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Abstract 
The lipid composition in terms of the amount of neutral lipids, free fatty ac-
ids and polar lipid content is of great importance to make full use possible of 
this fraction and to define the suitability of its application, either as a raw 
material for fuel production, nutraceutical purposes or feed. In addition to 
the fatty components present in the lipid extract, other components may be 
included, such as: carotenoids, pigments and sterols. The microalgae studied 
in this work, Scenedesmus sp. and Desmodesmus sp., were subjected to the 
same growth conditions and evaluated for lipid content, quantification and 
diversity of lipid components as well as its fatty acid profile. For lipid deter-
mination two extraction methods were compared: the J: Schmid-Bondzynski- 
Ratzlaff and Bligh & Dyer method. For Desmodesmus sp. 5.43% ± 0.41% and 
9.18% ± 0.33% of lipids were obtained on an ash-free dry weight basis and for 
Scenedesmus sp. 12.46% ± 0.38% and 8.16% ± 0.42% of lipids were obtained 
on ash-free dry weight basis using for both methods J: Schmid-Bondzynski- 
Ratzlaff and Bligh & Dyer, respectively. For the identification of the main li-
pid components present in the extracts, the Thin layer chromatography 
(TLC) technique was used. This made it possible, using a simple and inex-
pensive method, to identify the compounds extracted by different extraction 
methods, that is, it was possible to verify the selectivity of the different extrac-
tion methods. In addition, it has been shown that using these methods, widely 
described in the literature as methods of extracting lipids in practice, extracts 
a wide diversity of compounds. The major lipid class for both microalgae was 
fatty acids with amounts between 23.62% - 38.02%. The triglycerides percen-
tage in biomasses without chemical treatment did not exceed 18.26%. In the 
lipid extract obtained with Bligh & Dyer, the microalgae Desmodesmus sp. 
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presented 55.26% of unsaponifiable material, higher than the amount present 
using the same extraction method for Scenedesmus sp. 49.06%. Among the 
main unsaponifiables identified are hydrocarbons (carotenes) and sterols es-
ters. The acid treatment of biomass, method J: Schmid-Bondzynski-Ratzlaff, 
showed selectivity of 72.84% and 76.66% for obtaining fatty material from the 
microalgae Desmodesmus sp. and Scenedesmus sp., respectively. The results 
showed that depending on the method used for extraction, the lipid fraction 
will be different in relation to the percentage of fatty components.  
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1. Introduction 

The term “biomass” means any organic matter that is available on a recurring or 
renewable basis including, plants, agricultural waste, aquatic plants, wood and 
wood waste, animal waste, municipal waste and other waste used for industrial 
energy production, fuels, chemicals and materials [1] [2] [3]. 

An emerging alternative is the use of aquatic biomass, it is estimated that the 
global primary production of biomass is 50% aquatic and 50% terrestrial. To this 
day, government policies have focused almost exclusively on the use of terrestrial 
biomass, paying little attention to aquatic crops, taking as examples macro and 
microalgae. Microalgae are prokaryotic or eukaryotic photosynthetic microor-
ganisms that can grow quickly due to their ability to convert CO2 and transform 
them into proteins, carbohydrates and lipids [3] [4] [5]. 

Microalgae are important primary producers in aquatic environments and 
have been used in aquaculture, animal feed, as a source of carotenoids, phycobi-
liproteins, polyunsaturated fatty acids, functional foods and biofuels and other 
biomolecules explored for commercial use [1] [6] [7]. The lipids obtained from 
microalgae have attracted attention from researchers due to the possibility of 
conversion to biofuels, mainly biodiesel and green diesel [8] [9]. The develop-
ment of an effective technique in the process of extracting lipids on a large scale 
from microalgae biomass is still a challenge for researchers [10] [11]. The factors 
that influence this process are not yet completely known and no method has 
been established for extraction on an industrial scale. Currently, it is believed 
that the extraction process represents an important limitation for the use of mi-
croalgae lipids as fuels. The selection of a solvent system must, therefore, take 
into account its chemical affinity with the classes of lipids to be extracted. In mi-
croalgae, the lipid fraction may undergo changes in its composition according to 
the polarity of the solvent used for its extraction [11]. The addition of a polar 
and a nonpolar organic solvent facilitates the extraction of neutral lipids asso-
ciated with the membrane. Microalgae have a resistant cell wall, which is a major 
barrier to the extraction processes and the procedure for breaking the cell wall is 
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an important operation to obtain the compounds of interest. The cell wall plays 
an important role in the extraction process, for example, the presence of the cell 
wall can prevent direct contact between the solvent and the cell membrane and 
hinder extraction [12]. The microalgae cell wall provides the cells with rigidity 
and resistance, offering protection against mechanical stress [13] [14]. Some cell 
disruption techniques have been used to improve extraction efficiency, such as: 
the chemical treatment of biomass [14] [15]. 

