Automorphism Groups of Cubic Cayley Graphs of Dihedral Groups of Order $2^{n} \boldsymbol{p}^{m}$ ($n \geq 2$ and p Odd Prime)

Xianfen Kong
Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, China
Email: xianfen.kong@xjtlu.edu.cn

How to cite this paper: Kong, X.F. (2020)
Automorphism Groups of Cubic Cayley Graphs of Dihedral Groups of Order $2^{n} p^{m}$ (n ≥ 2 and p Odd Prime). Journal of Applied Mathematics and Physics, 8, 3075-3084.
https://doi.org/10.4236/jamp.2020.812226
Received: December 10, 2020
Accepted: December 28, 2020
Published: December 31, 2020

Abstract

For a prime p, let $D_{2^{n} p^{m}}$ be the dihedral group $<a, b \mid a^{2^{n-1}} p^{m}=b^{2}=1, b^{-1} a b=a^{-1}>$ of order $2^{n} p^{m}$ and $\operatorname{Cay}(G, S)$ be a connected cubic Cayley graph on G with respect to a generating system of three elements S such that S does not contain the identity and $S^{-1}=S$. In this paper, the automorphism groups of cubic Cayley graphs of dihedral groups of order $2^{n} p^{m}$ where $n \geq 2$ and p is odd prime are completely given. When $S \equiv\left\{b, a b, a^{2^{n-1}} p^{m} b\right\}$, the automorphism group $\operatorname{Aut}(\operatorname{Cay}(G, S)) \cong \mathbb{Z}_{2}^{2^{n-2} p^{m}} \rtimes D_{2^{n-1} p^{m}}$. Except in this case, the automorphism group $\operatorname{Aut}(\operatorname{Cay}(G, S))$ is the semidirect product $R(G) \rtimes \operatorname{Aut}(G, S)$ where $R(G)$ is the right regular representation of G and $\operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$.

Keywords

Automorphism Group, Dihedral Group, Cayley Graph

1. Introduction

An automorphism of a graph X is a permutation σ of vertex set of X with the property that, for any vertices u and v, we have $\left\{u^{\sigma}, v^{\sigma}\right\}$ is an edge of X if and only if $\{u, v\}$ is the edge of X. As usual, we use u^{σ} to denote the image of the vertex u under the permutation σ and $\{u, v\}$ to denote the edge joining vertices u and v. All automorphisms of graph X form a group under the composite operation of mapping. This group is called the full automorphism group of graph X, denoted by A in this paper.

For a graph X, we denote vertex set and edge set of X by $V(X)$ and $E(X) . A_{v}$ is the stabilizer of vertex V in the automorphism group of X. $X_{k}(v)$ denotes the set of vertices at distance k from vertex $v . \quad D_{2 n}$ means the dihedral group of order $2 n$. A graph is called vertex-transitive if its automorphism group A is transitive on the vertex set $V(X)$. An s-arc in a graph is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s-1}, v_{s}\right)$ of vertices of the graph such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s$. A graph is said to be s-arc-transitive if the automorphism group A acts transitively on the set of all s-arcs in X. When $s=1$, 1-arc called arc and 1 -arc transitive is called arc-transitive or symmetric.

Throughout this paper, graphs are finite, simple and undirected.
Let G be a finite group and S be a subset of G such that $1 \notin S$. The Cayley $\operatorname{graph} X=\operatorname{Cay}(G, S)$ on G with respect to S is defined to have vertex set $V(X)=G$ and edge set $E(X)=\{\{g, s g\} \mid g \in G$ and $s \in S\}$. Let set $S^{-1}=\left\{s^{-1} \mid s \in S\right\}$. If $S^{-1}=S, \operatorname{Cay}(G, S)$ is undirected. If S is a generating system of $G \operatorname{Cay}(G, S)$ is connected. Two subsets S and T of group G are called equivalent if there exists a group automorphism of group G mapping S to T: $S^{\alpha}=T$ for some $\alpha \in \operatorname{Aut}(G)$. Denote by $S \equiv T$. If S and T are equivalent, Cayley graphs $\operatorname{Cay}(G, S)$ and $\operatorname{Cay}(G, S)$ are isomorphic.

