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Abstract

For a prime p, let D2n om be the dihedral group

1

<abla® " =p?’=1btab=a’> of order 2"p" and Cay(G,S) be a
connected cubic Cayley graph on G with respect to a generating system of
three elements § such that S does not contain the identity and S™ =S . In
this paper, the automorphism groups of cubic Cayley graphs of dihedral

groups of order 2"p™ where n>2 and p is odd prime are completely
given. When S ={b,ab, a2 " b}, the automorphism group
Aut(Cay(G,S)) ;ZgH P D,:n - Except in this case, the automorphism

group Aut(Cay(G,S)) is the semidirect product R(G)x Aut(G,S) where
R(G) is the right regular representation of Gand

AUL(G,S) ={a € Aut(G)| S = S}.
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1. Introduction

An automorphism of a graph Xis a permutation o of vertex set of X with the
property that, for any vertices z and v; we have {U”,v°} is an edge of Xif and
only if {u,v} is the edge of X. As usual, we use u° to denote the image of the
vertex u under the permutation o and {u,v} to denote the edge joining ver-
tices u and v. All automorphisms of graph X form a group under the composite
operation of mapping. This group is called the full automorphism group of
graph X, denoted by A in this paper.
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For a graph X, we denote vertex set and edge set of X by V(X) and
E(X). A, is the stabilizer of vertex V in the automorphism group of X
X, (v) denotes the set of vertices at distance & from vertex v. D,, means the
dihedral group of order 2n. A graph is called vertex-transitive if its automor-
phism group A is transitive on the vertex set V(X). An s-arcin a graph is an
ordered (s+1)-tuple (Vy,V;,...,V,,V,) of vertices of the graph such that v,_;
is adjacent to v; for 1<i<s and v,, #Vv,, for 1<i<s. A graph is said to
be s-arc-transitive if the automorphism group A acts transitively on the set of
all s-arcs in X. When s=1, 1l-arc called arc and 1-arc transitive is called
arc-transitive or symmetric.

Throughout this paper, graphs are finite, simple and undirected.

Let G be a finite group and S be a subset of G such that 1¢ S . The Cayley
graph X =Cay(G,S) on G with respect to S is defined to have vertex set
V(X)=G andedgeset E(X)={{g,50}|g G andseS}.Letset
St={s"|seS}. If S*=S, Cay(G,S) is undirected. If S is a generating
system of G, Cay(G,S) is connected. Two subsets § and 7T of group G are
called equivalent if there exists a group automorphism of group G mapping Sto
T S =T forsome « e Aut(G).Denoteby S =T .If Sand T are equivalent,
Cayley graphs Cay(G,S) and Cay(G,S) are isomorphic.

The right regular representation R(G) of group G is a subgroup of the the
automorphism group A of the Cayley graph X. In particular by [1], if R(G) is
the full automorphism group of X then X =Cay(G,S) is called a GRR (for
graphical regular representation) of G. A Cayley graph is normalif R(G) isa
normal subgroup of A. R(G) is transitive on G hence Cayley graph is ver-
tex-transitive. Denote Aut(G,S) ={« € Aut(G)|S® =S}, the set of all auto-
morphism of group G preserving S. Aut(G,S) is also a subgroup of the auto-
morphism group of Cayley graph. In particular, Aut(G,S) is a subgroup of
stabilizer of vertex identity A . By [2] the normalizer of R(G) in A is the
semi-direct product of R(G) and Aut(G,S): N,(R(G))=R(G)xAut(G,S).
By [3] Proposition 1.5 Xis normal if and only if A = Aut(G,S) . Cayley graph X
is normal if and only if the automorphism group of Xis A= R(G)x Aut(G,S).
Normality provides an approach to find automorphism groups of Cayley
graphs.

In [4] the automorphism group of connected cubic Cayley graphs of order
4p is given. In [5] the automorphism group of connected cubic Cayley graphs
of order 32p is given. In this paper, the automorphism group of connected cu-
bic Cayley graphs of dihedral groups of order 2"p" where n>2 and p is
odd is given.

Summarising theorem 4.1, 4.2, 4.3 in Part 4 gives the main results.

Theorem 1.1. Let G=D, on be a dihedral group where n>2 and pis an
odd prime number. §is an inverse-closed generating system of three elements
without identity element. Then Cayley graph Cay(G,S) is GRR except the fol-

lowing cases:
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1) S={b,ab,a*b} where kzzl(mOdZ“'lpm) and ged(k,2""'p") =1,
Aut(X)=G:Z,.