In addition to the fatty acids present in the lipid extracts in the extraction 
process, it also inevitably leads to the co-extraction of components with affinity 
to the solvent that can lead to overestimated values on the amount of fat content 
present in the microalgae [16]. These non-fatty components are mainly carote-
noids, phytosterols and their derivatives (vitamin E), in addition to some minor 
components such as chlorophyll, polyphenols, hydrocarbons and terpenic alco-
hols. Unsaponifiables are noble ingredients for the chemical and pharmaceutical 
industry due to recent discoveries of their numerous health benefits [17] [18].  

From the reviews found in the literature, knowledge of the quality of the ex-
tract obtained after extraction must be assessed [19]. Due to the great variability 
between the types of microalgae species, it is generally difficult to compare the 
results obtained in other studies, because with each change in the cultivation 
conditions of these microorganisms it leads to a variation in the accumulated 
compounds. Therefore, in this research, aiming at the extraction of fatty com-
ponents accumulated in Desmodesmus sp. and Scenedesmus sp. grown in race-
way photobioreactors, the amount of lipids extracted by the Bligh & Dyer me-
thod (without acid hydrolysis) and J: Schmid-Bondzynski-Ratzlaff (acid hydro-
lysis) was determined. The extracts were evaluated for the quality of each frac-
tion, via thin layer chromatography, to identify the main components [20] [21] 
[22]. Method simple and inexpensive allows identifying the compounds ex-
tracted by different extraction methods, to verify the selectivity of the different 
extraction methods. In addition, the use of these methods, widely described in 
the literature as methods of extracting lipids in practice extract a wide diversity 
of compounds.  

The main contribution of this study is to define what types of compounds can 
be extracted by each method to be used depending on the application. As well as 
gas chromatography—FID identification of the main fatty acids present in these 
extracts. From this study it was possible to evaluate which microalgae had the 
highest lipid content accumulation under the same culture conditions as well as 
which method was more selective for obtaining fatty material [23]. 

2. Materials and Methods  

The biomass of Scenedesmus sp. and Desmodesmus sp., provided by UFRN 
(Federal University of Rio Grande do Norte), was grown for 5 days in an open 
pond with a volume of 20.000 L. Growth monitoring was performed by optical 
density, as described by Lee and Aaron [16] [24], making absorbance readings at 
wavelengths of 680 nm and 750 nm daily. At harvest, the cultivation was trans-
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ferred to a settling tank and flocculated until biomass reached approximate con-
centration of 10 g∙L−1. The biomass was removed with 85% humidity for one 
form and later dried in an oven for 24 hours at 80˚C. 

2.1. Extraction Method—Bligh & Dyer  

Extractions were performed in a 50 mL flask, starting from 5 g of dry biomass 
with 15 mL of the mixture chloroform: methanol (2:1 v/v), following the me-
thodology described in the literature [25] [26] [27] [28] [29]. A solvent: charge 
ratio of 3:1 (mL of solvent: g of biomass), extraction time of 2 hours at a temper-
ature of 60˚C and 200 rpm stirring on a magnetic stirrer were used. For the se-
paration of residual biomass from the liquid phase (lipid fraction + solvent), a 
filter paper filtering process was carried out. Then the biomass was washed with 
30 mL of the solvent mixture selected for the extraction step and filtered again. 
The solvents were removed from the liquid phase by vacuum evaporation and 
the lipid fraction (not volatile under operating conditions) was dried to constant 
weight in an oven at 60˚C. The experiments were carried out in triplicates and 
the extraction yield was determined in percentage, in relation to the dry biomass 
mass. The lipid extracts were analyzed by Thin Layer Chromatography (TLC) 
and compared with the available lipid standards.  

