

Automorphism Groups of Cubic Cayley Graphs of Dihedral Groups of Order 2ⁿp^m (n ≥ 2 and p Odd Prime)

Xianfen Kong

Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, China Email: xianfen.kong@xjtlu.edu.cn

How to cite this paper: Kong, X.F. (2020) Automorphism Groups of Cubic Cayley Graphs of Dihedral Groups of Order $2^n p^m$ ($n \ge 2$ and p Odd Prime). *Journal of Applied Mathematics and Physics*, **8**, 3075-3084. https://doi.org/10.4236/jamp.2020.812226

Received: December 10, 2020 Accepted: December 28, 2020 Published: December 31, 2020

Abstract

For a prime *p*, let $D_{\gamma^n, m}$ be the dihedral group

 $\langle a,b | a^{2^{n-1}p^m} = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ of order $2^n p^m$ and Cay(G,S) be a connected cubic Cayley graph on *G* with respect to a generating system of three elements *S* such that *S* does not contain the identity and $S^{-1} = S$. In this paper, the automorphism groups of cubic Cayley graphs of dihedral groups of order $2^n p^m$ where $n \ge 2$ and *p* is odd prime are completely given. When $S = \{b, ab, a^{2^{n-1}p^m}b\}$, the automorphism group $Aut(Cay(G,S)) \cong \mathbb{Z}_2^{2^{n-2}p^m} \rtimes D_{2^{n-1}p^m}$. Except in this case, the automorphism group Aut(Cay(G,S)) is the semidirect product $R(G) \rtimes Aut(G,S)$ where R(G) is the right regular representation of *G* and $Aut(G,S) = \{\alpha \in Aut(G) | S^\alpha = S\}$.

Keywords

Automorphism Group, Dihedral Group, Cayley Graph

1. Introduction

An *automorphism* of a graph X is a permutation σ of vertex set of X with the property that, for any vertices u and v, we have $\{u^{\sigma}, v^{\sigma}\}$ is an edge of X if and only if $\{u, v\}$ is the edge of X. As usual, we use u^{σ} to denote the image of the vertex u under the permutation σ and $\{u, v\}$ to denote the edge joining vertices u and v. All automorphisms of graph X form a group under the composite operation of mapping. This group is called the *full automorphism group* of graph X, denoted by A in this paper.

For a graph X, we denote vertex set and edge set of X by V(X) and E(X). A_v is the stabilizer of vertex v in the automorphism group of X. $X_k(v)$ denotes the set of vertices at distance k from vertex v. D_{2n} means the dihedral group of order 2n. A graph is called *vertex-transitive* if its automorphism group A is transitive on the vertex set V(X). An *s-arc* in a graph is an ordered (s+1)-tuple $(v_0, v_1, ..., v_{s-1}, v_s)$ of vertices of the graph such that v_{i-1} is adjacent to v_i for $1 \le i \le s$ and $v_{i-1} \ne v_{i+1}$ for $1 \le i \le s$. A graph is said to be *s-arc-transitive* if the automorphism group A acts transitively on the set of all s-arcs in X. When s = 1, 1-arc called *arc* and 1-arc transitive is called *arc-transitive* or *symmetric*.

Throughout this paper, graphs are finite, simple and undirected.

Let G be a finite group and S be a subset of G such that $1 \notin S$. The Cayley graph X = Cay(G,S) on G with respect to S is defined to have vertex set V(X) = G and edge set $E(X) = \{\{g, sg\} | g \in G \text{ and } s \in S\}$. Let set

 $S^{-1} = \{s^{-1} | s \in S\}$. If $S^{-1} = S$, Cay(G, S) is undirected. If S is a generating system of G, Cay(G, S) is connected. Two subsets S and T of group G are called *equivalent* if there exists a group automorphism of group G mapping S to T: $S^{\alpha} = T$ for some $\alpha \in Aut(G)$. Denote by $S \equiv T$. If S and T are equivalent, Cayley graphs Cay(G, S) and Cay(G, S) are isomorphic.