The right regular representation $R(G)$ of group G is a subgroup of the the automorphism group A of the Cayley graph X. In particular by [1], if $R(G)$ is the full automorphism group of X then $X=\operatorname{Cay}(G, S)$ is called a $G R R$ (for graphical regular representation) of G. A Cayley graph is normal if $R(G)$ is a normal subgroup of $A . R(G)$ is transitive on G hence Cayley graph is ver-tex-transitive. Denote $\operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$, the set of all automorphism of group G preserving S. Aut (G, S) is also a subgroup of the automorphism group of Cayley graph. In particular, $\operatorname{Aut}(G, S)$ is a subgroup of stabilizer of vertex identity A_{1}. By [2] the normalizer of $R(G)$ in A is the semi-direct product of $R(G)$ and $\operatorname{Aut}(G, S): N_{A}(R(G))=R(G) \rtimes \operatorname{Aut}(G, S)$. By [3] Proposition $1.5 X$ is normal if and only if $A_{1}=\operatorname{Aut}(G, S)$. Cayley graph X is normal if and only if the automorphism group of X is $A=R(G) \rtimes \operatorname{Aut}(G, S)$. Normality provides an approach to find automorphism groups of Cayley graphs.

In [4] the automorphism group of connected cubic Cayley graphs of order $4 p$ is given. In [5] the automorphism group of connected cubic Cayley graphs of order $32 p$ is given. In this paper, the automorphism group of connected cubic Cayley graphs of dihedral groups of order $2^{n} p^{m}$ where $n \geq 2$ and p is odd is given.

Summarising theorem 4.1, 4.2, 4.3 in Part 4 gives the main results.
Theorem 1.1. Let $G=D_{2^{n} p^{m}}$ be a dihedral group where $n \geq 2$ and p is an odd prime number. S is an inverse-closed generating system of three elements without identity element. Then Cayley graph $\operatorname{Cay}(G, S)$ is $G R R$ except the following cases:

1) $S \equiv\left\{b, a b, a^{k} b\right\} \quad$ where $\quad k^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right) \quad$ and $\operatorname{gcd}\left(k, 2^{n-1} p^{m}\right)=1$, $\operatorname{Aut}(X) \cong G: \mathbb{Z}_{2}$.
2) $S \equiv\left\{b, a b, a^{2^{n-1} p^{m}} b\right\}, \quad \operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{2^{n-2} p^{m}} \rtimes D_{2^{n-1} p^{m}}$.
3) $S \equiv\left\{a, a^{-1}, b\right\}, \operatorname{Aut}(X)=G: \mathbb{Z}_{2}$.
4) $S \equiv\left\{b, a b, a^{2^{n-2} p^{m}}\right\}, \operatorname{Aut}(X)=G: \mathbb{Z}_{2}$.

2. Preliminary

Results used to prove main theorem are listed here.
Proposition 2.1. Suppose that $G=<a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}>$ is a dihedral group, then the automorphism group $\operatorname{Aut}(G)$ of G has the following properties.

1) Any automorphism of G can be defined as $a \mapsto a^{i}$ and $b \mapsto a^{j} b$ where $i \in \mathbb{Z}_{n}^{*}$ and $j \in \mathbb{Z}_{n}$.
2) $\operatorname{Aut}(G)=\left\langle\alpha>\rtimes<\beta>\cong \mathbb{Z}_{n} \rtimes \mathbb{Z}_{n}^{*}\right.$ where $\alpha: a \mapsto a, b \mapsto a b ; \beta: a \mapsto a^{i}, b \mapsto b, i \in \mathbb{Z}_{n}^{*}$.

Proposition 2.2. Suppose G is a finite group and subsets $S \equiv T$, then $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$.
Proposition 2.3. Let $G=<a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}>$ be the dihedral group of order $2 n$. Subsets $\left\{b, a b, a^{k} b\right\} \equiv\left\{b, a b, a^{1-k} b\right\}$.

Proof Let $\sigma \in \operatorname{Aut}(G): a \mapsto a^{-1}, b \mapsto a b$ then $\left\{b, a b, a^{k} b\right\}^{\sigma}=\left\{b, a b, a^{1-k} b\right\}$.
The following sufficient and necessary condition of normality of Cayley graph is from paper [6].

Proposition 2.4. Let $X=\operatorname{Cay}(G, S)$ be connected. Then X is a normal Cayley graph of G if and only if the following conditions are satisfied:

1) For each $\varphi \in A_{1}$ there exists $\sigma \in \operatorname{Aut}(G)$ such that $\left.\varphi\right|_{X_{1}(1)}=\left.\sigma\right|_{X_{1}(1)}$;
2) For each $\varphi \in A_{1},\left.\varphi\right|_{X_{1}(1)}=1_{X_{1}(1)}$ implies $\left.\varphi\right|_{X_{2}(1)}=1_{X_{2}(1)}$.