2.2. Extraction Method—Acid Treatment— 
J: Schmid-Bondzynski-Ratzlaff  

The extraction was performed starting from 5 g dry biomass—in a 50 mL - 10 
mL HCl 8 M falcon tube; Hydrolysis: 10 minutes water bath at 60˚C; 1st Extrac-
tion: 10 mL absolute ethanol; 25 mL ethyl ether; 25 mL petroleum ether; Separa-
tion of the phases in a funnel. 2nd and 3rd Extraction: 10 mL absolute ethanol; 25 
mL ethyl ether; 25 mL petroleum ether; Washing of the “solvent” phase with dis-
tilled water until pH of the water = 7 (to remove HCl residues); Evaporation of 
the solvent; Kiln drying at 60˚C [30]. The experiments were conducted in tripli-
cate. The lipid extracts were analyzed by Thin layer chromatography (TLC) and 
compared with the available lipid standards. 

2.3. Method of Identifying Lipid Classes—Thin Layer  
Chromatography (TLC) 

For identification of the lipid classes of interest present in the extracts of the mi-
croalgae Scenedesmus sp., was used Thin layer chromatography (TLC). In this 
analysis, 0.001 g of the extracted lipid fraction was dissolved in 600 µL of chlo-
rofor plate m. The equivalent of 0.03 µL of the solution was applied to a 60 TLC 
(Merck) silica gel with the aid of an automatic pipette. In addition to the sample 
to be analyzed, equal amounts of triolein, diolein, monoolein, fatty acid, ergos-
terol and cholesteryl oleate were applied to the plates for comparison and quan-
tification. To ensure efficient separation and obtain acute bands of nonpolar li-
pids, the separation was performed as described below. First, the solvent mixture 
composed of petroleum ether/diethyl ether/acetic acid (70:30:2 v/v) was used to 
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separate the lipids, until reaching 2/3 the height of the silica plate (7 cm). After 
drying the plate, the separation continues in the same direction using the solvent 
mixture composed of petroleum ether/diethyl ether (100:2 v/v) until it reaches 
the top of the plate (9 cm) (Figure 1) [21].  

The chromatographic plate after elution was revealed with iodine vapor and 
the stain retention (Rf) factor of the standards and sample components was de-
termined.  

To achieve an irreversible staining of nonpolar lipids and sterols in the TLC 
plate, it was kept in a solution of 0.63 g of MnCl2∙4H2O, 60 mL of water, 60 mL 
of methanol and 4 mL of sulfuric acid for 10 seconds, followed by heating to 
105˚C. The intensity of the color depends on the heating time, which must be a 
minimum of 30 min. With the aid of the Image Master Total Lab version 1.11 
program, was used to identify and quantify the lipid classes present in the ex-
tracts. The methodology previously described was used to identify the lipid 
classes present in the extracts obtained by the different extraction methods eva-
luated in this work. The main objective of this analysis was to assist in the selec-
tion of the procedure that allows a more selective extraction of lipids convertible 
into biodiesel. 

3. Results and Discussion 
3.1. Effect of the Extraction Method on Lipid Recovery 

The microalgae Desmodesmus sp. and Scenedesmus sp. were evaluated for lipid 
accumulation capacity under the same cultivation conditions. The average values 
obtained in the extraction of lipids, following the different methods, are shown 
in Figure 2 and were expressed as a percentage in relation to the ash-free dry 
weight biomass. 

It is observed that the lipid yields showed statistically significant differences (p 
< 0.05). According to the literature, as expected, the extraction method directly 
influences the content of recovered lipids [3] [31] [32] [33]. In the microalgae 
Desmodesmus sp. the recovery of lipids using the Bligh-Dyer method was 9.18% 
± 0.33% slightly higher than that obtained for the microalgae Scenedesmus sp.  
 