The right regular representation R(G) of group G is a subgroup of the the automorphism group A of the Cayley graph X. In particular by [1], if R(G) is the full automorphism group of X then X = Cay(G,S) is called a GRR (for graphical regular representation) of G. A Cayley graph is normal if R(G) is a normal subgroup of A. R(G) is transitive on G hence Cayley graph is vertex-transitive. Denote $Aut(G,S) = \{\alpha \in Aut(G) | S^{\alpha} = S\}$, the set of all automorphism of group G preserving S. Aut(G,S) is also a subgroup of the automorphism group of Cayley graph. In particular, Aut(G,S) is a subgroup of stabilizer of vertex identity A_1 . By [2] the normalizer of R(G) in A is the semi-direct product of R(G) and $Aut(G,S) \colon N_A(R(G)) = R(G) \rtimes Aut(G,S)$. By [3] Proposition 1.5 X is normal if and only if $A_1 = Aut(G,S) \cdot Cayley$ graph X is normal if and only if the automorphism group of Cayley graph and provides an approach to find automorphism groups of Cayley graphs.

In [4] the automorphism group of connected cubic Cayley graphs of order 4p is given. In [5] the automorphism group of connected cubic Cayley graphs of order 32p is given. In this paper, the automorphism group of connected cubic Cayley graphs of dihedral groups of order $2^n p^m$ where $n \ge 2$ and p is odd is given.

Summarising theorem 4.1, 4.2, 4.3 in Part 4 gives the main results.

Theorem 1.1. Let $G = D_{2^n p^m}$ be a dihedral group where $n \ge 2$ and p is an odd prime number. *S* is an inverse-closed generating system of three elements without identity element. Then Cayley graph Cay(G, S) is *GRR* except the following cases:

1) $S \equiv \{b, ab, a^k b\}$ where $k^2 \equiv 1 \pmod{2^{n-1} p^m}$ and $\gcd(k, 2^{n-1} p^m) = 1$, $Aut(X) \cong G : \mathbb{Z}_2$.

- 2) $S = \{b, ab, a^{2^{n-1}p^m}b\}, Aut(X) \cong \mathbb{Z}_2^{2^{n-2}p^m} \rtimes D_{2^{n-1}p^m}.$ 3) $S = \{a, a^{-1}, b\}, Aut(X) = G : \mathbb{Z}_2.$
- 4) $S = \{b, ab, a^{2^{n-2}p^m}\}, Aut(X) = G: \mathbb{Z}_2.$

2. Preliminary

Results used to prove main theorem are listed here.

Proposition 2.1. Suppose that $G = \langle a, b | a^n = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ is a dihedral group, then the automorphism group Aut(G) of G has the following properties.

1) Any automorphism of *G* can be defined as $a \mapsto a^i$ and $b \mapsto a^j b$ where $i \in \mathbb{Z}_n^*$ and $j \in \mathbb{Z}_n$.

2) $Aut(G) = <\alpha > \rtimes <\beta > \cong \mathbb{Z}_n \rtimes \mathbb{Z}_n^*$ where

 $\alpha: a \mapsto a, b \mapsto ab; \beta: a \mapsto a^i, b \mapsto b, i \in \mathbb{Z}_n^*.$

Proposition 2.2. Suppose G is a finite group and subsets $S \equiv T$, then $Cay(G,S) \cong Cay(G,T)$.

Proposition 2.3. Let $G = \langle a, b | a^n = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ be the dihedral group of order 2*n*. Subsets $\{b, ab, a^k b\} \equiv \{b, ab, a^{1-k}b\}$.

Proof Let $\sigma \in Aut(G)$: $a \mapsto a^{-1}, b \mapsto ab$ then $\{b, ab, a^kb\}^{\sigma} = \{b, ab, a^{1-k}b\}$.

The following sufficient and necessary condition of normality of Cayley graph is from paper [6].