2) S={b,ab,a” *"b}, Aut(X)=zZ """ xD
3) S={a,a’,b}, Aut(X)=G:Z,.

4) S={baba” "}, Aut(X)=G:Z,.

2n71 pm N

2. Preliminary

Results used to prove main theorem are listed here.

Proposition 2.1. Suppose that G =<a,b|a" =b*=Lb'ab=a" > is a dihe-
dral group, then the automorphism group Aut(G) of G has the following
properties.

1) Any automorphism of G can be defined as ar>a' and br> a'b where
i€Z, and jeZ,.

2) Aut(G)=<a>x<f>=7Z xZ, where
a:arabrabpara,bbicZ .

Proposition 2.2. Suppose G is a finite group and subsets S =T, then
Cay(G,S) = Cay(G,T).

Proposition 2.3. Let G=<a,b|a"=b*>=1b"ab=a"> be the dihedral
group of order 2n. Subsets {b,ab, akb} ={b, ab, al'kb}.

Prooflet o e Aut(G):ar>a',b>ab then {b,ab,a*h}” ={b,ab,a" *b}.

The following sufficient and necessary condition of normality of Cayley graph
is from paper [6].

Proposition 2.4. Let X =Cay(G,S) be connected. Then Xis a normal Cay-
ley graph of Gif and only if the following conditions are satisfied:

1) Foreach pe A thereexists o e Aut(G) suchthat ¢l =01y s

2) Foreach pe A, ¢l n=1yq implies @[y, y=1y4-

A classification of locally primitive Cayley graphs of dihedral groups from
paper [7] will be used.

Proposition 2.5. Let X be a locally-primitive Cayley graph of a dihedral
group of order 2n. Then one of the following statements is true, where g is a
prime power.

1) Xis 2-arc-transitive, and one of the following holds:

a) X =K, ,K & or K —nK,;

b) X =HD(11,5,2) or HD(11,6,2), the incidence or non-incidence graph
of the Hadamard design on 11 points;

¢) X=PH(,q) or PH'(d,q) , the point-hyperplane incidence or
non-incidence graph of (d —1) -dimension projective geometry PG(d -1,q),
where d >3;

d X= qufl , where d is a divisor of q

of -1 if =3 (mod 4) respectively.

if =1 (mod 4), and a divisor

2) X =ND,,,, isa normal Cayley graph and is not 2-arc-transitive, where
n=r'plpy---pe >13 with r,p,p,, -, p, distinct odd primes, t<1, s>1

and r|(p,—1) for each i There are exactly (r —1)*" non-isomorphism such
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graphs for a given order 2n.

3. Lemmas and Propositions

In the following, group G means that G =<a,b| a? " —p? =1brab=a">
be dihedral group of order 2"p™ where n>2 and pisan odd prime number.

Proposition 3.1. If S={a'b,a’b,a’b} is a generating system of G of three
elements, then S ={b,ab,a"b} forsome 2<k<2"'p™-1.

There are two types of § classified by the number of subsets of two elements
generating G.

Type 1: Shas only one subset of two elements generating G.

Type 2: S has exactly two subsets of two elements generating G. In this case,
S ={b,ab,a*b} where gcd(k,2""p™)=1.

The proof of Proposition 3.1 will be done by the following three lemmas.

Lemma 3.1. If S={a'b,a'b,a'b} is a generating system of G of three ele-
ments, then § is equivalent to a subset of type {b,ab,a“b} for some
2<k<2"'p"-1.

Proof By proposition 2.1 in preliminary, automorphism group Aut(G) of di-
hedral group G is transitive on the set of involutions {a'b|0<i<2""p™ -1}.
One may assume that be S and S={b,a'b,a’b} be a generating system of G
of three elements. S has three subsets of two elements: {b,a'b},{b,a'b} and
{a'b,a’b}.

Note that, subset T = G is a generating system of G if and only if T isa
generating system of Gforany « € Aut(G).

Suppose that subset {b,a*b} (x=i or j) generates G. Let « e Aut(G):
ar>a‘,br>b, then {bab,a*b}* ={b,a'b,a’b} for some k=0,1. Hence
S ={b,ab,a*b}.

Assume that both subset {b,a'b} and {b,a'b} do not generate G. Next will
show that {a'b,a’b} must be able to generate G.