 
Figure 1. Example of marking the plate TLC 10 × 10 cm. 
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Figure 2. Lipid content* obtained by the methods of Bligh & Dyer (BD) and J: Schm-
id-Bondzynski-Ratzlaff (Ratz) from dry, ash-free biomass. *Values calculated based on 
triplicates of experiments. Different letters differ statistically from each other. 
 
(8.16 ± 0.42). The recovery of lipids for the microalgae Scenedesmus sp. using 
the method J: Schmid-Bondzynski-Ratzlaff was 12.46% ± 0.38%, showing that 
the presence of lipids in this polarity range was quite similar for both microal-
gae. The presence of polar solvents such as chloroform and methanol helped the 
extraction of lipids such as phospholipids and glycolipids, as they break these 
associations, forming hydrogen bonds with the polar lipids of the complex, this 
behavior can be partially explained due to the presence of neutral lipids inside 
the cell, which bind strongly to proteins located in the cell membrane, via hy-
drogen bonds, forming a complex with polar lipids. Van der Waals interactions 
between the nonpolar solvent and lipids are not able to break this membrane, 
based on lipid-protein associations. Polar solvents, such as methanol or ethanol, 
break these associations, forming hydrogen bonds with the polar lipids in the 
complex. In addition, the use of polar solvents such as acetone, ethanol, metha-
nol increases the affinity for pigments, sugars, and polar lipids, leading to an in-
crease in these compounds in the extract [34]. Therefore, the addition of a polar 
solvent helps the extraction of neutral lipids associated with the membrane. 

3.2. Composition of the Lipid Classes Identified in the Extracts of  
the Microalgae Desmodesmus sp. and Scenedesmus sp. 

To identify the lipid classes present in the extracts, a thin layer chromatography 
analysis of the Bligh & Dyer and J: Schmid-Bondzynski-Ratzlaff extracts was 
performed (Figure 3). The plates show the presence of fatty acids, triglycerides, 
diglycerides and sterols according to the Rf (retention factor) of the added stan-
dards and the order of elution of each compound.  

The chromatograms generated from Figure 3 referring to the lipid extracts of 
the microalgae Desmodesmus sp. and Scenedesmus sp. can be seen in Figures 
4-7. 
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Figure 3. Separation of components present in lipid extracts by thin layer chromatogra-
phy. Lines: A—Lipid extract—Bligh & Dyer—Desmodesmus sp.; B—Lipid extract—Bligh & 
Dyer—Scenedesmus sp.; C—Lipid extract—J: Schmid-Bondzynski-Ratzlaff—Desmodesmus 
sp.; D—Lipid extract—J: Schmid-Bondzynski-Ratzlaff—Scenedesmus sp.; Lipid Compo-
nents (from top to bottom): 1—Carotenes; 2—Sterol ester; 3—Fatty ester; 4—Triolein; 
5—Fatty acid; 6—Diglycerides; 7, 8 and 9—Pigments; 10—Polar compounds. 
 

 

Figure 4. A—Chromatogram of the lipid extract of Bligh & Dyer from Desmodesmus sp. 
Lipid Components (from top to bottom): 1—Carotenes; 2—Sterol ester; 3—Fatty ester; 
4—Triolein; 5—Fatty acid; 6—Diglycerides; 7, 8 and 9—Pigments; 10—Polar compounds. 
 

 

Figure 5. C—Chromatogram of the lipid extract of J: Schmid-Bondzynski-Ratzlaff from 
Desmodesmus sp. Lipid Components (from top to bottom): 1—Carotenes; 2—Sterol es-
ter; 3—Fatty ester; 4—Triolein; 5—Fatty acid; 6—Diglycerides; 7, 8 and 9—Pigments; 
10—Polar compounds. 
 