Proposition 2.4. Let X = Cay(G, S) be connected. Then X is a normal Cayley graph of *G* if and only if the following conditions are satisfied:

1) For each $\varphi \in A_1$ there exists $\sigma \in Aut(G)$ such that $\varphi|_{X_1(1)} = \sigma|_{X_1(1)}$;

2) For each $\varphi \in A_1$, $\varphi|_{X_1(1)} = 1_{X_1(1)}$ implies $\varphi|_{X_2(1)} = 1_{X_2(1)}$.

A classification of locally primitive Cayley graphs of dihedral groups from paper [7] will be used.

Proposition 2.5. Let X be a locally-primitive Cayley graph of a dihedral group of order 2n. Then one of the following statements is true, where q is a prime power.

1) *X* is 2-arc-transitive, and one of the following holds:

a) $X = K_{2n}, K_{n,n}$ or $K_{n,n} - nK_2$;

b) $X = \mathcal{HD}(11,5,2)$ or $\mathcal{HD}(11,6,2)$, the incidence or non-incidence graph of the Hadamard design on 11 points;

c) $X = \mathcal{PH}(d,q)$ or $\mathcal{PH}'(d,q)$, the point-hyperplane incidence or non-incidence graph of (d-1)-dimension projective geometry PG(d-1,q), where $d \ge 3$;

d) $X = K_{q+1}^{2d}$, where *d* is a divisor of $\frac{q-1}{2}$ if $q \equiv 1 \pmod{4}$, and a divisor of q-1 if $q \equiv 3 \pmod{4}$ respectively.

2) $X = \mathcal{ND}_{2n,r,k}$ is a normal Cayley graph and is not 2-arc-transitive, where $n = r^t p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s} \ge 13$ with r, p_1, p_2, \cdots, p_s distinct odd primes, $t \le 1$, $s \ge 1$ and $r \mid (p_i - 1)$ for each *i*. There are exactly $(r - 1)^{s-1}$ non-isomorphism such

graphs for a given order 2*n*.

3. Lemmas and Propositions

In the following, group *G* means that $G = \langle a, b | a^{2^{n-1}p^m} = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ be dihedral group of order $2^n p^m$ where $n \ge 2$ and *p* is an odd prime number.

Proposition 3.1. If $S = \{a^i b, a^j b, a^r b\}$ is a generating system of G of three elements, then $S = \{b, ab, a^k b\}$ for some $2 \le k \le 2^{n-1} p^m - 1$.

There are two types of S classified by the number of subsets of two elements generating G.

Type 1: S has only one subset of two elements generating G.

Type 2: *S* has exactly two subsets of two elements generating *G*. In this case, $S \equiv \{b, ab, a^kb\}$ where $gcd(k, 2^{n-1}p^m) = 1$.

The proof of Proposition 3.1 will be done by the following three lemmas.

Lemma 3.1. If $S = \{a^i b, a^j b, a^r b\}$ is a generating system of G of three elements, then S is equivalent to a subset of type $\{b, ab, a^k b\}$ for some $2 \le k \le 2^{n-1} p^m - 1$.

Proof By proposition 2.1 in preliminary, automorphism group Aut(G) of dihedral group G is transitive on the set of involutions $\{a^ib \mid 0 \le i \le 2^{n-1}p^m - 1\}$. One may assume that $b \in S$ and $S = \{b, a^ib, a^jb\}$ be a generating system of G of three elements. S has three subsets of two elements: $\{b, a^ib\}, \{b, a^jb\}$ and $\{a^ib, a^jb\}$.

Note that, subset $T \subset G$ is a generating system of G if and only if T^{α} is a generating system of G for any $\alpha \in Aut(G)$.

Suppose that subset $\{b, a^{x}b\}$ (x = i or j) generates G. Let $\alpha \in Aut(G)$: $a \mapsto a^{x}, b \mapsto b$, then $\{b, ab, a^{k}b\}^{\alpha} = \{b, a^{i}b, a^{j}b\}$ for some $k \neq 0, 1$. Hence $S \equiv \{b, ab, a^{k}b\}$.

Assume that both subset $\{b, a^i b\}$ and $\{b, a^j b\}$ do not generate *G*. Next will show that $\{a^i b, a^j b\}$ must be able to generate *G*.