A classification of locally primitive Cayley graphs of dihedral groups from paper [7] will be used.

Proposition 2.5. Let X be a locally-primitive Cayley graph of a dihedral group of order $2 n$. Then one of the following statements is true, where q is a prime power.

1) X is 2-arc-transitive, and one of the following holds:
a) $X=K_{2 n}, K_{n, n}$ or $K_{n, n}-n K_{2}$;
b) $X=\mathcal{H} \mathcal{D}(11,5,2)$ or $\mathcal{H} \mathcal{D}(11,6,2)$, the incidence or non-incidence graph of the Hadamard design on 11 points;
c) $X=\mathcal{P H}(d, q)$ or $\mathcal{P H} \mathcal{H}^{\prime}(d, q)$, the point-hyperplane incidence or non-incidence graph of $(d-1)$-dimension projective geometry $\operatorname{PG}(d-1, q)$, where $d \geq 3$;
d) $\quad X=K_{q+1}^{2 d}$, where d is a divisor of $\frac{q-1}{2}$ if $q \equiv 1(\bmod 4)$, and a divisor of $q-1$ if $q \equiv 3(\bmod 4)$ respectively.
2) $X=\mathcal{N} \mathcal{D}_{2 n, r, k}$ is a normal Cayley graph and is not 2-arc-transitive, where $n=r^{t} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{s}^{e_{s}} \geq 13$ with $r, p_{1}, p_{2}, \cdots, p_{s}$ distinct odd primes, $t \leq 1, s \geq 1$ and $r \mid\left(p_{i}-1\right)$ for each i. There are exactly $(r-1)^{s-1}$ non-isomorphism such
graphs for a given order $2 n$.

3. Lemmas and Propositions

In the following, group G means that $G=<a, b \mid a^{2^{n-1} p^{m}}=b^{2}=1, b^{-1} a b=a^{-1}>$ be dihedral group of order $2^{n} p^{m}$ where $n \geq 2$ and p is an odd prime number.

Proposition 3.1. If $S=\left\{a^{i} b, a^{j} b, a^{r} b\right\}$ is a generating system of G of three elements, then $S \equiv\left\{b, a b, a^{k} b\right\}$ for some $2 \leq k \leq 2^{n-1} p^{m}-1$.

There are two types of S classified by the number of subsets of two elements generating G.

Type 1: S has only one subset of two elements generating G.
Type 2: S has exactly two subsets of two elements generating G. In this case, $S \equiv\left\{b, a b, a^{k} b\right\}$ where $\operatorname{gcd}\left(k, 2^{n-1} p^{m}\right)=1$.

The proof of Proposition 3.1 will be done by the following three lemmas.
Lemma 3.1. If $S=\left\{a^{i} b, a^{j} b, a^{r} b\right\}$ is a generating system of G of three elements, then S is equivalent to a subset of type $\left\{b, a b, a^{k} b\right\}$ for some $2 \leq k \leq 2^{n-1} p^{m}-1$.

Proof By proposition 2.1 in preliminary, automorphism group $\operatorname{Aut}(G)$ of dihedral group G is transitive on the set of involutions $\left\{a^{i} b \mid 0 \leq i \leq 2^{n-1} p^{m}-1\right\}$. One may assume that $b \in S$ and $S=\left\{b, a^{i} b, a^{j} b\right\}$ be a generating system of G of three elements. S has three subsets of two elements: $\left\{b, a^{i} b\right\},\left\{b, a^{j} b\right\}$ and $\left\{a^{i} b, a^{j} b\right\}$.

Note that, subset $T \subset G$ is a generating system of G if and only if T^{α} is a generating system of G for any $\alpha \in \operatorname{Aut}(G)$.

Suppose that subset $\left\{b, a^{x} b\right\} \quad(x=i$ or $j)$ generates G. Let $\alpha \in \operatorname{Aut}(G)$: $a \mapsto a^{x}, b \mapsto b$, then $\left\{b, a b, a^{k} b\right\}^{\alpha}=\left\{b, a^{i} b, a^{j} b\right\}$ for some $k \neq 0,1$. Hence $S \equiv\left\{b, a b, a^{k} b\right\}$.