 

Figure 6. B—Chromatogram of the lipid extract of Bligh & Dyer from Scenedesmus sp. 
Lipid Components (from top to bottom): 1—Carotenes; 2—Sterol ester; 3—Fatty ester; 
4—Triolein; 5—Fatty acid; 6—Diglycerides; 7, 8 and 9—Pigments; 10—Polar compounds. 
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Figure 7. D—Chromatogram of the lipid extract of J: Schmid-Bondzynski-Ratzlaff from 
Scenedesmus sp. Lipid Components (from top to bottom): 1—Carotenes; 2—Sterol ester; 
3—Fatty ester; 4—Triolein; 5—Fatty acid; 6—Diglycerides; 7, 8 and 9—Pigments; 
10—Polar compounds.  
 

According to the percentages of fatty compounds identified in thin layer 
chromatography (Figure 8), it is possible to observe a variation in relation to the 
percentage of triglycerides present in Bligh & Dyer extracts when compared to 
extracts J: Schmid-Bondzynski-Ratzlaff.  

The Bligh & Dyer extract showed the highest concentration of triglycerides in 
the lipid fraction with 18.26% in the microalgae Scenedesmus sp. (Figure 8) and 
the use of this method allowed to quantify the accumulation of triglycerides in 
the biomass in its integral form. The microalgae evaluated in this work showed a 
reduced amount of triglycerides when compared to conventional oilseeds such 
as palm and sunflower that present amounts above 90% [35] [36]. 

When we compare the levels of triglycerides obtained in this work by the mi-
croalgae Desmodesmus sp. and Scenedesmus sp. they were lower than the levels 
of triglycerides present in the microalgae Parietochloris incisa which presented 
42.9% and Pavlova lutheri with 40.3% [35]. For Scenedesmus sp. according to 
Yao [19] the content of triglycerides did not exceed 4.1% in the lipid extract. The 
presence of fatty acid in the lipid extracts of the microalgae Desmodesmus sp. 
and Scenedesmus sp. obtained by the Bligh & Dyer method represented 24.38% 
and 24.51% respectively, in relation to the other lipid classes separated by thin 
layer chromatography (Figure 8). The amount of water present in the biomass 
after collection (85% humidity) and the time of 24 hours, associated with a tem-
perature of 100˚C in the drying of the biomass, probably contributed to the oxi-
dation of triglycerides, increasing the amount of free fatty acids. It is known that 
the drying temperature may have contributed to microbial degradation and 
consequently lipid oxidation. In addition, chlorophyll can undergo photooxida-
tion generating O2− radicals in the cell that can promote the degradation of lipids 
[37]. According to the literature, the microalgae Phaeodactylum tricornutum 
also showed high levels of free fatty acids, which probably resulted from lipid 
degradation during the storage and processing time of the biomass [38]. Ac-
cording to Ryckebosch [38] when storing biomass of microalgae in natura, 
without any type of enzymatic inactivation with a high amount of water, lipoly-
sis occurs naturally. 

At the points of origin of application of the sample under the chromatography 
plate, in the lipid extracts of Bligh & Dyer of both strains evaluated in this work,  
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Figure 8. Fatty components present in lipid extracts. Legend: FFA: Fatty acids; FE: Fatty 
esters; TG: Triglycerides; DG: Diglicerides. Desmo—Desmodesmus sp.; Scene: Scene-
desmus sp.; B & D—Extraction method via Bligh & Dyer; Ratz—Extraction method via J: 
Schmid-Bondzynski-Ratzlaff.  
 
they indicated a higher concentration of polar compounds (Figure 9). These 
compounds retained at the base of the plate demonstrated that they did not 
show sufficient affinity to interact with the mobile phase composed of petroleum 
ether and ethyl ether, having more affinity with the stationary phase (Silica). In 
this case, the greater the affinity of the compounds with the stationary phase, the 
greater the polarity of the compounds. It was possible to evaluate that the 
amount of polar compounds present in the Bligh & Dyer extracts from the mi-
croalgae Desmodesmus sp. and Scenedesmus sp. represented 15.59% and 15.55% 
of the total lipids identified. In the presence of chloroform and methanol, used 
in Bligh & Dyer, a greater number of polar compounds may be extracted due to 
the affinity to the extracting solvents. According to Chen [39], microalgae grown 
in autotrophic form presented 70.6% of polar lipids, while microalgae cultivated 
in a heterotrophic manner, only 19% of total lipids were polar lipids. No addi-
tional separation of the polar lipids has been performed, however, according to 
Yao [15], the vast majority of polar lipids present in microalgae include phos-
pholipids and glycolipids.  