 $G = \langle S \rangle = \langle b, a^i b, a^j b \rangle = \langle a^i, a^j \rangle \langle b \rangle = \langle a^{gcd(i,j)} \rangle \langle b \rangle$. Hence gcd(i,j)and $2^{n-1}p^m$ are mutually prime.

 $G \neq \langle b, a^i b \rangle = \langle a^i \rangle \langle b \rangle$. Hence *i* and $2^{n-1} p^m$ are not mutually prime.

Similarly, $G \neq \langle b, a^j b \rangle$ implies that j and $2^{n-1}p^m$ are also not mutually prime.

 $(\gcd(i, j), 2^{n-1}p^m) = 1$, $(i, 2^{n-1}p^m) \neq 1$ and $(j, 2^{n-1}p^m) \neq 1$ imply that, for *i* and *j*, one number is power of 2 and the other one is power of *p*. Thus i - j and $2^{n-1}p^m$ are mutually prime.

Hence, $\{a^i b, a^j b\}$ is a generating system of G since

 $< a^{i}b, a^{j}b > = < a^{i-j} > < a^{i}b > = G.$

Let $\alpha \in Aut(G)$: $a \mapsto a^{i-j}, b \mapsto a^{j}b$. Then $\{b, ab, a^{k}b\}^{\alpha} = \{b, a^{i}b, a^{j}b\}$ for some k. $S = \{b, ab, a^{k}b\}$.

Corollary 3.1. If $S = \{a^i b, a^j b, a^r b\}$ is a generating system of *G* of three elements, there exists at least one subset of two elements generating *G*.

Lemma 3.2. If $S = \{a^i b, a^j b, a^r b\}$ is a generating system of G of three ele-

ments, there are only one or two subsets of two elements of S generating G.

Proof By Lemma 3.1, we assume that $S = \{b, ab, a^kb\}$ where $k \neq 0, 1$. S has three subsets of two elements: $\{b, ab\}, \{b, a^kb\}$ and $\{ab, a^kb\}$. Next we will show that it is impossible that all three subsets of two elements generating *G*.

 $< b, a^k b >= < a^k > < b >$ is a dihedral subgroup of *G*. $< ab, a^k b >= < a^{k-1} > < ab >$ is also a dihedral subgroup of *G*.

For k and k-1, one is an even number and the other one is an odd number. The orders of elements a^k and a^{k-1} are different: $\circ(a^k) \neq \circ(a^{k-1})$. This implies that at least one subset of $\{b, a^k b\}$ and $\{ab, a^k b\}$ does not generate *G*.

Hence there are only one or two subsets of two elements of S generating G.

Lemma 3.3. Let $S = \{a^i b, a^j b, a^r b\}$ be a generating system of G of three elements and S has two subsets of two elements generating G. If $S = \{b, ab, a^k b\}$, either $gcd(k, 2^{n-1} p^m) = 1$ or $gcd(1-k, 2^{n-1} p^m) = 1$.

Proposition 3.2. Suppose that $S = \{a^i b, a^j b, a^r b\}$ is a generating system of *G* of three elements and $S = \{b, ab, a^k b\}$.

(1) If S has only one subset of two elements generating G, then Aut(G, S) = 1.

(2) If *S* has two subsets of two elements generating *G*, then Aut(G,S) = 1 except the following two cases. $Aut(G,S) \cong \mathbb{Z}_2$ if $k^2 \equiv 1 \pmod{2^{n-1}p^m}$ and $gcd(k, 2^{n-1}p^m) = 1$; $Aut(G,S) \cong \mathbb{Z}_2$ if $(1-k)^2 \equiv 1 \pmod{2^{n-1}p^m}$ and $gcd(1-k, 2^{n-1}p^m) = 1$.

Proof(1) If there is only one subset of two elements in $S = \{b, ab, a^kb\}$ generating G, then $G \neq \langle b, a^kb \rangle$, $G \neq \langle ab, a^kb \rangle$ and $G = \langle b, ab \rangle$. For any $\sigma \in Aut(G,S)$, $\{b, ab\}^{\sigma}$ is also a generating system of G. $\{b, ab\}^{\sigma} = \{b, ab\}$. Since $S^{\sigma} = S$. Hence $a^kb = S - \{b, ab\}$ is fixed by σ . $(a^kb)^{\sigma} = a^kb$.

