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Abstract 
In this study, a distributed optimal control problem for n × n cooperative 
hyperbolic systems with infinite order operators and Dirichlet conditions are 
considered. The existence and uniqueness of the state of these systems are 
proved. The necessary and sufficient conditions for optimality of distributed 
control with constraints are found, and the set of equations and inequalities 
that defining the optimal control of these systems is also obtained. Finally, 
some examples for the control problem without constraints are given. 
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1. Introduction 

The earliest theory of optimal control was introduced by Lions [1]. 
Majority of the research in this field has focused on discussing the optimal 

control problem by using several operator types (such as elliptic, parabolic, or 
hyperbolic operators) [2] [3] [4]. 

The discussion was extended to systems involving different types of operators 
(such as infinite order [5]-[11] or infinite number of variables [12] [13] [14]). 

In [3] [15] [16] [17], the studies continued to develop using different types of 
systems (cooperative or non-cooperative). 

Based on the theories proposed by Lions [1] and Dubinskii [18] [19] [20], the 
distributed control problem with Dirichlet conditions for 2 × 2 non-cooperative 
hyperbolic systems involving infinite order operators was discussed in a previous 
study [17]; in this study, we extend this problem to n × n cooperative hyperbolic 
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systems. 
The system can be defined as 

( )

( ) ( ) ( ) ( )

2
2

2 0 1

,0 ,1

1 in

0,

0 on for 0,1,2, , 1, 1, 2, ,

,0
,0 , ,

n
i i ij j ij

i

i

i
i i i

y a D y a y f Q
t

y x

D y i n

y x
y x y x y x x

t

α α
αα

ω ω ω α

∞

= =

∂
+ − = + ∂ 

→ →∞ 


= Σ = ≤ − = 
∂ = = ∈Ω
∂ 

∑ ∑

 

       (1) 

with ( )2
iy L Q∈ , ( )2iy

L Q
t

∂
∈

∂
. 

Where 

0ija >  for all i j≠ . (This implies that the system (1) is cooperative), (2) 

ij jia a=  for all 1 ,i j n≤ ≤ ,                   (3) 

and ] [0,Q T= Ω×  with boundary ] [0,TΣ = Γ× . 
This paper is constituted of four sections. Section 1 presents the Sobolev spac-

es of infinite order, which we refer to later in the paper. In section 2, the state of 
n × n cooperative system with Dirichlet conditions is studied. In Section 3, the 
formulation of the distributed control with constraints is introduced. Finally, 
Section 4 presents some examples for the control problem without constraints. 

2. Necessary Spaces: [18] [19] [20] 

The Sobolev spaces of infinite order operators, which are used in this study, have 
already been presented in Reference [17]. 

We will list them briefly below: 

* ( ) { }( ) ( ) ( ){ }2

0 2
, 2 :H H a x C a Dα

α ααψ ψ∞∞ ∞ ∞
=

Ω = Ω = ∈ Ω ≤ ∞∑ , 

* The conjugate space of ( )H ∞ Ω  is defined as, 

* ( ) { }( ) ( ) ( ) ( ){ }0, 2 :H H a x x a D xα
α α ααϑ ϑ ϑ∞−∞ −∞

=
Ω = Ω = = ∑ , 

where ( )2Lαϑ ∈ Ω  and 
2

0 2
a Dα
α αα ϑ∞

=
< ∞∑ . 

Then we have the following chains: 

* ( ) ( ) ( )2H L H∞ −∞Ω ⊆ Ω ⊆ Ω , 

* ( ) ( ) ( )2
0 0H L H∞ −∞Ω ⊆ Ω ⊆ Ω , 

where 
( ) { }( )

( ) ( ){ }
0 0

22
0 0 2

, 2

: , 0, .

H H a

x C a D D

α

α ω
ααψ ψ ψ ψ ω α

∞ ∞

∞∞
= Γ

Ω = Ω

= ∈ Ω = ∞ = ≤∑ 

 

* ( ) ( )( )2 2 20, ,L Q L T L= Ω  is a Hilbert space of measurable functions 
( )t tψ→ , ] [0,t T∈ , that map an interval (0, T) in to the space ( )2L Ω , such 

that: ( ) ( )( )2

1
2 2
20

d
T

L Q t tψ ψ= ≤ ∞∫ , and 
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( ) ( ) ( )( ) ( )20
, , d ,

T

L
f g f t g t t

Ω
= ∫  

* In a similar manner as that of ( )2L Q , we obtain the constructed space 
( )( ) ( )( )2 2

0 00, ,L T H L H Q∞ ∞Ω = , and the following chains: 

* ( )( ) ( ) ( )( )2 2 2
0 0L H Q L Q L H Q∞ −∞⊆ ⊆ , 

* ( )( )( ) ( )( ) ( )( )( )2 2 2
0 0

n nn
L H Q L Q L H Q∞ −∞⊆ ⊆ . 