In the acid treatment of biomass, structures such as proteins, polysaccharides 
and lipids due to the presence of H3O+ ions in water undergo hydrolysis, causing 
decomposition into amino acids, simple sugars and fatty acids [40] [41]. It can 
be seen in Figure 9 that in the extracts of J: Schmid-Bondzynski-Ratzlaff there is 
an increase in the amount of free fatty acids and a decrease in triglycerides and 
polar compounds. According to Figure 9, it was possible to observe that in the 
extracts of Desmodesmus sp. and Scenedesmus sp. with acid treatment, the  
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Figure 9. Content (%) of polar components and fatty acids in lipid extracts. Legend: FFA: 
Free fatty acids. Desmo—Desmodesmus sp.; Scene: Scenedesmus sp.; B & D—Extraction 
method via Bligh and Dyer; Ratz—Extraction method via J: Schmid-Bondzynski-Ratzlaff. 
 
amount of polar lipids decreased to 5.76% and 5.82%, respectively. The amount 
of triglycerides in extracts with acid treatment for the biomass of Desmodesmus 
sp. and Scenedesmus sp., this amount decreased to 6.52% and 1.73%, respective-
ly. The increase in the concentration of fatty acids in the extracts of J: Schm-
id-Bondzynski-Ratzlaff in the microalgae Desmodesmus sp. and Scenedesmus 
sp. of 48.03% and 35.22%, respectively, was higher than that reported by Petrok 
[35] for Chlorella sp. of 31% - 32% after the biomass hydrolysis. This fact can be 
partially explained by the presence of HCl used to break these bonds that keep 
the more complex triglycerides and lipids that are hydrolyzed to simpler lipids 
like free fatty acids [42]. An carbonyl, for example, from a triglyceride, under-
goes an electrophilic attack from H+, forming a carbocation. This carbocation 
then undergoes a nucleophilic attack by a water molecule, forming a tetrahedral 
intermediary. Then, the elimination of a diglyceride and a fatty acid occurs, to-
gether with the regeneration of the H+ species. By similar processes monoglyce-
rides and glycerol will be formed. The presence of diglycerides in lipid extracts 
can also be seen as one of the intermediates of the reaction (Figure 9). Another 
grease species that was detected in thin layer chromatography was fatty esters. 
The formation of these components in greater quantity in the extracts of J: 
Schmid-Bondzynski-Ratzlaff can be explained due to the presence of H+ in the 
reaction medium by the protonation of carbonyl (C=O) present in the structure 
of the lipids, followed by an attack by the nucleophilic of ethanol (CH3CH2OH) 
present in the mixture of solvents used in the extraction [43] [44]. The product 
of this reaction is the fatty esters formed from the lipid transesterifica-
tion/esterification reaction. The acidic treatment of biomass using 8% sulfuric 
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acid at 160˚C for 45 min, for lipid extraction was reported by Halim [7] using 
the microalgae Chlorococcum sp. which resulted in an increase in the fatty acid 
content. Other studies also reported the use of an acid in the treatment of bio-
mass resulted in an increase in the extraction process [45]. 

In addition, according to Figure 10, the presence of hydrochloric acid togeth-
er with the polarity of the solvents: petroleum ether, ethyl ether, ethanol in the 
extraction process via J: Schmid-Bondzynski-Ratzlaff in both strains evaluated in 
this study increased extraction of unsaponifiable compounds such as sterol es-
ters. The presence of the acid facilitated the breaking of the micro-algal cell wall 
and in the case of Desmodesmus sp. 10% of sterols were detected in the lipid ex-
tract via J: Schmid-Bondzynski-Ratzlaff when compared to the extract obtained 
via Bligh & Dyer where this compound was not identified. Phytosterols in mi-
croalgae are found in several configurations, including free sterols, fatty acid 
sterol esters and glycoside sterol.  

