizer of vertex v  in the automorphism group of X. 

( )kX v  denotes the set of vertices at distance k from vertex v. 2nD  means the 
dihedral group of order 2n. A graph is called vertex-transitive if its automor-
phism group A is transitive on the vertex set ( )V X . An s-arc in a graph is an 
ordered ( 1)s + -tuple 0 1 1( , ,..., , )s sv v v v−  of vertices of the graph such that 1iv −  
is adjacent to iv  for 1 i s≤ ≤  and 1 1i iv v− +≠  for 1 i s≤ ≤ . A graph is said to 
be s-arc-transitive if the automorphism group A acts transitively on the set of 
all s-arcs in X. When 1s = , 1-arc called arc and 1-arc transitive is called 
arc-transitive or symmetric. 

Throughout this paper, graphs are finite, simple and undirected. 
Let G be a finite group and S be a subset of G such that 1 S∉ . The Cayley 

graph ( , )X Cay G S=  on G with respect to S is defined to have vertex set 
( )V X G=  and edge set ( ) {{ , } | and }E X g sg g G s S= ∈ ∈ . Let set  
1 1{ | }S s s S− −= ∈ . If 1S S− = , ( , )Cay G S  is undirected. If S is a generating 

system of G, ( , )Cay G S  is connected. Two subsets S and T of group G are 
called equivalent if there exists a group automorphism of group G mapping S to 
T: S Tα =  for some ( )Aut Gα ∈ . Denote by S T≡ . If S and T are equivalent, 
Cayley graphs ( , )Cay G S  and ( , )Cay G S  are isomorphic. 

The right regular representation ( )R G  of group G is a subgroup of the the 
automorphism group A of the Cayley graph X. In particular by [1], if ( )R G  is 
the full automorphism group of X then ( , )X Cay G S=  is called a GRR (for 
graphical regular representation) of G. A Cayley graph is normal if ( )R G  is a 
normal subgroup of A. ( )R G  is transitive on G hence Cayley graph is ver-
tex-transitive. Denote ( , ) { ( ) | }Aut G S Aut G S Sαα= ∈ = , the set of all auto-
morphism of group G preserving S. ( , )Aut G S  is also a subgroup of the auto-
morphism group of Cayley graph. In particular, ( , )Aut G S  is a subgroup of 
stabilizer of vertex identity 1A . By [2] the normalizer of ( )R G  in A is the 
semi-direct product of ( )R G  and ( , )Aut G S : ( ( )) ( ) ( , )AN R G R G Aut G S=  . 
By [3] Proposition 1.5 X is normal if and only if 1 ( , )A Aut G S= . Cayley graph X 
is normal if and only if the automorphism group of X is ( ) ( , )A R G Aut G S=  . 
Normality provides an approach to find automorphism groups of Cayley 
graphs. 

In [4] the automorphism group of connected cubic Cayley graphs of order 
4p is given. In [5] the automorphism group of connected cubic Cayley graphs 
of order 32p is given. In this paper, the automorphism group of connected cu-
bic Cayley graphs of dihedral groups of order 2n mp  where 2n ≥  and p is 
odd is given. 

Summarising theorem 4.1, 4.2, 4.3 in Part 4 gives the main results. 
Theorem 1.1. Let 

2n mp
G D=  be a dihedral group where 2n ≥  and p is an 

odd prime number. S is an inverse-closed generating system of three elements 
without identity element. Then Cayley graph ( , )Cay G S  is GRR except the fol-
lowing cases: 
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1) { , , }kS b ab a b≡  where ( )2 11 mod 2n mk p−≡  and 1gcd( , 2 ) 1n mk p− = , 

2( ) :Aut X G≅  . 
2) 

12{ , , }
n mpS b ab a b
−

≡ , 
2

1
2
2 2

( )
n m

n m
p

p
Aut X D

−

−≅   . 
3) 1{ , , }S a a b−≡ , 2( ) :Aut X G=  . 
4) 

22{ , , }
n mpS b ab a
−

≡ , 2( ) :Aut X G=  . 