Assume that both subset $\left\{b, a^{i} b\right\}$ and $\left\{b, a^{j} b\right\}$ do not generate G. Next will show that $\left\{a^{i} b, a^{j} b\right\}$ must be able to generate G.
$G=\langle S\rangle=\left\langle b, a^{i} b, a^{j} b\right\rangle=\left\langle a^{i}, a^{j}><b\right\rangle=\left\langle a^{\operatorname{gcd}(i, j)}><b\right\rangle$. Hence $\operatorname{gcd}(i, j)$ and $2^{n-1} p^{m}$ are mutually prime.
$\left.G \neq<b, a^{i} b\right\rangle=\left\langle a^{i}><b\right\rangle$. Hence i and $2^{n-1} p^{m}$ are not mutually prime.
Similarly, $G \neq<b, a^{j} b>$ implies that j and $2^{n-1} p^{m}$ are also not mutually prime.
$\left(\operatorname{gcd}(i, j), 2^{n-1} p^{m}\right)=1, \quad\left(i, 2^{n-1} p^{m}\right) \neq 1$ and $\left(j, 2^{n-1} p^{m}\right) \neq 1$ imply that, for i and j, one number is power of 2 and the other one is power of p. Thus $i-j$ and $2^{n-1} p^{m}$ are mutually prime.

Hence, $\left\{a^{i} b, a^{j} b\right\}$ is a generating system of G since $\left\langle a^{i} b, a^{j} b\right\rangle=\left\langle a^{i-j}><a^{i} b\right\rangle=G$.

Let $\alpha \in \operatorname{Aut}(G): a \mapsto a^{i-j}, b \mapsto a^{j} b$. Then $\left\{b, a b, a^{k} b\right\}^{\alpha}=\left\{b, a^{i} b, a^{j} b\right\}$ for some k. $S \equiv\left\{b, a b, a^{k} b\right\}$.

Corollary 3.1. If $S=\left\{a^{i} b, a^{j} b, a^{r} b\right\}$ is a generating system of G of three elements, there exists at least one subset of two elements generating G.

Lemma 3.2. If $S=\left\{a^{i} b, a^{j} b, a^{r} b\right\}$ is a generating system of G of three ele-
ments, there are only one or two subsets of two elements of S generating G.
Proof By Lemma 3.1, we assume that $S=\left\{b, a b, a^{k} b\right\}$ where $k \neq 0,1$. S has three subsets of two elements: $\{b, a b\},\left\{b, a^{k} b\right\}$ and $\left\{a b, a^{k} b\right\}$. Next we will show that it is impossible that all three subsets of two elements generating G.
$\left\langle b, a^{k} b\right\rangle=\left\langle a^{k}\right\rangle\langle b\rangle$ is a dihedral subgroup of $G .\left\langle a b, a^{k} b\right\rangle=\left\langle a^{k-1}\right\rangle\langle a b\rangle$ is also a dihedral subgroup of G.

For k and $k-1$, one is an even number and the other one is an odd number. The orders of elements a^{k} and a^{k-1} are different: $\circ\left(a^{k}\right) \neq \circ\left(a^{k-1}\right)$. This implies that at least one subset of $\left\{b, a^{k} b\right\}$ and $\left\{a b, a^{k} b\right\}$ does not generate G.

Hence there are only one or two subsets of two elements of S generating G.
Lemma 3.3. Let $S=\left\{a^{i} b, a^{j} b, a^{r} b\right\}$ be a generating system of G of three elements and S has two subsets of two elements generating G. If $S \equiv\left\{b, a b, a^{k} b\right\}$, either $\operatorname{gcd}\left(k, 2^{n-1} p^{m}\right)=1$ or $\operatorname{gcd}\left(1-k, 2^{n-1} p^{m}\right)=1$.

Proposition 3.2. Suppose that $S=\left\{a^{i} b, a^{j} b, a^{r} b\right\}$ is a generating system of G of three elements and $S \equiv\left\{b, a b, a^{k} b\right\}$.
(1) If S has only one subset of two elements generating G, then $\operatorname{Aut}(G, S)=1$.
(2) If S has two subsets of two elements generating G, then $\operatorname{Aut}(G, S)=1$ except the following two cases. $\operatorname{Aut}(G, S) \cong \mathbb{Z}_{2}$ if $k^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$ and $\operatorname{gcd}\left(k, 2^{n-1} p^{m}\right)=1 ; \operatorname{Aut}(G, S) \cong \mathbb{Z}_{2}$ if $(1-k)^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$ and $\operatorname{gcd}\left(1-k, 2^{n-1} p^{m}\right)=1$.
$\operatorname{Proof}(1)$ If there is only one subset of two elements in $S=\left\{b, a b, a^{k} b\right\}$ generating G, then $G \neq<b, a^{k} b>, G \neq<a b, a^{k} b>$ and $G=<b, a b>$. For any $\sigma \in \operatorname{Aut}(G, S),\{b, a b\}^{\sigma}$ is also a generating system of $G .\{b, a b\}^{\sigma}=\{b, a b\}$. Since $S^{\sigma}=S$. Hence $a^{k} b=S-\{b, a b\}$ is fixed by $\sigma .\left(a^{k} b\right)^{\sigma}=a^{k} b$.