According to the literature, sterols are important constituents of cell mem-
branes, being intertwined with phospholipid bilayers in all eukaryotes. Through 
this existence, sterols play significant roles in maintaining cellular structural sta-
bility and acclimatization to the membrane temperature. Sterols help maintain 
fluidity and permeability by controlling the movement of fatty acid chains with-
in the membrane [46] [47]. However, it has been reported in the literature that 
changes in growth conditions such as: renewal rate of semi-continuous cultures 
[48], concentration of salt in the growth medium [49] [50] [51], type of photo-
bioreactor [52], amount of light and phosphorus [53], temperature and silicate 
content [54] and growth stage of microalgae [55], can affect the production of 
sterols in microalgae. 
 

 

Figure 10. Sterol ester content (%) in lipid extracts. Legend: Desmo—Desmodesmus sp.; 
Scene: Scenedesmus sp.; B & D—Extraction method via Bligh and Dyer; Ratz—Extraction 
method via J: Schmid-Bondzynski-Ratzlaff. 
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In the lipid extracts of the microalgae Desmodemus sp. and Scenedesmus sp. 
the presence of hydrocarbons with double conjugated bonds was detected in the 
same time of carotene retention in amounts of up to 2% in relation to the lipid 
extract. For example, during photosynthesis, microalgae absorbs sunlight, nu-
trients and CO2 that are converted into biomass and, at the same time, produces 
molecular oxygen [56] [57]. As, oxygen is easily activated by ultraviolet radiation 
or by the heat of sunlight transforming itself into reactive oxygen species, highly 
oxidizing, plants and microalgae have developed a protection mechanism 
against these reactive oxygen species, which consists in the production of nu-
merous and efficient antioxidant compounds such as carotenoids. 

In the Bligh & Dyer extracts of the Desmodesmus sp. and Scenedesmus sp. 
biomasses, the significant presence of chlorophylls was detected in concentra-
tions of 37.03% and 27.91%, respectively (Figure 11). The use of polar solvents 
such as acetone, ethanol, methanol increases the affinity of these molecules with 
the solvent, resulting in an increase of these compounds in the extract [34]. After 
the acid treatment (method J: Schmid-Bondzynski-Ratzlaff), the pigments suf-
fered a reduction of 9.18% and 7.21% of the total pigments of the Desmodesmus 
sp. and Scenedesmus sp. microalgae, respectively. After the addition of acid 
(H+), a phenomenon occurs which is known as pheophytinization, where the 
magnesium in the center of the chlorophyll molecule is replaced by 2 hydrogens 
(H+) [58]. According to the literature, the presence of chlorophyll acts as a pho-
tosensitizer due to the production of O2 (singlet) promoting self-oxidation in 
vegetable oils [59]. As there is a large amount of chlorophylls, carotenoids and 
sterols, it was higher than that found in vegetable oils, the relative amount of 
triglycerides must be lower [35]. 
 

 

Figure 11. Chlorophyll content (%) in lipid extracts. Legend: Chl a—Chlorophyll a; Chl 
b—Chlorophyll b; Chl X—Chlorophyll X (green pigment not identified). Des-
mo—Desmodesmus sp.; Scene: Scenedesmus sp.; B & D—Extraction method via 
Bligh and Dyer; Ratz—Extraction method via J: Schmid-Bondzynski-Ratzlaff.  
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After the individual analysis of the components, according to Figure 12 in 
this work, the amount of saponifiable and unsaponifiable material in each of the 
extracts was also evaluated. The components were classified as fatty the sum of 
the lipid components: content of fatty esters + fatty acids + triglycerides + digly-
cerides. As unsaponifiable, not greasy, carotenes + sterol ester + chlorophylls + 
polar compounds were considered. In this case, the possible conversions of the 
polar compounds in free fatty acids present in the extracts were neglected in or-
der not to overestimate the results. According to Figure 12, it can be seen that 
acid hydrolysis contributed to the increase in fatty components of the microal-
gae Desmodesmus sp. and Scendesmus sp. the amount of fatty components 
represented 72.84% and 76.66% in relation to the total content of lipids. The 
amount obtained in our study was higher than that reported by Petkov [35] 
where the authors stated that it was possible to obtain 50% of fatty compounds 
after hydrolysis of the lipid extract. For the Bligh & Dyer extracts from Desmo-
desmus sp. and Scendesmus sp. strains this amount was 44.74% and 50.96% of 
fatty components in relation to the total amount of material extracted.  