2. Preliminary 

Results used to prove main theorem are listed here. 
Proposition 2.1. Suppose that 2 1 1, | 1,nG a b a b b ab a− −=< = = = >  is a dihe-

dral group, then the automorphism group ( )Aut G  of G has the following 
properties. 

1) Any automorphism of G can be defined as ia a  and jb a b  where 
*
ni∈  and nj∈ . 

2) *( ) n nAut G α β=< > < >≅     where  
*: , ; : , ,i
na a b ab a a b b iα β ∈     . 

Proposition 2.2. Suppose G is a finite group and subsets S T≡ , then 
( , ) ( , )Cay G S Cay G T≅ . 

Proposition 2.3. Let 2 1 1, | 1,nG a b a b b ab a− −=< = = = >  be the dihedral 
group of order 2n. Subsets 1{ , , } { , , }k kb ab a b b ab a b−≡ . 

Proof Let 1( ) : ,Aut G a a b abσ −∈    then 1{ , , } { , , }k kb ab a b b ab a bσ −= .  
The following sufficient and necessary condition of normality of Cayley graph 

is from paper [6]. 
Proposition 2.4. Let ( , )X Cay G S=  be connected. Then X is a normal Cay-

ley graph of G if and only if the following conditions are satisfied: 
1) For each 1Aϕ ∈  there exists ( )Aut Gσ ∈  such that 

1 1(1) (1)| |X Xϕ σ= ; 
2) For each 1Aϕ ∈ , 

1 1(1) (1)| 1X Xϕ =  implies 
2 2(1) (1)| 1X Xϕ = . 

A classification of locally primitive Cayley graphs of dihedral groups from 
paper [7] will be used. 

Proposition 2.5. Let X be a locally-primitive Cayley graph of a dihedral 
group of order 2n. Then one of the following statements is true, where q is a 
prime power. 

1) X is 2-arc-transitive, and one of the following holds: 
a) 2 ,,n n nX K K=  or , 2n nK nK− ; 
b) (11,5,2)X =  or (11,6,2) , the incidence or non-incidence graph 

of the Hadamard design on 11 points; 
c) ( , )X d q=   or ( , )d q′ , the point-hyperplane incidence or 

non-incidence graph of ( 1)d − -dimension projective geometry ( 1, )PG d q− , 
where 3d ≥ ; 

d) 2
1

d
qX K += , where d is a divisor of 

1
2

q −
 if 1q ≡  (mod 4), and a divisor 

of 1q −  if 3q ≡  (mod 4) respectively. 
2) 2 , ,n r kX =   is a normal Cayley graph and is not 2-arc-transitive, where 

1 2
1 2 13see et

sn r p p p= ≥  with 1 2, , , , sr p p p  distinct odd primes, 1t ≤ , 1s ≥  
and | ( 1)ir p −  for each i. There are exactly 1( 1)sr −−  non-isomorphism such 
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graphs for a given order 2n. 

3. Lemmas and Propositions 

In the following, group G means that 
12 2 1 1, | 1,

n mpG a b a b b ab a
− − −=< = = = >  

be dihedral group of order 2n mp  where 2n ≥  and p is an odd prime number. 
Proposition 3.1. If { , , }i j rS a b a b a b=  is a generating system of G of three 

elements, then { , , }kS b ab a b≡  for some 12 2 1n mk p−≤ ≤ − . 
There are two types of S classified by the number of subsets of two elements 

generating G. 
Type 1: S has only one subset of two elements generating G. 
Type 2: S has exactly two subsets of two elements generating G. In this case, 

{ , , }kS b ab a b≡  where 1gcd( , 2 ) 1n mk p− = .  
The proof of Proposition 3.1 will be done by the following three lemmas. 
Lemma 3.1. If { , , }i j rS a b a b a b=  is a generating system of G of three ele-

ments, then S is equivalent to a subset of type { , , }kb ab a b  for some 
12 2 1n mk p−≤ ≤ − .  