Finally, 

* ( ) ( )( ) ( )( )2 2
0 0 0

d0, :
d
fW T f L H Q L H Q
t

∞ −∞ = ∈ ∈ 
 

, 

with the norm: 

( ) ( ) ( ) ( )( )
( )

( )0 0
0

1 22
2

0, 0, 0,

dd d
dW T HT T

H

ff t f t t t
t∞

−∞Ω
Ω

 
= +  
 
∫ ∫

 
which is also a Hilbert space. 

3. State of the System 

We study the following cooperative hyperbolic systems with Dirichlet condi-
tions: 

( ) ( ) ( ) ( )

2

2
1

,0 ,1

in

0,

0 on for 0,1,2, , 1, 1, 2, ,

,0
,0 , ,

n

i i ij j i
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i
i i i

y Ay a y f Q
t

y x

D y i n

y x
y x y x y x x

t

ω ω ω α

=

∂
+ = + ∂ 

→ →∞ 


= Σ = ≤ − = 
∂ = = ∈Ω ∂ 

∑

 

       (4) 

with ( )( )2
0iy L H Q∞∈ , ( )2

iy
L Q

t
∂

∈
∂

. 

We have the operators ( )( )( ) ( )( )( )2 2
0 0,

n n
A L H Q L H Q∞ −∞ ∈  

 
  

such that 

( )( ) ( )

( ) ( ) ( )

1 2 1 2

2 2 2
1 2

0 0 0

, , , , , ,

1 , 1 , , 1 ,

n n

n

A y y y y Ay Ay Ay

a D y a D y a D yα α αα α α
α α α

α α α

∞ ∞ ∞

= = =

= =

 
= − − −  
 
∑ ∑ ∑

 



 
it is easy to write A as a matrix take the form: 

( )

( )

2

0 1

2

2

0

1 0

0 0
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0 1 n
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y
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Ay
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a D
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i.e. 

( ) 2
0 1 , 1, 2, ,i iAy a D y i nα α

αα
∞

=
= − =∑                (5) 

Let M be ( )n n×  square coefficients matrix such that 

( )( )

( )

1 2 1 2
1 1 1

11 1 1 21 1 2 1 1

, , , , , ,

, ,

n n n

n j j j j nj j
j j j

n n n n n nn n

M y y y y a y a y a y

a y a y a y a y a y a y
= = =

 
= =  

 
= + + + + + +

∑ ∑ ∑ 

  

 

i.e. 1 , 1, 2, ,n
ij jjMy a y i n

=
= =∑  . 

Let S A M= − , so that S represents ( )n n×  square matrix takes the form 

( )

( )

( )

2
11 12 1

0

2
21 22 2

0

2
1 2

0

1

1

1

n

n

n n nn

n n

a D a a a

a a D a a
S

a a a D a

α α
α

α

α α
α

α

α α
α

α

∞

=

∞

=

∞

= ×

 
− − 

 
 

− − 
=  
 
 
 

− − 
  

∑

∑

∑





   



 
Therefore, ( ) 2

0 1 ,1 1,2, ,n
i i i ij jjS y a D y a y i nα α

αα
∞

= =
= − − =∑ ∑  . 

Hence, we can rewrite the first equation in system (4) as follows: 
2

2 ini i i iy S y f Q
t
∂

+ =
∂  

Definition 1: 
The bilinear form ( ), ,t yπ φ  is defined on ( )( )( )2

0

n
L H Q∞  as follows: 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )2
2

01 1
, , , , , ,n

nn n
i ii iL Q

t y Sy y y L H Qπ φ φ φ φ ∞
= =

= = = ∈
 

where S maps ( )( )( )2
0

n
L H Q∞  onto ( )( )( )2

0

n
L H Q−∞ , so that 

( ) ( ) ( )2
1

, , , ,
n

i i i L Q
i

t y S yπ φ φ
=

= ∑
 

( ) ( )
( )2

2

1 0 1

1 0 1 1

, , 1 ,

d d d d .

n n

i ij j i
i j L Q

n n n

i i ij j iQ Q
i i j

t y a D y a y

a D y D x t a y x t

α α
α

α

α α
α

α

π φ φ

φ φ

∞

= = =

∞

= = = =

 
= − −  

 

= −

∑ ∑ ∑

∑ ∑ ∑ ∑∫ ∫
       (6) 

Lemma 1: 
There exists a constant 1,c c R∈ , such that: 

( )
( )( ) ( )( )( )2 2

0

2 2
1 1, , , , 0,n n

L Q L H Q
t y y c y c y c cπ

∞
+ ≥ >           (7) 

that is, (6) is coercive on ( )( )( )2
0

n
L H Q∞ . 