If $b^{\sigma} = b$ and $(ab)^{\sigma} = ab$ then $a^{\sigma} = (abb)^{\sigma} = (ab)^{\sigma}b^{\sigma} = abb = a$, hence $\sigma = 1$.

If $b^{\sigma} = ab$ and $(ab)^{\sigma} = b$, then $a^{\sigma} = (abb)^{\sigma} = (ab)^{\sigma}b^{\sigma} = bab = a^{-1}$. This implies that $a^{k}b = (a^{k}b)^{\sigma} = (a^{k})^{\sigma}b^{\sigma} = a^{-k}ab = a^{1-k}b$. Thus $a^{k} = a^{1-k}$. This is a contradiction. For k and 1-k, one is an even number and the other one is an odd number. This implies that the orders of the element a^{k} and a^{1-k} are not equal: $\circ(a^{k}) \neq \circ(a^{1-k})$.

Hence Aut(G, S) = 1.

(2) If there are two subsets of two elements of *S* generating *G*, we assume that $gcd(k, 2^{n-1}p^m) = 1$. $G = \langle b, ab \rangle = \langle b, a^k b \rangle$ and $G \neq \langle ab, a^k b \rangle$.

Since subset $\{ab, a^kb\}$ is the only subset of two elements not generating G, $\{ab, a^kb\}^{\sigma} = \{ab, a^kb\}$ for any $\sigma \in Aut(G, S)$. $b = S - \{ab, a^kb\}$ is fixed by σ . $(ab)^{\sigma} = ab$ or a^kb .

If $(ab)^{\sigma} = ab$, then $\sigma = 1$.

If $(ab)^{\sigma} = a^k b$, then $a^{\sigma} = (abb)^{\sigma} = (ab)^{\sigma} b^{\sigma} = a^k b b = a^k$.

 $(a^{k}b)^{\sigma} = (a^{k})^{\sigma}b^{\sigma} = (a^{k})^{k}b = a^{k^{2}}b = ab . \text{ So } k^{2} \equiv 1(\text{mod } 2^{n-1}p^{m}).$ Hence Aut(G,S) = 1 if $k^{2} \not\equiv 1(\text{mod } 2^{n-1}p^{m}).$ $Aut(G,S) \cong \mathbb{Z}_{2}$ if $k^{2} \equiv 1(\text{mod } 2^{n-1}p^{m}).$ Similarly, when $gcd(1-k, 2^{n-1}p^m) = 1$, Aut(G, S) = 1 if

 $(1-k)^2 \not\equiv 1 \pmod{2^{n-1}p^m}$. $Aut(G,S) \cong \mathbb{Z}$, if $(1-k)^2 \equiv 1 \pmod{2^{n-1}p^m}$.

Proposition 3.3. Suppose that *S* is inverse-closed generating system of three elements of *G*, then $S \equiv \{a, a^{-1}, b\}$, $\{b, ab, a^{2^{n-2}p^m}\}$ or $\{b, ab, a^kb\}(k \neq 0, 1)$.

Proof Since *S* contains three elements and inverse-closed, there must be an involution in *S*. There are two orbits of involutions in *G* under the action of group automorphism Aut(G): $\{a^{2^{n-2}p^m}\}$ and $\{a^ib \mid 0 \le i \le 2^{n-1}p^m - 1\}$.

Suppose that $a^{2^{n-2}p^m} \in S$. $S - \{a^{2^{n-2}p^m}\}$ is also inverse-closed hence it is a set of two involutions from orbit $\{a^i b \mid 0 \le i \le 2^{n-1}p^m - 1\}$. S generating G implies that $S - \{a^{2^{n-2}p^m}\}$ also generates G. We get $S \equiv \{b, ab, a^{2^{n-2}p^m}\}$.