Proof By proposition 2.1 in preliminary, automorphism group Aut(G) of di-
hedral group G is transitive on the set of involutions 1{ | 0 2 1}i n ma b i p−≤ ≤ − . 
One may assume that b S∈  and { , , }i jS b a b a b=  be a generating system of G 
of three elements. S has three subsets of two elements: { , },{ , }i jb a b b a b  and 
{ , }i ja b a b . 

Note that, subset T G⊂  is a generating system of G if and only if Tα  is a 
generating system of G for any ( )Aut Gα ∈ . 

Suppose that subset { , }xb a b  ( x i=  or j ) generates G. Let ( )Aut Gα ∈ : 
,xa a b b  , then { , , } { , , }k i jb ab a b b a b a bα =  for some 0,1k ≠ . Hence 

{ , , }kS b ab a b≡ . 
Assume that both subset { , }ib a b  and { , }jb a b  do not generate G. Next will 

show that { , }i ja b a b  must be able to generate G. 
gcd( , ), , ,i j i j i jG S b a b a b a a b a b=< >=< >=< >< >=< >< > . Hence gcd( , )i j  

and 12n mp−  are mutually prime. 
, i iG b a b a b≠< >=< >< > . Hence i  and 12n mp−  are not mutually prime. 

Similarly, , jG b a b≠< >  implies that j  and 12n mp−  are also not mutually 
prime. 

1(gcd( , ), 2 ) 1n mi j p− = , 1( , 2 ) 1n mi p− ≠  and 1( , 2 ) 1n mj p− ≠  imply that, for i
and j , one number is power of 2 and the other one is power of p. Thus i j−  
and 12n mp−  are mutually prime. 

Hence, { , }i ja b a b  is a generating system of G since  
,i j i j ia b a b a a b G−< >=< >< >= . 

Let ( )Aut Gα ∈ : ,i j ja a b a b−
  . Then { , , } { , , }k i jb ab a b b a b a bα =  for 

some k. { , , }kS b ab a b≡ .   
Corollary 3.1. If { , , }i j rS a b a b a b=  is a generating system of G of three ele-

ments, there exists at least one subset of two elements generating G. 
Lemma 3.2. If { , , }i j rS a b a b a b=  is a generating system of G of three ele-
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ments, there are only one or two subsets of two elements of S generating G. 
Proof By Lemma 3.1, we assume that { , , }kS b ab a b=  where 0,1k ≠ . S has 

three subsets of two elements: { , },{ , }kb ab b a b  and { , }kab a b . Next we will 
show that it is impossible that all three subsets of two elements generating G. 

, k kb a b a b< >=< >< >  is a dihedral subgroup of G. 1, k kab a b a ab−< >=< >< >  
is also a dihedral subgroup of G. 

For k  and 1k − , one is an even number and the other one is an odd 
number. The orders of elements ka  and 1ka −  are different: 1( ) ( )k ka a −≠  . 
This implies that at least one subset of { , }kb a b and { , }kab a b  does not gener-
ate G. 

Hence there are only one or two subsets of two elements of S generating G.   
Lemma 3.3. Let { , , }i j rS a b a b a b=  be a generating system of G of three ele-

ments and S has two subsets of two elements generating G. If { , , }kS b ab a b≡ , 
either 1gcd( , 2 ) 1n mk p− =  or 1gcd(1 ,2 ) 1n mk p−− = . 

Proposition 3.2. Suppose that { , , }i j rS a b a b a b=  is a generating system of G 
of three elements and { , , }kS b ab a b≡ . 

(1) If S has only one subset of two elements generating G, then ( , ) 1Aut G S = . 
(2) If S has two subsets of two elements generating G, then ( , ) 1Aut G S =  

except the following two cases. 2( , )Aut G S ≅   if 2 11(mod 2 )n mk p−≡  and  
1gcd( , 2 ) 1n mk p− = ; 2( , )Aut G S ≅   if 2 1(1 ) 1(mod 2 )n mk p−− ≡  and  

1gcd(1 ,2 ) 1n mk p−− = . 
Proof (1) If there is only one subset of two elements in { , , }kS b ab a b=  gene-

rating G, then < , >kG b a b≠ , < , >kG ab a b≠  and ,G b ab=< > . For any 
( , )Aut G Sσ ∈ , { , }b ab σ  is also a generating system of G. { , } { , }b ab b abσ = . 