Proof: 
We have: 

( )
1 0 1 1

, , d d d d .
n n n

i i ij j iQ Q
i i j

t y a D y D x t a y x tα α
α

α
π φ φ φ

∞

= = = =

= −∑ ∑ ∑ ∑∫ ∫  
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Thus, 

( )
2 2

1 0 1, , d d d d

d d ,

n n
i ii ii iQ Q

n
ij i ji j Q

t y y a D y x t a y x t

a y y x t

α
ααπ ∞

= = =

≠

= −

−

∑ ∑ ∑∫ ∫
∑ ∫  

then we deduce 

( ) 2
1

2

1 0

, , d d d d

d d ,

n n
ii i ij i ji i jQ Q

n
ii Q

t y y a y x t a y y x t

a D y x tα
αα

π
= ≠

∞

= =

+ +

=

∑ ∑∫ ∫

∑ ∑∫  
then, 

( )
( )( ) ( )( )( )2 2

0

2 2
1 1, , , 0n n

L Q L H Q
t y y c y y c

∞
π + ≥ >

 
which proves the coerciveness condition on ( )( )( )2

0

n
L H Q∞ . 

Lemma 2: 
If (2), (3) and (7) are hold, then ∃! ( ) ( )( )( )2

01

nn
i i

y y L H Q∞
=

= ∈  for system 
(4), for ( ) ( )2,i if f x t L Q= ∈ . 

Proof: 
Let ( ) ( )1

n
i i

Lψ ψ ψ
=

= →  be a continuous linear form defined on  

( )( )( )2
0

n
L H Q∞  by 

( ) ( )( )( )2
01

nn
i i

L H Qψ ψ ∞
=

∀ = ∈ , 

( ) ( ){ },11 d d ,0 dn
i i i ii Q

L f x t y x xψ ψ ψ
= Ω

= +∑ ∫ ∫ ,            (8) 

where ( ) ( )2 2
,0,i if L Q y L∈ ∈ Ω  and ( )2

,1iy L∈ Ω . 
Then, by the Lax-Milgram lemma, 
∃! ( )( )( )2

0

n
y L H Q∞∈  such that 

( ) ( ) ( ) ( ) ( )( )( )
2

2
02 1

, , , , .
nn

i i i i
L y t y L H Q

t
ψ ψ π ψ ψ ψ ∞

=

∂
= + ∀ = ∈
∂

    (9) 

Now, let us multiply system (4) by iψ , and then integrate it over Q: 
2

2
1 1 1

d d d d d d .
n n n

i i i ij j i i iQ Q Q
i j i

y Ay x t a y x t f x t
t

ψ ψ ψ
= = =

 ∂
+ − = ∂ 

∑ ∑ ∑∫ ∫ ∫
 

By using Green's formula: 

( ) ( )

2

2
1 0 1

1

d d d d d d

,0
,0 d d d d

n n
i

i i i ij j iQ Q Q
i j

n
i i

i i i iQ
iA

y x t a D y D x t a y x t
t

y x y
x x f x t

t v

α α
α

α

ψ
ψ ψ

ψ ψ ψ

∞

= = =

Ω Σ
=

 ∂ + −
∂

∂ ∂ + − Σ =
∂ ∂ 

∑ ∑ ∑∫ ∫ ∫

∑∫ ∫ ∫
 

from (6), (8) and (9) we have 

( ) ( ) ( ) ( ),1
1 1

,0
,0 d d ,0 d .

n n
i i

i i i iQ
i iA

y x y
x x y x x x

t v
ψ ψ ψ

Ω Σ
= =

∂ ∂ − Σ = 
∂ ∂  

∑ ∑∫ ∫ ∫
 

Then, we deduce that 
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0 on for 0,1,2,3, , 1, 1, 2,3, ,iD y i nω ω ω α= Σ = ≤ − =   
( ) ( ),1

,0
, ,i

i

y x
y x x

t
∂

= ∈Ω
∂  

Thus, the proof is complete. 

4. Control Problem with Constraints 

The space ( )( )2 n
U L Q=  is the space of controls ( ) 1

n
i i

u u
=

= . 