Suppose that *S* contains an involution from $\{a^i b \mid 0 \le i \le 2^{n-1} p^m - 1\}$. *Aut*(*G*) is transitive on this orbit, we can assume that $b \in S$. If $S - \{b\}$ contains an involution, $S = \{b, ab, a^k b\}(k \ne 0, 1)$ by Proposition 3.1 and 2.1. If $S - \{b\}$ contains no involutions, $S = \{b, a, a^{-1}\}$ by Proposition 2.1.

4. Results

By Proposition 3.3, we only need to discuss X = Cay(G, S) for $S = \{a, a^{-1}, b\}, \{b, ab, a^{2^{n-2}p^m}\}$ and $\{b, ab, a^kb\}(k \neq 0, 1)$.

Firstly, we discuss $X = Cay(G, \{b, ab, a^k b\})(k \neq 0, 1)$.

Theorem 4.1. Suppose that $S = \{a^i b, a^j b, a^m b\}$ is a generating system of

three involutions of G and $S \equiv \{b, ab, a^kb\}$.

X is GRR except the following cases.

(1) When $gcd(k, 2^{n-2}p^m) = 1$, $k^2 \equiv l(mod 2^{n-1}p^m)$ and $k \neq 2^{n-2}p^m + 1$ then $Aut(X) \cong R(G) : \mathbb{Z}_2$.

(2) When $gcd(1-k, 2^{n-2}p^m) = 1$, $(1-k)^2 \equiv 1 \pmod{2^{n-1}p^m}$ and $k \neq 2^{n-2}p^m$ then $Aut(X) \cong R(G) : \mathbb{Z}_2$.

(3) If $k = 2^{n-2} p^m + 1$ or $k = 2^{n-2} p^m$, then $Aut(X) \cong \mathbb{Z}_2^{2^{n-2} p^m} \rtimes D_{2^{n-1} p^m}$.

Proof Let $S = \{b, ab, a^kb\}$ where $2 \le k \le 2^{n-1}p^m - 1$ and X = Cay(G, S). Classify X in two cases: there are 4-cycles in X and there is no 4-cycle in X.

(1) Note that $X_2(1) = \{a, a^k, a^{-1}, a^{k-1}, a^{-k}, a^{1-k}\}$ is the set of vertices at distance 2 from vertex 1.

If there are 4-cycles in X, some vertices in $X_2(1)$ are coincident. Solving $a = a^{k-1}$ and $a^{-1} = a^{1-k}$ we get k = 2. Solving $a = a^{-k}$ and $a^k = a^{-1}$ we get k = -1. Solving $a^k = a^{-k}$ we get $k = 2^{n-2} p^m$. Solving $a^{k-1} = a^{1-k}$ we get

 $k = 2^{n-2} p^m + 1$. There is no solution for other equations. Note that -1 and $2^{n-2} p^m + 1$ are two solutions of equation $k^2 \equiv 1 \pmod{2^{n-1} p^m}$. 2 and $2^{n-2} p^m$ are two solutions of equation $(1-k)^2 \equiv 1 \pmod{2^{n-1} p^m}$. Since

 $\{b, ab, a^2b\} \equiv \{b, ab, a^{-1}b\}$ and $\{b, ab, a^{2^{n-2}p^m}b\} \equiv \{b, ab, a^{2^{n-2}p^m+1}b\}$ we only discuss k = 2 and $k = 2^{n-2}p^m$.

(1.1) When k = 2, $X = C_{2^{n-1}p^m} \times K_2$ is a cylinder as **Figure 1**. Hence $A \cong D_{2^n p^m} \times \mathbb{Z}_2$.

(1.2) When $k = 2^{n-2} p^m$, X is a thickened 2-cover of the cycle graph $C_{2^{n-1}p^m}$ as **Figure 2**. All 4-cycles in X form an imprimitive block system of A and the

Figure 1. $X = Cay(G, \{b, ab, a^2b\})$.