If $b^{\sigma}=b$ and $(a b)^{\sigma}=a b$ then $a^{\sigma}=(a b b)^{\sigma}=(a b)^{\sigma} b^{\sigma}=a b b=a$, hence $\sigma=1$.

If $b^{\sigma}=a b$ and $(a b)^{\sigma}=b$, then $a^{\sigma}=(a b b)^{\sigma}=(a b)^{\sigma} b^{\sigma}=b a b=a^{-1}$. This implies that $a^{k} b=\left(a^{k} b\right)^{\sigma}=\left(a^{k}\right)^{\sigma} b^{\sigma}=a^{-k} a b=a^{1-k} b$. Thus $a^{k}=a^{1-k}$. This is a contradiction. For k and $1-k$, one is an even number and the other one is an odd number. This implies that the orders of the element a^{k} and a^{1-k} are not equal: $\circ\left(a^{k}\right) \neq \circ\left(a^{1-k}\right)$.

Hence $\operatorname{Aut}(G, S)=1$.
(2) If there are two subsets of two elements of S generating G, we assume that $\operatorname{gcd}\left(k, 2^{n-1} p^{m}\right)=1 . G=<b, a b>=<b, a^{k} b>$ and $G \neq<a b, a^{k} b>$.

Since subset $\left\{a b, a^{k} b\right\}$ is the only subset of two elements not generating G, $\left\{a b, a^{k} b\right\}^{\sigma}=\left\{a b, a^{k} b\right\}$ for any $\sigma \in \operatorname{Aut}(G, S) . b=S-\left\{a b, a^{k} b\right\}$ is fixed by σ. $(a b)^{\sigma}=a b$ or $a^{k} b$.
If $(a b)^{\sigma}=a b$, then $\sigma=1$.
If $(a b)^{\sigma}=a^{k} b$, then $a^{\sigma}=(a b b)^{\sigma}=(a b)^{\sigma} b^{\sigma}=a^{k} b b=a^{k}$.
$\left(a^{k} b\right)^{\sigma}=\left(a^{k}\right)^{\sigma} b^{\sigma}=\left(a^{k}\right)^{k} b=a^{k^{2}} b=a b$. So $k^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$.
Hence $\operatorname{Aut}(G, S)=1$ if $k^{2} \not \equiv 1\left(\bmod 2^{n-1} p^{m}\right) . \operatorname{Aut}(G, S) \cong \mathbb{Z}_{2}$ if $k^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$.

Similarly, when $\operatorname{gcd}\left(1-k, 2^{n-1} p^{m}\right)=1, \operatorname{Aut}(G, S)=1$ if $(1-k)^{2} \not \equiv 1\left(\bmod 2^{n-1} p^{m}\right) . \operatorname{Aut}(G, S) \cong \mathbb{Z}_{2} \quad$ if $(1-k)^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$.
Proposition 3.3. Suppose that S is inverse-closed generating system of three elements of G, then $S \equiv\left\{a, a^{-1}, b\right\},\left\{b, a b, a^{2^{n-2} p^{m}}\right\}$ or $\left\{b, a b, a^{k} b\right\}(k \neq 0,1)$.

Proof Since S contains three elements and inverse-closed, there must be an involution in S. There are two orbits of involutions in G under the action of group automorphism $\operatorname{Aut}(G):\left\{a^{2^{n-2} p^{m}}\right\}$ and $\left\{a^{i} b \mid 0 \leq i \leq 2^{n-1} p^{m}-1\right\}$.

Suppose that $a^{2^{n-2} p^{m}} \in S . S-\left\{a^{2^{n-2} p^{m}}\right\}$ is also inverse-closed hence it is a set of two involutions from orbit $\left\{a^{i} b \mid 0 \leq i \leq 2^{n-1} p^{m}-1\right\}$. S generating G implies that $S-\left\{a^{2^{n-2} p^{m}}\right\}$ also generates G. We get $S \equiv\left\{b, a b, a^{2^{n-2} p^{m}}\right\}$.