The state of the system ( ) ( )( ) ( )( )( )2
1

nn
i i

y y H Qu Lu ∞
=

= ∈  is determined by 
the solution of 

( ) ( )

( ) ( ) ( ) ( )

2

2
1

,0 ,1

in ,

0, ,

0 on for 0,1, 2,3, , 1, 1, 2,3, ,

,0,
,0, , , ,

n

i i ij j i i
j

i

i

i
i i i

y Ay a y f u Q
t

y x

D y i n

y x
y x y x y x

u u

u
u x

t

ω ω ω α

=

∂
+ = + + ∂ 

→ →∞ 


= Σ = ≤ − = 
∂ = = ∈Ω ∂ 

∑

 

    (10) 

with ( )( )2
0iy L H Q∞∈ , ( )2

iy
L Q

t
∂

∈
∂

. 

The observation function is given by 

( ) ( )( ) ( )( ) ( )1 1

n n
i ii i

z yz u u u y u
= =

= = = . 

The cost function ( )J u  is given by 

( ) ( ) ( ) ( )22

2 2

1 1

n n

i id i L QL Q
i i

u uJ y z M u
= =

= − +∑ ∑             (11) 

where ( ) ( )( )2
1

nn
d id i

z z L Q
=

= ∈  and M ≥ 0 is a constant. 
Then, the control problem is to minimize J over adU  which is a closed con-

vex subset of ( )( )2 n
U L Q= . 

i.e. to determine u  such that 

( ) ( )inf
adv U

J Ju v
∈

= , ( ) 1

n
i i

v v
=

= . 

Based on the above data and previous results, we have the following theorem: 
Theorem 1: 
Assuming that (7),(10) and (11) hold, ∃! the optimal control ( ) 1

n
i adi

u u U
=

= ∈  
such that: ( ) ( ) ( ) 1

, n
i adi

J J vu v v U
=

≤ ∀ = ∈ , and it is determined by: 

( ) ( ) ( )

( )

( ) ( )

2

2
1

in

0 on for 0,1,2, , 1, 1, 2, ,

,0,
,0, 0, 0,

n
i

i ij j i id
j

i

i
i

p
Ap a p y z Q

t

D p i n

p x

u

p x x

u

t

u

u

u
u

ω ω ω α
=

∂
+ − = − 

∂ 
= Σ = ≤ − = 
∂ = = ∈Ω ∂ 

∑

       (12) 

with ( )( )2
0,i iy p L H Q∞∈ , ( )2,i iy p

L Q
t t

∂ ∂
∈

∂ ∂
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and 

( )( ) ( ) ( )2 1
1

, 0,
n n

i i i i i adiL Q
i

p Mu v u v Uu v
=

=

+ − ≥ ∀ = ∈∑          (13) 

where ( )ip u  is the adjoint state. 
Proof: 
As in [1], ( ) 1

n
i adi

u u U
=

= ∈  is determined by: 

( )( ) ( ) 1
1

0, ,
n n

i i i i adi
i

J v u v Uu v
=

=

′ − ≥ ∀ = ∈∑
 

i.e. 

( ) ( ) ( )( ) ( ) ( ) ( )22
1 1

, , 0
n n

i id i i i i i L QL Q
i i

y z y y M uu v u v u
= =

− − + − ≥∑ ∑
 

which is equivalent to: 

( ) ( ) ( )( ) ( ) ( ) ( )220
1 1

, d , 0.
n nT

i id i i i i i L QL
i i

y z y y t M u vu u uv
Ω

= =

− − + − ≥∑ ∑∫    (14) 

Now, let us define a hyperbolic infinite order operator B as follows: 

( ) ( ) ( ) ( ) ( )
2

2 1
1

, ,
n ni

i i ij j i adi
j

u
y u u u u

y
B By Ay a y u U

t =
=

∂
= = + − ∀ = ∈

∂
∑

 

Since, ( ) ( ) ( ) ( ) ( )
( )

2

2

2

2 10
, , d

T ni
i i ij jjL Q

L

y
p By p Ay a y t

u
u u

t =
Ω

 
  
 ∂ 

∂
= + −∑∫ , from 

(3), we obtain 

( ) ( )
( ) ( ) ( )

( )

( ) ( )

2

2

2

2

20
1

* ,

, , d

,

nT i
i ij j iL Q

j L

L Q

p
p By Ap a p y t

t

B

u

p

u u

y

= Ω

 
  


∂
=

=


+ −

∂
∑∫

 

then ( ) ( )( ) ( ) ( )
2

* *
2 1 , 1, 2, ,ni

i i ij jj

p
B p B p Ap a p i n

u
u u

t
u

=

 ∂
= = + − =  ∂ 

∑  . 