Since S Sσ = . Hence { , }ka b S b ab= −  is fixed by σ . ( )k ka b a bσ = . 
If b bσ =  and ( )ab abσ =  then ( ) ( )a abb ab b abb aσ σ σ σ= = = = , hence 

1σ = . 
If b abσ =  and ( )ab bσ = , then 1( ) ( )a abb ab b bab aσ σ σ σ −= = = = . This 

implies that 1( ) ( )k k k k ka b a b a b a ab a bσ σ σ − −= = = = . Thus 1k ka a −= . This is a 
contradiction. For k and 1 k− , one is an even number and the other one is an 
odd number. This implies that the orders of the element ka  and 1 ka −  are not 
equal: 1( ) ( )k ka a −≠  . 

Hence ( , ) 1Aut G S = . 
(2) If there are two subsets of two elements of S generating G, we assume that 

1gcd( , 2 ) 1n mk p− = . , , kG b ab b a b=< >=< >  and , kG ab a b≠< > . 
Since subset { , }kab a b  is the only subset of two elements not generating G, 

{ , } { , }k kab a b ab a bσ =  for any ( , )Aut G Sσ ∈ . { , }kb S ab a b= −  is fixed by σ . 
( )ab abσ =  or ka b . 

If ( )ab abσ = , then 1σ = . 
If ( ) kab a bσ = , then ( ) ( ) k ka abb ab b a bb aσ σ σ σ= = = = .  

2
( ) ( ) ( )k k k k ka b a b a b a b abσ σ σ= = = = . So 2 11(mod 2 )n mk p−≡ . 

Hence ( , ) 1Aut G S =  if 2 11(mod 2 )n mk p−≡/ . 2( , )Aut G S ≅   if  
2 11(mod 2 )n mk p−≡ . 
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Similarly, when 1gcd(1 ,2 ) 1n mk p−− = , ( , ) 1Aut G S =  if  
2 1(1 ) 1(mod 2 )n mk p−− ≡/ . 2( , )Aut G S ≅   if 2 1(1 ) 1(mod 2 )n mk p−− ≡ .   

Proposition 3.3. Suppose that S is inverse-closed generating system of three 
elements of G, then 1{ , , }S a a b−≡ , 

22{ , , }
n mpb ab a
−

 or { , , }( 0,1)kb ab a b k ≠ . 
Proof Since S contains three elements and inverse-closed, there must be an 

involution in S. There are two orbits of involutions in G under the action of 
group automorphism ( )Aut G : 

22{ }
n mpa
−

 and 1{ | 0 2 1}i n ma b i p−≤ ≤ − . 
Suppose that 

22n mpa S
−

∈ . 
22{ }

n mpS a
−

−  is also inverse-closed hence it is a set 
of two involutions from orbit 1{ | 0 2 1}i n ma b i p−≤ ≤ − . S generating G implies 
that 

22{ }
n mpS a
−

−  also generates G. We get 
22{ , , }

n mpS b ab a
−

≡ . 
Suppose that S contains an involution from 1{ | 0 2 1}i n ma b i p−≤ ≤ − . 

( )Aut G  is transitive on this orbit, we can assume that b S∈ . If { }S b−  con-
tains an involution, { , , }( 0,1)kS b ab a b k≡ ≠  by Proposition 3.1 and 2.1. If 

{ }S b−  contains no involutions, 1{ , , }S b a a−≡  by Proposition 2.1.   

4. Results 

By Proposition 3.3, we only need to discuss ( , )X Cay G S=  for  
21 2{ , , },{ , , }

n mpS a a b b ab a
−−=  and { , , }( 0,1)kb ab a b k ≠ . 