Figure 2. $X = Cay(G, \{b, ab, a^{2^{n-2}p^m}b\})$.

kernel of the action of A on the imprimitive block system is isomorphic to $\mathbb{Z}_2^{2^{n-2}p^m}$. Thus $A \cong \mathbb{Z}_2^{2^{n-2}p^m} \rtimes D_{2^{n-1}a^m}$.

(2) Suppose that there is no 4-cycle in X. We will count 6-cycles passing through vertex 1.

 $X_{3}(1) = \{a^{-k}b, a^{-1}b, a^{1-k}b, a^{2-k}b, a^{k-1}b, a^{k+1}b, a^{2}b, a^{2k-1}b, a^{2k}b\}$ is the set of vertices at distance 3 from vertex 1.

a) Solving $a^{2k}b = a^{2-k}b$ and $a^{2k-1}b = a^{1-k}b$, we get $3k \equiv 2 \pmod{2^{n-1}p^m}$. Solving $a^{2k}b = a^{1-k}b$ and $a^{2k-1}b = a^{-k}b$, we get $3k \equiv 1 \pmod{2^{n-1}p^m}$. Solving $a^{k-1}b = a^2b$ and $a^{-1}b = a^{2-k}b$ we get k = 3. Solving $a^{-k} = a^2$ and $a^{k+1} = a^{-1}$ we get k = -2. There is no solution for other equations.

The induced subgraph of the set of vertices at distance less than or equal to 3 from vertex 1 in X are isomorphic in these four cases. The following uses $Cay(G, \{b, ab, a^3b\})$ as representative to discuss. See **Figure 3**.

We count the number of 6-cycles passing through vertex 1. There are four 6-cycles through edge $\{1,b\}$. There are five 6-cycles through edge $\{1,ab\}$. There are three 6-cycles through edge $\{1,a^3b\}$. For any $\sigma \in A_1$, A_1 fixes edged $\{1,b\},\{1,ab\},\{1,a^3b\}$ and hence σ fixes vertices set $X_1(1) = \{b,ab,a^3b\}$ pointwise. σ fixes all vertices on X by the connectivity of X and the transitivity of A on V(X). Hence $A_1 = 1$. X is GRR.

b) Suppose that $k \neq 3$, $k \neq -2$, $3k \neq 2$, $3k \neq 1 \pmod{2^{n-1}p^m}$. Then the induced subgraph of the set of vertices at distance less than or equal to 3 from vertex 1 in X is the as **Figure 4**.

Firstly, show that the action of A_1 on $X_1(1)$ is faithful.

Let $\sigma \in A_1$ and σ fixes $X_1(1)$ pointwise. Passing through vertices $\{1, b, ab\}$,

Figure 3. X = induced subgraph of $Cay(G, \{b, ab, a^3b\})$.

Figure 4. X =induced subgraph $Cay(G, \{b, ab, a^kb\})$.

there is a unique 6-cycle $[1,b,a^k,a^{1-k}b,a^{k-1},ab] \triangleq C_1$. Passing through vertices $\{1,b,a^kb\}$, there is a unique 6-cycle $[1,b,a,a^{k-1}b,a^{1-k},a^kb] \triangleq C_2$. Passing through vertices $\{1,ab,a^kb\}$, there is a unique 6-cycle $[1,ab,a^{-1},a^{k+1}b,a^{-k},a^kb] \triangleq C_3$. For any $\alpha \in A$, the image of a cycle of length I under α is also a cycle of length I. Note that $\sigma \in A_1$ fixes $\{1,b,ab,a^kb\}$ pointwise, hence C_1^{σ} is also a 6-cycle

passing through vertices 1, b, ab. Hence $C_1^{\sigma} = C_1$. Follow the same argument, $C_2^{\sigma} = C_2, C_3^{\sigma} = C_3$. So σ fixes all vertices on cycles C_1, C_2, C_3 . In particular, σ fixes $X_2(1)$ pointwise. By the connectivity of X and the transitivity of A on V(X), we get A_1 acts on $X_1(1) = S$ faithfully.

Next, show that *X* is normal.

 A_1 acting on $X_1(1)$ faithfully implies that A_1 is isomorphic to a subgroup of symmetric group of degree 3. $A_1 \leq S_3$.