Now, let us set the following notation: 

( ) ( )( ) ( )* *
1 , 1, 2, , .n

i i i ij jjS p S p Ap a p i nu u u
=

= = − =∑ 

 
According to the form of the adjoint equation in [1]: 

( ) ( ) ( )
2

*
2 ,i d

p
S p y

u
u u z

t
∂

+ = −
∂  

and by Lemma 2, 
∃! Solution ( ) ( )2

ip u L Q∈  for (12). 
Now, we transform (14) as follows: 
we multiply (12) by ( ) ( )( )i iy v uy−  and integrating between 0, T, then we 

obtain: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
( )

2

2

0

2

20
1

, d

, d

T
i id i i L

nT
i ij j i i

j L

y z y y t

A p a p y y t
t

u v u

u v u

Ω

= Ω

− −

 ∂
= + − −  ∂





 





∫

∑∫
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( ) ( ) ( ) ( ) ( )( )
( )

( )( ) ( )

2

2

2

20
1

0

, d

, d ,

nT
i i i ij i i

j L

T
i i i L

p A y y au v y y t
t

p

u v u

u v u t

= Ω

Ω

  ∂
= + − − − 

∂ 

= −


     

∑∫

∫

 

hence (14) becomes 

( )( ) ( ) ( ) ( ) ( )22 10
1 1

, d , 0, ,
n nT n

i i i i i i i adL Q iL
i i

p v u tu M u v u v Uv
=Ω

= =

− + − ≥ ∀ = ∈∑ ∑∫
 

i.e. ( )( ) ( ) ( )21 10
, d 0,

T nn
i i i i i adi iL

u vp Mu v u t v U
= =Ω

+ − ≥ ∀ = ∈∑ ∫ . 
Thus, the proof is complete. 

5. Control Problem without Constraints 

1) The case if ( )( )2 n

adU L Q=  i.e. (there are no constraints on the control 
u ), then (13) takes the form ( ) 0,i i ip N u x Qu + = ∈ , hence 

( )1
i i i uu N p−= − .                       (15) 

Example 1: 
Let us consider n=2 in (1), also (2) and (3) are satisfied, the space ( )( )2

2L Q  
is the space of controls ( )1 2,u u u=  and the state  
( ) ( ) ( )( ) ( )( )( )1

2

02
2,y u y u y u L H Q∞= ∈  is determined by: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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t
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∂
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∂
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 ∂ = = ∈Ω
 ∂
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( ) ( ) ( )1 1
1 1 1 2 2 2 1 2, , , ,adu uu N p u N p Uu u u− −= − = − ∀ = ∈        (18) 

together with (16), where ( ) ( ) ( )( )1 2,u up p p u=  is the adjoint state. 
2) The case if there are no constraints on 1u , 

i.e. ( ){ }2
1: arbitrary in , 0 . . in , 2, ,ad iU u L Q u a e Q iu n= ≥ =  ,    (19) 

hence, (13) takes the following form: 

( )
( )
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0, 2, , .
i i i i

i i i i
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             (20) 

Example 2: 
If we take n = 2, 

then ( ){ }2
1 2arbitrary in , 0 . . inadU u L Q u a e Qu= ≥ .       (21) 

So, (13) is equivalent to 

( )
( )
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1 1 1

2 2 2 2

2 2 2 2
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 + ≥ ≥
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                 (22) 

so, the optimal control is determined by: 
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Further 

( )
( ) ( ) ( ) ( )

1
1 1 1

2
2

2 2 21 1 22 2 22

,

.

u N p

y
u Ay a y a y f

t

u

u
u u u

− =

 ∂

= + − − −
∂

         (24) 

6. Conclusion 

In this paper, we have some important results. First of all we proved the exis-
tence and uniqueness of the state for system (4), which is (2 × 2) cooperative 
hyperbolic systems involving infinite order operators (Lemma 2). Then we 
found the necessary and sufficient conditions of optimality for system (10), that 
give the characterization of optimal control (Theorem 1). 

Finally, we derived the necessary and sufficient conditions of optimality for 
some cases without control constraints. 

Also it is evident that by modifying: 
• the nature of the control (distributed, boundary), 
• the nature of the observation (distributed, boundary), 
• the initial differential system, 
• the type of equation (elliptic, parabolic and hyperbolic), 
• the type of system (non-cooperative, cooperative), 
• the order of equation, many of variations on the above problem are possible 

to study with the help of Lions formalism. 
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