Suppose that S contains an involution from $\left\{a^{i} b \mid 0 \leq i \leq 2^{n-1} p^{m}-1\right\}$. $\operatorname{Aut}(G)$ is transitive on this orbit, we can assume that $b \in S$. If $S-\{b\}$ contains an involution, $S \equiv\left\{b, a b, a^{k} b\right\}(k \neq 0,1)$ by Proposition 3.1 and 2.1. If $S-\{b\}$ contains no involutions, $S \equiv\left\{b, a, a^{-1}\right\}$ by Proposition 2.1.

4. Results

By Proposition 3.3, we only need to discuss $X=\operatorname{Cay}(G, S)$ for $S=\left\{a, a^{-1}, b\right\},\left\{b, a b, a^{2^{n-2} p^{m}}\right\}$ and $\left\{b, a b, a^{k} b\right\}(k \neq 0,1)$.

Firstly, we discuss $X=\operatorname{Cay}\left(G,\left\{b, a b, a^{k} b\right\}\right)(k \neq 0,1)$.
Theorem 4.1. Suppose that $S=\left\{a^{i} b, a^{j} b, a^{m} b\right\}$ is a generating system of three involutions of G and $S \equiv\left\{b, a b, a^{k} b\right\}$.
X is GRR except the following cases.
(1) When $\operatorname{gcd}\left(k, 2^{n-2} p^{m}\right)=1, k^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$ and $k \neq 2^{n-2} p^{m}+1$ then $\operatorname{Aut}(X) \cong R(G): \mathbb{Z}_{2}$.
(2) When $\operatorname{gcd}\left(1-k, 2^{n-2} p^{m}\right)=1,(1-k)^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$ and $k \neq 2^{n-2} p^{m}$ then $\operatorname{Aut}(X) \cong R(G): \mathbb{Z}_{2}$.
(3) If $k=2^{n-2} p^{m}+1$ or $k=2^{n-2} p^{m}$, then $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{2^{n-2} p^{m}} \rtimes D_{2^{n-1} p^{m}}$.

Proof Let $S=\left\{b, a b, a^{k} b\right\}$ where $2 \leq k \leq 2^{n-1} p^{m}-1$ and $X=\operatorname{Cay}(G, S)$. Classify X in two cases: there are 4-cycles in X and there is no 4-cycle in X.
(1) Note that $X_{2}(1)=\left\{a, a^{k}, a^{-1}, a^{k-1}, a^{-k}, a^{1-k}\right\}$ is the set of vertices at distance 2 from vertex 1 .

If there are 4 -cycles in X, some vertices in $X_{2}(1)$ are coincident. Solving $a=a^{k-1}$ and $a^{-1}=a^{1-k}$ we get $k=2$. Solving $a=a^{-k}$ and $a^{k}=a^{-1}$ we get $k=-1$. Solving $a^{k}=a^{-k}$ we get $k=2^{n-2} p^{m}$. Solving $a^{k-1}=a^{1-k}$ we get $k=2^{n-2} p^{m}+1$. There is no solution for other equations. Note that -1 and $2^{n-2} p^{m}+1$ are two solutions of equation $k^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right) .2$ and $2^{n-2} p^{m}$ are two solutions of equation $(1-k)^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$. Since $\left\{b, a b, a^{2} b\right\} \equiv\left\{b, a b, a^{-1} b\right\}$ and $\left\{b, a b, a^{2^{n-2} p^{m}} b\right\} \equiv\left\{b, a b, a^{2^{n-2} p^{m}+1} b\right\}$ we only discuss $k=2$ and $k=2^{n-2} p^{m}$.
(1.1) When $k=2, \quad X=C_{2^{n-1} p^{m}} \times K_{2}$ is a cylinder as Figure 1. Hence $A \cong D_{2^{n} p^{m}} \times \mathbb{Z}_{2}$.
(1.2) When $k=2^{n-2} p^{m}, X$ is a thickened 2-cover of the cycle graph $C_{2^{n-1} p^{m}}$ as Figure 2. All 4-cycles in X form an imprimitive block system of A and the

Figure 1. $X=\operatorname{Cay}\left(G,\left\{b, a b, a^{2} b\right\}\right)$.