G =<S>=<b,a'b,a'b>=<a',a’ ><b>=<a®") ><ph> . Hence gcd(i, j)
and 2" p" are mutually prime.

G#<b,ab>=<a' ><b>.Hence i and 2"'p" are not mutually prime.

Similarly, G #<b,a'b> implies that j and 2""p" are also not mutually

prime.
(ged(i, j),2" p™) =1, (1,2 p")#1 and (j,2"'p")#1 imply that, for i
and j, one number is power of 2 and the other one is power of p. Thus i— ]

and 2" p" are mutually prime.

Hence, {a‘b, ajb} is a generating system of G since
<ab,alb>=<a""!><ab>=G.

Let ae AUt(G) : a>a i b alb. Then {b,ab,akb}'z ={b, aib,ajb} for
some & S={b,ab,a‘b}.

Corollary 3.1. If S={a'b,a'b,a'b} is a generating system of G of three ele-
ments, there exists at least one subset of two elements generating G.

Lemma 3.2. If S={a'b,a’b,a'b} is a generating system of G of three ele-
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ments, there are only one or two subsets of two elements of S generating G.

ProofBy Lemma 3.1, we assume that S ={b,ab,a‘b} where k#0,1.S has
three subsets of two elements: {b,ab},{b,a"b} and {ab,a*b}. Next we will
show that it is impossible that all three subsets of two elements generating G.

<b,a*b >=<a" ><b> is a dihedral subgroup of G. < ab,a*b >=<a“* ><ab >
is also a dihedral subgroup of G.

For k and k-1, one is an even number and the other one is an odd
number. The orders of elements a* and a“*' are different: o(a*)#o(a“?).
This implies that at least one subset of {b,a“b}and {ab,a*b} does not gener-
ate G.

Hence there are only one or two subsets of two elements of S generating G. W

Lemma 3.3. Let S={a'b,a’b,a'b} be a generating system of G of three ele-
ments and S has two subsets of two elements generating G. If S ={b,ab,a"b},
either ged(k,2"'p™) =1 or gcd(l—k,2" " p")=1.

Proposition 3.2. Suppose that S ={a'b,a’b,a’b} is a generating system of G
of three elements and S ={b,ab,a"b}.

(1) If Shas only one subset of two elements generating G, then Aut(G,S)=1.

(2) If S has two subsets of two elements generating G, then Aut(G,S)=1
except the following two cases. Aut(G,S)=7Z, if k*=1(mod2"*p") and
ged(k,2" p™) =1; Aut(G,S)=7Z, if (1-k)*=1(mod2"*p") and
ged(1-k, 2" p™) =1.

Proof (1) If there is only one subset of two elements in S ={b,ab,a"b} gene-
rating G, then G =z<b,a*b>, G=z<ab,a*b> and G=<b,ab>. For any
o e Aut(G,S), {b,ab}’ is also a generating system of G {b,ab}’ ={b,ab}.
Since S° =S.Hence a‘b=S-{b,ab} isfixedby o. (a“h)” =a‘b.

If b=b and (ab)” =ab then a’ =(abb)’ =(ab)’b’ =abb=a, hence
o=1.

If b=ab and (ab)’ =b, then a° =(abb)” =(ab)’b” =bab=a™". This
implies that a*b=(a*bh)” = (a*)"b” =a*ab=a"*b. Thus a* =a'™. This is a
contradiction. For kand 1-Kk, one is an even number and the other one is an
odd number. This implies that the orders of the element a* and a'* are not
equal: o(@")#o(a"™*).

Hence Aut(G,S)=1.

(2) If there are two subsets of two elements of S generating G, we assume that
ged(k,2" ' p")=1. G=<b,ab>=<b,a*b> and G =<ab,a‘b>.

Since subset {ab,a“b} is the only subset of two elements not generating G,
{ab,a*b}” ={ab,a"b} for any o e Aut(G,S). b=S-{ab,a*b} is fixed by o .
(@b)” =ab or a*b.

If (ab)° =ab,then o=1.

If (ab)’ =a“b,then a” =(abb)” =(ab)’b” =a*bb=a".

(a“b)° = (a“)°b” = (@) b=ab=ab.So k*=1(mod2"*p").

Hence Aut(G,S)=1 if k?#1(mod2"*p"). Aut(G,S)=Z, if

k? =1(mod2"*p™).
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Similarly, when gcd(1-k,2""p™) =1, Aut(G,S)=1 if
(1-k)* £1(mod 2" *p™). Aut(G,S)=7, if (1-k)*=1(mod2"'p™). W

Proposition 3.3. Suppose that §is inverse-closed generating system of three
elements of G, then S ={a,a™,b}, {b,ab,a® "} or {b,ab,a*b}(k =0,1).

