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1. Introduction

Boussinesq equation

xx

Vit =—§(vxx—4v2) (1)

is one of the difficult soliton equations, which has been paid common attention
in physical and mathematical fields [1]-[6]. In 1983, H. Flaschka put forward a
problem of the third order differential operator associated with the Boussinesq
Neumann system [7]. Some works focus on the decomposition and the struc-
tures of the Modified Boussinesq equation [8] [9] [10] [11]. The decomposition
of the Boussinesq Neumann system has not been done thoroughly for a long

time. A Neumann system of the Boussinesq equation associated with the third
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order differential operator is obtained in this paper, which is the extension of the
famous KdV Neumann system associated with the second order differential op-
erator. There are many methods to deal with the integrability and involutivity
[12] [13] [14]. A generating function method starting from the Lax-Moser ma-
trix [15]-[20] is used to give an effective way to prove the involutivity of inte-

grals.

2. The Generating Function of Integrals

Let R°Y be the phase space. The canonical coordinates are
g =(g1-4qy), P =(plpy)s =123,
Write
9=(d"a"4"). p=(r"P".P'): @ =(a0.9-4;). p.=(P}-Pi-P}):

for short. Take A=diag(c,, --,a,), where «,---,a, are distinct spectral
constants. We denote:
(X V)23 XY, " =(q.p'), 4"=(4q.p"),
k=1

where Xand Yare two NV dimensional vectors.

For any matrix M = (M” ) , the element of its adjoint M~ is M; = (—1)”] M,
where A7, is the cofactor of the element M " in M.

In order to proof the Liouville integrability of the Hamiltonian system, con-

sider the Lax-Moser matrix defined as:

V,1=Vi(p,q)=( j{)m"'la’ (2)
where
N 0 0 r?
ngi(qi,pj)éiji’ L, =1,(p.q)= 20 22 |
AT 00 0

Let L, =¢&I, +V,. Then we have the generating function of integrals:
F, =detL,, =&+ F (1) +F, (1) E+F(4), (3)
where

Fi(4)=0,'+07 +0;,

11 12 2 3 12 3l 1 B3, .3
Fa N n ) +2r —r N L+
2( )_ 2,3 »| T 3 3 31 3|
2 T 2 2 2 2 2
11 12 13, 3
2 2 T
a2t 32 2 23 2 31
F(A)=|07'+r* 07 0P +2r-r".
31 32 33
y y f)

A series of polynomials F,, =F,, (¢,p), are defined as the coefficients of the

ety )

power series expansions as |ﬂ| > max (|a,
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0

F(4)=> A"'F,., j=12,3.
m=0

The first few are expressed as |/1| > max(|a1|,~-,|a,\,|) :
3

_.u 2 33 _ 1232 (.32
Fo=r +r~+r>, F,=-3rr", F30—(r ),

le :—r32(A12+A31)—(2r12—r31)A32+ z (riirjj_rijrji)’
<i<j<

1 3

2
32 32 32 21 32 22 31 13_32 1233
F3]:(r ) A" +r (r r—=rTr +rr —rr )

12 31 1132 1231
—(2r -r )(r re—r-r )

By comparing the coefficients of the same power of A, general explicit for-

mulas are obtained:
F, =(4"q ,p")+(4"¢,p*)+(4"¢’,p*), m=1;

F, —_® (<Amq1,p2>+<Amq3,pl>)—(2r12 —r31)<Amq3,p2>

<Akqi’pi> <Alqi’pj>

<Akqf',p"> <Alqj,pj> m>2;

>

3
k+l=m-1 1<i<j<3
k120

F, =(r32>2<Amq3,p2>
o z <Akq2,p1> <A1q2,p2> <Akq1,p2> <Alq1,p3>
¥
Flleen) oo aar) (e
(440} (400