Figure 2. $X=\operatorname{Cay}\left(G,\left\{b, a b, a^{2^{n-2} p^{m}} b\right\}\right)$.
kernel of the action of A on the imprimitive block system is isomorphic to $\mathbb{Z}_{2}^{2^{n-2} p^{m}}$. Thus $A \cong Z_{2}^{2^{n-2} p^{m}} \rtimes D_{2^{n-1} p^{m}}$.
(2) Suppose that there is no 4-cycle in X. We will count 6 -cycles passing through vertex 1 .
$X_{3}(1)=\left\{a^{-k} b, a^{-1} b, a^{1-k} b, a^{2-k} b, a^{k-1} b, a^{k+1} b, a^{2} b, a^{2 k-1} b, a^{2 k} b\right\}$ is the set of vertices at distance 3 from vertex 1 .
a) Solving $a^{2 k} b=a^{2-k} b$ and $a^{2 k-1} b=a^{1-k} b$, we get $3 k \equiv 2\left(\bmod 2^{n-1} p^{m}\right)$. Solving $a^{2 k} b=a^{1-k} b$ and $a^{2 k-1} b=a^{-k} b$, we get $3 k \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$. Solving $a^{k-1} b=a^{2} b$ and $a^{-1} b=a^{2-k} b$ we get $k=3$. Solving $a^{-k}=a^{2}$ and $a^{k+1}=a^{-1}$ we get $k=-2$. There is no solution for other equations.

The induced subgraph of the set of vertices at distance less than or equal to 3 from vertex 1 in X are isomorphic in these four cases. The following uses $\operatorname{Cay}\left(G,\left\{b, a b, a^{3} b\right\}\right)$ as representative to discuss. See Figure 3.

We count the number of 6 -cycles passing through vertex 1 . There are four 6 -cycles through edge $\{1, b\}$. There are five 6 -cycles through edge $\{1, a b\}$. There are three 6 -cycles through edge $\left\{1, a^{3} b\right\}$. For any $\sigma \in A_{1}, A_{1}$ fixes edged $\{1, b\},\{1, a b\},\left\{1, a^{3} b\right\}$ and hence σ fixes vertices set $X_{1}(1)=\left\{b, a b, a^{3} b\right\}$ pointwise. σ fixes all vertices on X by the connectivity of X and the transitivity of A on $V(X)$. Hence $A_{1}=1 . X$ is GRR.
b) Suppose that $k \not \equiv 3, k \not \equiv-2,3 k \not \equiv 2,3 k \not \equiv 1\left(\bmod 2^{n-1} p^{m}\right)$. Then the induced subgraph of the set of vertices at distance less than or equal to 3 from vertex 1 in X is the as Figure 4.

Firstly, show that the action of A_{1} on $X_{1}(1)$ is faithful.
Let $\sigma \in A_{1}$ and σ fixes $X_{1}(1)$ pointwise. Passing through vertices $\{1, b, a b\}$,

Figure 3. $X=$ induced subgraph of $\operatorname{Cay}\left(G,\left\{b, a b, a^{3} b\right\}\right)$.

Figure 4. $X=$ induced subgraph $\operatorname{Cay}\left(G,\left\{b, a b, a^{k} b\right\}\right)$.
there is a unique 6 -cycle $\left[1, b, a^{k}, a^{1-k} b, a^{k-1}, a b\right] \triangleq C_{1}$. Passing through vertices $\left\{1, b, a^{k} b\right\}$, there is a unique 6 -cycle $\left[1, b, a, a^{k-1} b, a^{1-k}, a^{k} b\right] \triangleq C_{2}$. Passing through vertices $\left\{1, a b, a^{k} b\right\}$, there is a unique 6 -cycle $\left[1, a b, a^{-1}, a^{k+1} b, a^{-k}, a^{k} b\right] \triangleq C_{3}$. For any $\alpha \in A$, the image of a cycle of length I under α is also a cycle of length I. Note that $\sigma \in A_{1}$ fixes $\left\{1, b, a b, a^{k} b\right\}$ pointwise, hence C_{1}^{σ} is also a 6-cycle
passing through vertices $1, b, a b$. Hence $C_{1}^{\sigma}=C_{1}$. Follow the same argument, $C_{2}^{\sigma}=C_{2}, C_{3}^{\sigma}=C_{3}$. So σ fixes all vertices on cycles C_{1}, C_{2}, C_{3}. In particular, σ fixes $X_{2}(1)$ pointwise. By the connectivity of X and the transitivity of A on $V(X)$, we get A_{1} acts on $X_{1}(1)=S$ faithfully.