Proof Since S contains three elements and inverse-closed, there must be an
involution in 8. There are two orbits of involutions in G under the action of
group automorphism Aut(G) : {azn_2 "1 and {a'b|0<i<2"p™-1}.

Suppose that a " es. S —{aznf2 pm} is also inverse-closed hence it is a set
of two involutions from orbit {a'b|0<i<2""p™ ~1}. S generating G implies
that S —{azn_2 "1 also generates G. We get S ={b,ab,a "y

Suppose that S contains an involution from {a'b|0<i<2"p™-1}.

2n—2

Aut(G) is transitive on this orbit, we can assume that beS.If S—{b} con-
tains an involution, S ={b,ab, akb}(k #0,1) by Proposition 3.1 and 2.1. If
S—{b} contains no involutions, S={b,a,a'} by Proposition2.1. W

4, Results

By Proposition 3.3, we only need to discuss X =Cay(G,S) for
S={a,a’,b}{b,ab,a® """} and {b,ab,a*b}(k =0,1).

Firstly, we discuss X = Cay(G,{b,ab,a*b})(k = 0,1) .

Theorem 4.1. Suppose that S={a'b,a’b,a"b} is a generating system of
three involutions of Gand S ={b,ab,a"b}.

Xis GRR except the following cases.

(1) When ged(k,2"2p™) =1, k?=1(mod2" " p™) and k#2"?p" +1 then
Aut(X)=R(G):Z,.

(2) When ged(1-k,2"%p")=1, (1-k)*>=1(mod2""'p™) and k=2"°p"
then Aut(X)=R(G):Z,.

(G)If k=2"2p"+1 or k=2"2p", then Aut(X)=22 " x D,s -

Proof Let S={b,ab,a“b} where 2<k<2"'p™-1 and X =Cay(G,S) .
Classify Xin two cases: there are 4-cycles in X and there is no 4-cycle in X.

(1) Note that X,(1)={a,a*,a™,a"*,a™,a"*} is the set of vertices at dis-
tance 2 from vertex 1.

If there are 4-cycles in X, some vertices in X,(1) are coincident. Solving
a=a“" and a'=a"* weget k=2. Solving a=a* and a“*=a" we get
k=-1.Solving a* =a™* weget k=2"2p".Solving a"*=a"" we get
k=2"2p" +1. There is no solution for other equations. Note that —1 and
2"2p™ +1 are two solutions of equation k*=1(mod2"*p™). 2 and 2" ?p"
are two solutions of equation (1-k)? =1(mod2" " p™). Since
{b,ab,a%}={b,ab,a'b} and {b,ab,a’ ""b}={b,ab,a” "*'b} we only dis-
cuss k=2 and k=2"%p".

(1.1) When k=2, X = Czn,1pm x K, isa cylinder as Figure 1. Hence
A=D, o X Z,.

(1.2) When k =2"?p", Xis a thickened 2-cover of the cycle graph C o
as Figure 2. All 4-cycles in X form an imprimitive block system of A and the
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aznszpm_ﬂb a2u—2pm_2 a2”72pm+2b

azn—zpm

a2n—2pm72b aQn—zperz a2u—2pmb
Figure 1. X =Cay(G,{b,ab,a’h}).

aznfzpmb a271—‘2p7n+-1 (lzniQT)milb axzn,fapnurzb u/:{(z'n—ﬂ,fm)f] aznf:spwur]b

_ b on—3,.m _ q(on—3,m on—3.m
ab a”! a%b a7y BT g2

Figure 2. X =Cay(G,{b,ab,a” *'b}).

kernel of the action of A on the imprimitive block system is isomorphic to
72" Thus A=zZ""" %D
(2) Suppose that there is no 4-cycle in X. We will count 6-cycles passing

2n71 pm .

through vertex 1.

X,(@) ={a*b,ab,a" *b,a**b,a" *h,a""*h,a’b,a®*'b,a**b} is the set of
vertices at distance 3 from vertex 1.

a) Solving a*b=a?*b and a**'b=a"*b, we get 3k=2(mod2""'p").
Solving a*b=a'"b and a*'b=a™b,weget 3k =1(mod2""p"). Solving
a“'b=a’h and a'b=a’*b weget k=3.Solving a* =a’ and
a*'=a™’ weget k=-2.There is no solution for other equations.