(22 _
( r r )k*k’;zz"z)l <A1‘q3,p1> <Alq3,p2>
<qul,p]> <Akql’p2

)
i Z <qu2’p1> <Akq2,p2>
)

|

Jrk+l=m=2
i (A p") (4, p*) (4q',p*)
Expand F,(4) innon-negative power of A :

F(2)=3 2", L, =123

m=1

as |/1| < max (|al|,---,|0{N|) . By comparing the coefficients of the same power of

A, we have:
F_,= _(<A_mqlaPl>+<A_mq2,p2>+<A_mq3,p3>), m>1;
B = ({474 )+ {474 1))
-i—(2r12 —r31)<A’mq3,p2>
<A—kqi’pi> <A—1qi’pj>

<A"‘qf,p"> <A_lqj,pj>, m>1;

+
k+l=m+1 1<i<j<3
k,l=1
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F,, :_(r32)2 <Amq3,p2>

N Z <A—kq2’p1> <A71q2,p2> ) <A7kq1,p2> <A71q1,p3>
A_lq3,p2 p
) (4w

+r
k+l=m+1 <A_kq3

k21

—(Zrlz_rh) Ej :q:,p; 2 q:,pz;
k+I=m+1 ’p q,p
k121
(p) (14.07) (10
_j+k+l m+2<A /q pl> <A q p> <A q p> m>1
s |{a7qpt) {47q ) (47qp)

3. The Involutivity of Integrals

The involutivity is critical to the integrability of the Hamiltonian system, which
is defined as the Poisson bracket of two conserved integrals being zero. A direct
calculation gives:

Proposition 1. The Hamiltonian system for the F,, -flow is expressed as:

jzzz 2 %‘—Wéﬂpk’ (4)
where
| 0 0 L,
Wia = /I—aAL et Lo Lose = _20L23 2 L13;L2, :

Proof. From the Equation (3) and the property of Hamiltonian system, we
calculate the partial derivatives of ¢, and p, with respect to z,,., then the
results are obtained. [

Lemma2. g =gq,p, satisfies the Lax equation along the ¢,, -flow:
de, 1 .
@ - [Wz.fwgk] - ,1_—%[L4¢’5k]‘

Proof.

& =qpr +aii =(Wa, ) o +a,(W'q,) =We, —eW=[W.5,]. O

Proposition 3. L, satisfies the Lax equation along the 7, -flow:

dL
TM = |:W/15/4 ’L/m]' (5)
A8
Proof. O, canbeexpressedby &, as:
0,-3 %
: k=1 H— O

Resorting to Lemma 2, we have:

dQ
‘[ Aéﬂ’Lun]_[Lw’lﬂ]
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dl
dt:Z s L] =¢"UW”J =0. U

Lemma 4. The two determinants are true as a,b,c,d =1,2,3:

Qa(q”’pb) QA(qu’pd):lﬁﬁ 1 q; q p,}; p,f‘ ©6)
0.(q°.0") Q,(¢.p")| 2E(A-a)(A-a)lg 4|l o
der(0,(¢'.")),,
| a @ 4|, pi o» )
=—Z 9 4 4l|py pi Pl
““”( ’)(Z_a")(/l_al)q? |
From (6) and (7), we have:
_ ﬂl(ﬂ')_ 11 22 33 ﬂl (i)_ & Elk
E(’I)_Fl"a(;t)‘(’ e )a(g)_“z a,’ ®
_ ﬁz(/l) 12,32 b (’1 - By
Fz(ﬂ)—Fma(l) EaTey X ©)
R(4)= B, BA () AEA) 5 Eu (10)
} 30 a(A) a(A) Si-a,’

where a(/i):Hiv:l(l—ak) , and B (4),5,(4),B;(A) are polynomials of

degree N —1. From (8)-(10), another group of conserved integrals E, ,E,,,E;,

is obtained:

3 . .
Elk:qulfplln 1<k<N;

i=1

Ey == (q,p; +a;py)- (27" =" )i i

1 i il i j
+ G diPe P 1<k < N
ISV O — O i<i<j<3|Gy 47 ||Pr D
1#k
o2V gy g 1 (le a||pe Pl |oe allpe pi
3k—(’” )qkpk+r Z _ T Y | NS T I R | S S
KNG =\ |9y qp||Pr Pl 4 4 ||Pr P
1#k
—(27”12 _ A 1 o a|lpe P
3 3| 2
IKISNCGG =0y \q 4 ||P; P

1k

1 a @ al|lp, » »
Yy 4 4 4|p; P pils 1<k<N.
1<j<N 1SISN E(aj —ak)(a, —O!k) 30 30 3| 2 3
9, 4% 4\||P; Pr P

jzk  1#jk

From the definition of involutivity of two conserved integrals and direct cal-
cultion, we have:

Proposition 5. The integrals

(F,Fy  Fym € Z;Eyy By Ey 1<k < N

1m> 3m>
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are involutive in pairs:

(F,nF, ) =0, Vij=1,23% Vmn=0,12,-. (11)
(FphFol,)=0, Vij=123 Vmn=12: (12)
(FoF,,)=0, Vi, j=123 Vm=0,12n=12,. (13)
(Ey.E,)=0, Vi,j=123 VI<kI<N. (14)
(E.m,Ej, =0, Vi,j=123 VmeZ;1<I<N. (15)

4. Hamiltonian Systems

By direct calculations, the canonical equations of the Hamiltonian systems (F,)

and (F, ) canbe expressed as:

oF. oF.
q,=—+=Uq, p,=——7L=-U'p;
op oq
(16)
oF;, Fy __pr
t - - q’ t - 9
op %]

where U,V are 3N x3N matrices:
P! 1 ro—r
11 33 31 2 31 32 13 21 11 22 31
U= —[Zr +r +(r )} -7 A+247 +2r 7 +2r +(r -r )r ;
1 0 0

P2 0 —A+ A4 ="
V=| (44242 47) A ar? PA-AT g

1 T
_— -1 ro+r

Proposition 6. Let ¢(x,7), p(x,¢) be compatible solution of the (F;,) and
(1721) flow on the level set {(p,q) eRY .2 =12 = 0} . Then the Boussinesq
Equation (1) has a finite-parameter solution (u,v)=B(g,p) given as:

3 1 3 1
u:—EAﬁ"FEF;p V:EVH—EEO. (17)

Proof. A direct calculation gives:
ij11 = B2 +(r” _rzz)rn,
rxzz =3A32+2r13+r21+(r”—r22)r31,
rx33 = 3432 13 02 —2(}’11 _rzz)r31’
rxls —_y? +r23+r13r31+(r“ —1”22)(1"33—7"“),
rfl SR, WE U R ) JAE S _(rll _r22)(2r11 +r33),
rxzs =A33—Azz+2(r33—r22)A32—r23r31+(—2r11—2r22+r33)r13,

2
+(—r“ _ 2 +2r33)r21 3 (731) +(},11 _rzz)(rss _r22)r31’
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rx31 :3},11’ A,lcz :—A11+A22+2r31A21+(r“—rzz)An,
2

Ail :A”—A33—r31A31+|:2r“+r33+(r31) :|A32’

A)::Z :AIZ—A31+F31A32.

So from the above calculations and (16), we have:

u, = %(vxx —4y? )X R

and
Vi = (_ux ), = _(ut )x = _%(Vﬂ _4v2)

which is exactly the “good” Boussinesq Equation (1). [

xx

5. Conclusion

The third order differential operator associated with the Boussinesq Neumann
system is a critical point in researching problems of integrable system. In this
paper, we obtain a Neumann system of the Boussinesq equation associated with
the third order differential operator, which is the extension of the famous KdV
Neumann system associated with the second order differential operator. By
means of generating function from the Lax-Moser matrix, we prove the involu-
tivity of integrals successfully. Meanwhile, a finite-parameter solution to the

Boussinesq equation is obtained naturally.
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