Next, show that X is normal.
A_{1} acting on $X_{1}(1)$ faithfully implies that A_{1} is isomorphic to a subgroup of symmetric group of degree $3 . A_{1} \lesssim S_{3}$.

If $A_{1} \cong A_{3}$ or S_{3}, then A_{1} is transitive on $X_{1}(1)$. Since $\left|X_{1}(1)\right|=3$ is prime, X is a locally-primitive Cayley graph. Theorem 1.5 in [7] gives a classification of locally primitive Cayley graphs of dihedral groups which has been listed as Proposition 2.5 in this paper.

Since the order of G is $2^{n} p^{m}$ where $n \geq 2$ and p is odd, $\operatorname{Cay}(G, S)$ is not on the list of locally-primitive Cayley graphs. Thus, A_{1} is not transitive on $X_{1}(1) . \quad A_{1} \cong \mathbb{Z}_{1}$ or $\mathbb{Z}_{2} .|A: R(G)|=\left|A_{1}\right|=1 \quad$ or $2, \quad R(G) \unlhd A . X$ is normal. $A=R(G) \rtimes \operatorname{Aut}(G, S)$.

By Proposition 3.2 and part(1) of this proof, $A=R(G): \mathbb{Z}_{2}$ if $k^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right), \quad k \neq 2^{n-2} p^{m}+1$ and $\operatorname{gcd}\left(k, 2^{n-1} p^{m}\right)=1$ or $(1-k)^{2} \equiv 1\left(\bmod 2^{n-1} p^{m}\right), \quad k \neq 2^{n-2} p^{m}$ and $\operatorname{gcd}\left(1-k, 2^{n-1} p^{m}\right)=1$.

Theorem 4.2. Suppose that $S \equiv\left\{a, a^{-1}, b\right\}$, then X is normal and $A=G: \mathbb{Z}_{2}$.
Proof Suppose that $S \equiv\left\{a, a^{-1}, b\right\}$ and $X=\operatorname{Cay}(G, S)$. Cayley graph X is also a cylinder as Figure 5. Hence $A=D_{2^{n} p^{m}} \times \mathbb{Z}_{2}$.

Theorem 4.3. Suppose that $S \equiv\left\{b, a b, a^{2^{n-2} p^{m}}\right\}$, then X is normal and $A=G: \mathbb{Z}_{2}$.

Proof Suppose that $S \equiv\left\{b, a b, a^{2^{n-2} p^{m}}\right\}$ and $X=\operatorname{Cay}(G, S)$. The Cayley graph is an Möbius ladder as Figure 6. Hence, $A=D_{2^{n} p^{m}} \rtimes \mathbb{Z}_{2}$.

Figure 5. $X=\operatorname{Cay}\left(G,\left\{a, a^{-1}, b\right\}\right)$

Figure 6. $X=\operatorname{Cay}\left(G,\left\{b, a b^{-1}, a^{2^{n-2}} p^{m}\right\}\right)$

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Godsil, C.D. (1981) GRRs for Nonsolvable Groups. In: Algebraic Methods in Graph Theory, Colloq. Math. Soc. Janos Bolyai, Amsterdam-New York, Vol. I, II (Szeged, 1978), 221-239.
[2] Godsil, C.D. (1981) On the Full Automorphism Group of a Graph. Combinatorica, 1, 243-256. https://doi.org/10.1007/BF02579330
[3] Xu, M.Y. (1998) Automorphism Groups and Isomorphisms of Cayley Digraphs. Discrete Mathematics, 182, 309-319. https://doi.org/10.1016/S0012-365X(97)00152-0
[4] Zhou, C.X. and Feng, Y.-Q. (2007) Automorphism Groups of Connected Cubic Cayley Graphs of Order 4p. Algebra Colloquium, 14, 351-359. https://doi.org/10.1142/S100538670700034X
[5] Xie, J.H., Yang, X. and Xu, S.J. (2019) The Normality of 3-Valent Cayley Graphs of Dihedral Groups of Order 32 p. Journal of Guangxi Teachers Education University (Natural Science Edition), 36, 6-12.
[6] Pan, J.M. (2014) Locally Primitive Cayley Graphs of Dihedral Groups. European Journal of Combinatorics, 36, 39-52. https://doi.org/10.1016/j.ejc.2013.06.041
[7] Wang, C.Q., Wang, D.J. and Xu, M.Y. (1998) Normal Cayley Graphs of Finite Groups. Science in China (Series A), 41, 242-251.
https://doi.org/10.1007/BF02879042