From 100 grams of dry biomass of Desmodemus sp. (Bligh & Dyer and J: 
Schmid-Bondzynski-Ratzlaff method) and Scenedesmus sp. (Bligh & Dyer me-
thod) the results were statistically equal and did not exceed 4% of fatty material 
(Figure 13). When we evaluate only the percentage of fatty material obtained 
from the method of J: Schmid-Bondzynski-Ratzlaff from 100 grams of dry bio-
mass of Scenedesmus sp. this amount was 9.55% ± 0.38%. Indicating that from 
the microalgae Scenedesmus sp. under the same growing conditions as the mi-
croalgae Desmodesmus sp. it was possible to obtain a percentage of fatty com-
ponents in relation to dry weight (Figure 13). 
 

 

Figure 12. Saponifiable X unsaponifiable (%) material in lipid extracts. Legend: Des-
mo—Desmodesmus sp.; Scene: Scenedesmus sp.; B & D—Extraction method via Bligh 
and Dyer; Ratz—Extraction method via J: Schmid-Bondzynski-Ratzlaff. 
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Figure 13. Content (%) of saponifiable material* (Fatty fraction) from of Bligh & Dyer 
(BD) and J: Schmid-Bondzynski-Ratzlaff (Ratz) extracts in 100 grams of dry, ash-free 
biomass. *Values calculated based on triplicates of experiments from total lipid content. 
Different letters differ statistically from each other. 
 

As described even after acid treatment of biomass, concentrations of other 
non-fatty compounds still remained in the lipid extract. Therefore, an additional 
step of separation and concentration of the fatty components will improve the 
quality of these extracts [35]. Using a purer fraction of fatty components, it will 
be easier to convert to biofuels, for example. The other components, such as ste-
rols and carotenoids, can be used as high added value [60] [61] accumulation 
products. 

4. Conclusion 

The influence of the solvent used in the extraction and the identification of the 
lipid classes of the microalgae Desmodesmus sp. and Scenedesmus sp. was in-
vestigated. The content of lipids extracted with Bligh & Dyer from the microal-
gae Desmodesmus sp. was 9.18% ± 0.33%. Whereas with the acid treatment of 
biomass by the method of J: Schmid-Bondzynski-Ratzlaff the microalgae Scene-
desmus sp. presented 12.46% ± 0.38% of lipids in relation to dry biomass. Using 
the Bligh & Dyer method for extracting lipids, it was possible to verify the ac-
cumulation of triglycerides in microalgae during cultivation. The lipid extracts 
Desmodesmus sp. and Scenedesmus sp. extracted with Bligh & Dyer had as main 
constituent the presence of approximately 25% of free fatty acids. The acid 
treatment made it possible to increase the amount of free fatty acids in lipid ex-
tracts by hydrolysis of complex lipids, polar compounds and triglycerides. In 
Bligh & Dyer’s lipid extract for Desmodesmus sp. and Scenedesmus sp. ap-
proximately 50% of the composition of this fraction consisted of fatty com-
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pounds while the other half is composed of unsaponifiable fraction, mainly 
chlorophylls, sterol esters and carotenes. The acid hydrolysis of the biomass of 
Desmodesmus sp. and Scenedesmus sp. enabled the increase to 72.84% and 
76.66% of fatty material in lipid extracts. The lipid extracts showed a significant 
amount of unsaponifiable components that overestimated the results. Therefore, 
an additional step of separation and concentration of the fatty components will 
improve the quality of these extracts. 
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