Firstly, we discuss ( ,{ , , })( 0,1)kX Cay G b ab a b k= ≠ . 
Theorem 4.1. Suppose that { , , }i j mS a b a b a b=  is a generating system of 

three involutions of G and { , , }kS b ab a b≡ . 
X is GRR except the following cases. 
(1) When 2gcd( , 2 ) 1n mk p− = , 2 11(mod 2 )n mk p−≡  and 22 1n mk p−≠ +  then 

2( ) ( ) :Aut X R G≅  . 
(2) When 2gcd(1 ,2 ) 1n mk p−− = , 2 1(1 ) 1(mod 2 )n mk p−− ≡  and 22n mk p−≠  

then 2( ) ( ) :Aut X R G≅  . 
(3) If 22 1n mk p−= +  or 22n mk p−= , then 

2

1
2
2 2

( )
n m

n m
p

p
Aut X D

−

−≅   .  
Proof Let { , , }kS b ab a b=  where 12 2 1n mk p−≤ ≤ −  and ( , )X Cay G S= . 

Classify X in two cases: there are 4-cycles in X and there is no 4-cycle in X. 
(1) Note that 1 1 1

2 (1) { , , , , , }k k k kX a a a a a a− − − −=  is the set of vertices at dis-
tance 2 from vertex 1. 

If there are 4-cycles in X, some vertices in 2 (1)X  are coincident. Solving 
1ka a −=  and 1 1 ka a− −=  we get 2k = . Solving ka a−=  and 1ka a−=  we get 

1k = − . Solving k ka a−=  we get 22n mk p−= . Solving 1 1k ka a− −=  we get  
22 1n mk p−= + . There is no solution for other equations. Note that −1 and 

22 1n mp− +  are two solutions of equation 2 11(mod 2 )n mk p−≡ . 2 and 22n mp−  
are two solutions of equation 2 1(1 ) 1(mod 2 )n mk p−− ≡ . Since  

2 1{ , , } { , , }b ab a b b ab a b−≡  and 
2 22 2 1{ , , } { , , }

n m n mp pb ab a b b ab a b
− − +≡  we only dis-

cuss 2k =  and 22n mk p−= . 
(1.1) When 2k = , 1 22n mp

X C K−= ×  is a cylinder as Figure 1. Hence  

22n mp
A D≅ × . 

(1.2) When 22n mk p−= , X is a thickened 2-cover of the cycle graph 12n mp
C −  

as Figure 2. All 4-cycles in X form an imprimitive block system of A and the  
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Figure 1. 2( ,{ , , })X Cay G b ab a b= . 
 

 

Figure 2. 
22( ,{ , , })

n mpX Cay G b ab a b
−

= . 
 
kernel of the action of A on the imprimitive block system is isomorphic to 

22
2

n mp−
 . Thus 

2

1
2
2 2

n m

n m
p

p
A Z D

−

−≅  . 
(2) Suppose that there is no 4-cycle in X. We will count 6-cycles passing 

through vertex 1. 
1 1 2 1 1 2 2 1 2

3 (1) { , , , , , , , , }k k k k k k kX a b a b a b a b a b a b a b a b a b− − − − − + −=  is the set of  
vertices at distance 3 from vertex 1. 

a) Solving 2 2k ka b a b−=  and 2 1 1k ka b a b− −= , we get 13 2(mod 2 )n mk p−≡ . 
Solving 2 1k ka b a b−=  and 2 1k ka b a b− −= , we get 13 1(mod 2 )n mk p−≡ . Solving  

1 2ka b a b− =  and 1 2 ka b a b− −=  we get 3k = . Solving 2ka a− =  and  
1 1ka a+ −=  we get 2k = − . There is no solution for other equations. 

The induced subgraph of the set of vertices at distance less than or equal to 3 
from vertex 1 in X are isomorphic in these four cases. The following uses 

3( ,{ , , })Cay G b ab a b  as representative to discuss. See Figure 3. 
We count the number of 6-cycles passing through vertex 1. There are four 

6-cycles through edge {1, }b . There are five 6-cycles through edge {1, }ab . 
There are three 6-cycles through edge 3{1, }a b . For any 1Aσ ∈ , 1A  fixes 
edged 3{1, },{1, },{1, }b ab a b  and hence σ  fixes vertices set 

3
1(1) { , , }X b ab a b=  pointwise. σ  fixes all vertices on X by the connectivity of 

X and the transitivity of A on ( )V X . Hence 1 1A = . X is GRR. 
b) Suppose that 3k ≡/ , 2k ≡ −/ , 3 2k ≡/ , 3 1k ≡/  (mod 12n mp− ). Then the 

induced subgraph of the set of vertices at distance less than or equal to 3 from 
vertex 1 in X is the as Figure 4. 