The induced subgraph of the set of vertices at distance less than or equal to 3
from vertex 1 in X are isomorphic in these four cases. The following uses
Cay(G,{b,ab,a’b}) as representative to discuss. See Figure 3.

We count the number of 6-cycles passing through vertex 1. There are four
6-cycles through edge {1,b}. There are five 6-cycles through edge {1,ab}.
There are three 6-cycles through edge {1,a°0}. For any ce A, A fixes
edged {1,b},{1,ab},{1,a%} and hence o  fixes vertices set
X, (1) ={b,ab,a’} pointwise. o fixes all vertices on X by the connectivity of
Xand the transitivity of Aon V(X).Hence A =1.Xis GRR.

b) Suppose that k#3, k#-2, 3k#2, 3k#1 (mod 2"'p™). Then the
induced subgraph of the set of vertices at distance less than or equal to 3 from
vertex 1 in Xis the as Figure 4.

Firstly, show that the actionof A on X, (1) is faithful.

Let ce A and o fixes X,(1) pointwise. Passing through vertices {1,b,ab},
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a=3b

a®b

a*b

a’b

o

abb

Figure 3. X =induced subgraph of Cay(G,{b,ab,a’v}) .

a?k—lb

»‘4‘!

alc+1b

a?p

Figure 4. X =induced subgraph Cay(G,{b,ab,a"b}) .

there is a unique 6-cycle [Lb,a*,a*b,a"",ab]=C,. Passing through vertices
{1,b,a"b}, there is a unique 6-cycle [Lb,a,a""b,a"*,a“b] 2 C, . Passing through
vertices {1,ab,a"b}, there is a unique 6-cycle [1,ab,a™,a“"'b,a™,a*b]=C,. For
any «a € A, the image of a cycle of length /under ¢« is also a cycle of length
Note that o e A fixes {1,b,ab,a“b} pointwise, hence C; is also a 6-cycle
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passing through vertices 1,b,ab. Hence C] =C,. Follow the same argument,
C; =C,,C; =C,. So o fixes all vertices on cycles C,,C,,C,. In particular,
o fixes X,(1) pointwise. By the connectivity of Xand the transitivity of 4 on
V(X),weget A actson X,(1)=S faithfully.

Next, show that Xis normal.

A acting on X,(1) faithfully implies that A is isomorphic to a subgroup
of symmetric group of degree 3. A <S,.

If A=A or S;, then A is transitive on X;(1). Since |X,(1)|=3 is
prime, Xis a locally-primitive Cayley graph. Theorem 1.5 in [7] gives a classifi-
cation of locally primitive Cayley graphs of dihedral groups which has been
listed as Proposition 2.5 in this paper.

Since the order of Gis 2"p™ where n>2 and pis odd, Cay(G,S) is not
on the list of locally-primitive Cayley graphs. Thus, A is not transitive on
X\1). A=Z, or Z,. |A:R(G)|H A1 or 2, R(G)<JA. X is normal.
A=R(G)xAut(G,S).

By Proposition 3.2 and part(1) of this proof, A=R(G):Z, if
k? =1(mod2" ' p™), k#2"?p"+1 and ged(k,2"" p™)=1 or
(1-k)*> =1(mod 2" ' p™), k#2"?p™ and ged(1-k,2"'p")=1. W

Theorem 4.2, Suppose that S ={a,a™",b}, then Xis normaland A=G:Z,.

Proof Suppose that S={a,a™,b} and X =Cay(G,S). Cayley graph X is
also a cylinder as Figure 5. Hence A=D o ><Z [ |

Theorem 4.3. Suppose that S ={b, ab a2 o }, then X is normal and
A=G:Z,.

Proof Suppose that S E{b,ab,azH "1 and X = Cay(G,S) . The Cayley
graph is an Mébius ladder as Figure 6. Hence, A=D,, o X z, 1

a o2 a3 a/zn—ZT)n773 a271—2pn172 a2"72pm*1

(12,.7:;17,,.+2[) (13(2,.7:&111..)_1 (I’:g(lz.,f.‘ipm)_*_]b

3@

2y, a2n<;pmilb a3(2”7: m

_ 9 n—3, i < n—3
ab a~! a’b 3@ =1y (12 ML 32Ty

Figure 6. X = Cay(G {b,ab™*,a>" p"}
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