If $A_1 \cong A_3$ or S_3 , then A_1 is transitive on $X_1(1)$. Since $|X_1(1)|=3$ is prime, X is a locally-primitive Cayley graph. Theorem 1.5 in [7] gives a classification of locally primitive Cayley graphs of dihedral groups which has been listed as Proposition 2.5 in this paper.

Since the order of G is $2^n p^m$ where $n \ge 2$ and p is odd, Cay(G,S) is not on the list of locally-primitive Cayley graphs. Thus, A_1 is not transitive on $X_1(1)$. $A_1 \cong \mathbb{Z}_1$ or \mathbb{Z}_2 . $|A:R(G)| = |A_1| = 1$ or 2, $R(G) \le A$. X is normal. $A = R(G) \rtimes Aut(G,S)$.

By Proposition 3.2 and part(1) of this proof, $A = R(G) : \mathbb{Z}_2$ if $k^2 \equiv 1 \pmod{2^{n-1} p^m}$, $k \neq 2^{n-2} p^m + 1$ and $gcd(k, 2^{n-1} p^m) = 1$ or $(1-k)^2 \equiv 1 \pmod{2^{n-1} p^m}$, $k \neq 2^{n-2} p^m$ and $gcd(1-k, 2^{n-1} p^m) = 1$.

Theorem 4.2. Suppose that $S \equiv \{a, a^{-1}, b\}$, then X is normal and $A = G : \mathbb{Z}_2$.

Proof Suppose that $S = \{a, a^{-1}, b\}$ and X = Cay(G, S). Cayley graph X is also a cylinder as **Figure 5**. Hence $A = D_{2^n p^m} \times \mathbb{Z}_2$. **Theorem 4.3.** Suppose that $S = \{b, ab, a^{2^{n-2} p^m}\}$, then X is normal and

Theorem 4.3. Suppose that $S = \{b, ab, a^{2^{n-p^{n-1}}}\}$, then X is normal and $A = G : \mathbb{Z}_2$.

Proof Suppose that $S \equiv \{b, ab, a^{2^{n-2}p^m}\}$ and X = Cay(G, S). The Cayley graph is an Möbius ladder as **Figure 6**. Hence, $A = D_{2^n p^m} \rtimes \mathbb{Z}_2$.

Figure 5. $X = Cay(G, \{a, a^{-1}, b\})$

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- Godsil, C.D. (1981) GRRs for Nonsolvable Groups. In: *Algebraic Methods in Graph Theory*, Colloq. Math. Soc. Janos Bolyai, Amsterdam-New York, Vol. I, II (Szeged, 1978), 221-239.
- [2] Godsil, C.D. (1981) On the Full Automorphism Group of a Graph. *Combinatorica*, 1, 243-256. <u>https://doi.org/10.1007/BF02579330</u>
- Xu, M.Y. (1998) Automorphism Groups and Isomorphisms of Cayley Digraphs. Discrete Mathematics, 182, 309-319. https://doi.org/10.1016/S0012-365X(97)00152-0
- [4] Zhou, C.X. and Feng, Y.-Q. (2007) Automorphism Groups of Connected Cubic Cayley Graphs of Order 4*p. Algebra Colloquium*, 14, 351-359. <u>https://doi.org/10.1142/S100538670700034X</u>
- [5] Xie, J.H., Yang, X. and Xu, S.J. (2019) The Normality of 3-Valent Cayley Graphs of Dihedral Groups of Order 32*p. Journal of Guangxi Teachers Education University* (*Natural Science Edition*), **36**, 6-12.
- [6] Pan, J.M. (2014) Locally Primitive Cayley Graphs of Dihedral Groups. *European Journal of Combinatorics*, 36, 39-52. <u>https://doi.org/10.1016/j.ejc.2013.06.041</u>
- [7] Wang, C.Q., Wang, D.J. and Xu, M.Y. (1998) Normal Cayley Graphs of Finite Groups. *Science in China (Series A)*, 41, 242-251. <u>https://doi.org/10.1007/BF02879042</u>