Firstly, show that the action of 1A  on 1(1)X  is faithful. 
Let 1Aσ ∈  and σ  fixes 1(1)X  pointwise. Passing through vertices {1, , }b ab ,  
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Figure 3. 3induced subgraph of ( ,{ , , })X Cay G b ab a b= . 
 

 

Figure 4. induced subgraph ( ,{ , , })kX Cay G b ab a b= . 
 
there is a unique 6-cycle 1 1

1[1, , , , , ]k k kb a a b a ab C− −
 . Passing through vertices 

{1, , }kb a b , there is a unique 6-cycle 1 1
2[1, , , , , ]k k kb a a b a a b C− −

 . Passing through 
vertices {1, , }kab a b , there is a unique 6-cycle 1 1

3[1, , , , , ]k k kab a a b a a b C− + −
 . For 

any Aα ∈ , the image of a cycle of length l under α  is also a cycle of length l. 
Note that 1Aσ ∈  fixes {1, , , }kb ab a b  pointwise, hence 1Cσ  is also a 6-cycle 
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passing through vertices 1, ,b ab . Hence 1 1C Cσ = . Follow the same argument, 

2 2 3 3,C C C Cσ σ= = . So σ  fixes all vertices on cycles 1 2 3, ,C C C . In particular, 
σ  fixes 2 (1)X  pointwise. By the connectivity of X and the transitivity of A on 

( )V X , we get 1A  acts on 1(1)X S=  faithfully. 
Next, show that X is normal. 

1A  acting on 1(1)X  faithfully implies that 1A  is isomorphic to a subgroup 
of symmetric group of degree 3. 1 3A S . 

If 1 3A A≅  or 3S , then 1A  is transitive on 1(1)X . Since 1| (1) | 3X =  is 
prime, X is a locally-primitive Cayley graph. Theorem 1.5 in [7] gives a classifi-
cation of locally primitive Cayley graphs of dihedral groups which has been 
listed as Proposition 2.5 in this paper. 

Since the order of G is 2n mp  where 2n ≥  and p is odd, ( , )Cay G S  is not 
on the list of locally-primitive Cayley graphs. Thus, 1A  is not transitive on 

1(1)X . 1 1A ≅   or 2 . 1| : ( ) | | | 1A R G A= =  or 2, ( )R G A . X is normal. 
( ) ( , )A R G Aut G S=  . 

By Proposition 3.2 and part(1) of this proof, 2( ) :A R G=   if  
2 11(mod 2 )n mk p−≡ , 22 1n mk p−≠ +  and 1gcd( , 2 ) 1n mk p− =  or  

2 1(1 ) 1(mod 2 )n mk p−− ≡ , 22n mk p−≠  and 1gcd(1 ,2 ) 1n mk p−− = .   
Theorem 4.2. Suppose that 1{ , , }S a a b−≡ , then X is normal and 2:A G=  . 
Proof Suppose that 1{ , , }S a a b−≡  and ( , )X Cay G S= . Cayley graph X is 

also a cylinder as Figure 5. Hence 22n mp
A D= × .   

Theorem 4.3. Suppose that 
22{ , , }

n mpS b ab a
−

≡ , then X is normal and 

2:A G=  . 
Proof Suppose that 

22{ , , }
n mpS b ab a
−

≡  and ( , )X Cay G S= . The Cayley 
graph is an Möbius ladder as Figure 6. Hence, 22

= n mp
A D  .   

 

 

Figure 5. 1( ,{ , , })X Cay G a a b−=  
 

 

Figure 6. 
21 2( ,{ , , })

n mX Cay G b ab a p
−−=  
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