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Abstract 
Differential evolution algorithm based on the covariance matrix learning can 
adjust the coordinate system according to the characteristics of the popula-
tion, which makes the search move in a more favorable direction. In order to 
obtain more accurate information about the function shape, this paper pro-
poses covariance matrix learning differential evolution algorithm based on 
correlation (denoted as RCLDE) to improve the search efficiency of the algo-
rithm. First, a hybrid mutation strategy is designed to balance the diversity 
and convergence of the population; secondly, the covariance learning matrix 
is constructed by selecting the individual with the less correlation; then, a 
comprehensive learning mechanism is comprehensively designed by two co-
variance matrix learning mechanisms based on the principle of probability. 
Finally, the algorithm is tested on the CEC2005, and the experimental results 
are compared with other effective differential evolution algorithms. The ex-
perimental results show that the algorithm proposed in this paper is an 
effective algorithm. 
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1. Introduction 

Optimization problems are everywhere, and how to better solve optimization 
problems has become a current research hotspot. Differential evolution algo-
rithm performs well in solving optimization problems, so it is very popular. Dif-
ferential Evolution (DE) is a random search method proposed by Storn and 
Price et al. [1] in 1995. As a member of intelligent optimization methods, it has 
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become one of the commonly used methods to solve optimization problems be-
cause of its high search efficiency and strong robustness. However, the standard 
DE algorithm has the pressure to select control parameters, the search ability is 
inconsistent with the development ability, and the fixed coordinate system can-
not be rotated according to the landscape of function to improve the search effi-
ciency [2]. Many documents have improved the control parameters of the DE 
algorithm. For example, J. Zhang et al. [3] proposed the parameter adaptive dif-
ferential evolution algorithm (JADE) in 2009, which uses an adaptive learning 
scheme to adjust the values of F and CR. Wang Yong et al. [4] proposed an un-
constrained optimization compound differential evolution algorithm (CoDE) in 
2011. The algorithm uses three different mutation strategies to generate trail vectors 
to improve the exploration and development capabilities of the DE algorithm.  

Covariance matrix learning helps to improve the optimization performance of 
differential evolution algorithm. Wang Yong et al. [5] proposed a differential 
evolution algorithm based on covariance matrix learning (CoBiDE) in 2014. 
This algorithm combines eigenvectors with crossover operators to make the al-
gorithm rotate and not deform. Yong Lili et al. [6] proposed the covariance ma-
trix and crossover matrix guided differential evolution (CCDE) in 2016. The al-
gorithm uses the optimal individual to construct the covariance matrix and 
Gaussian distribution function to randomly search the area around the optimal 
individual, and makes full use of the best individual information to improve the 
search ability of the algorithm. Noor H. Awad et al. [7] proposed a covariance 
matrix learning constraint optimization algorithm based on euclidean distance 
(LSHADE-cnEpSin) in 2017. These algorithms mainly screen individuals to 
construct covariance matrix according to their fitness values, and do not consid-
er possible collinearity among individuals. Highly related individuals will trans-
mit duplicate information, which may cause the population to ignore important 
distribution information during the search process. 

In order to solve the problem of information duplication between individuals 
and reduce algorithm efficiency, this paper proposes a differential evolution al-
gorithm for covariance matrix learning based on correlation research. The algo-
rithm calculates the correlation coefficient between all individuals in the popula-
tion, eliminates the individuals with strong correlation, uses the remaining indi-
viduals to construct a covariance matrix, realizes coordinate rotation, and im-
proves the search efficiency of the algorithm. 

The rest of this paper is organized as follows: Section 2 introduces the prepa-
ratory work, Section 3 introduces the algorithm proposed in this paper, Section 4 
analyzes the numerical experiment results, and Section 5 summarizes this paper. 

2. Related Work 

This section mainly introduces the preliminary preparations, mainly including 
the definition of optimization problems and the basic process of differential 
evolution algorithm, so as to facilitate the understanding of the algorithm pro-
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posed in this paper. 

2.1. Optimization Problem 

Without loss of generality, many scientific and engineering optimization prob-
lems can be reduced to the following mathematical models. The optimization 
problem (minimization problem) can be defined as: 

( )min f X X ∈Ω                        (1) 

where Ω represents the decision space, [ ]1 2, , , DX x x x=   is the decision varia-
ble, D is the size of the dimension, and the upper and lower boundaries of the 
j-th dimension jx  of the decision variable are jL  and jU  respectively: 

, 1,2, , .j j jL x U j D≤ ≤ =                     (2) 

2.2. Differential Evolution 

Differential evolution algorithm is a swarm intelligence optimization algorithm 
inspired by natural evolution. Its basic idea is to use a heuristic random search 
algorithm based on population individual differences. It mainly includes four 
component: initialization, mutation operator, crossover operator, and selection 
operator. 

1) Initialization: The population size is expressed as NP, and each vector iX
represents a potential solution, that is, an individual. When g = 0, the initial 
population is { }0 0 0

0 1 2, , , NPP X X X=   is generated as follows: 

( ) ( ), 0,1 1,2, ,i j j j jX L rand U L j D= + ∗ − =               (3) 

where rand(0, 1) represents a random number that obeys [0, 1] uniform distri-
bution. 

2) Mutation: Mutation operator determines the degree of convergence and 
diversity of the algorithm. A mutation vector is created for each target individual 
by using paired difference information, where “rand” means that the base vector 
is selected randomly, and “1” means mutation. The number of random differ-
ence vectors in the equation. Let V denote the mutation vector, and the com-
monly used mutation strategies are as follows: 

DE\rand\1: 
( )1 2 3r r rV X F X X= + ∗ −                     (4) 

DE\rand-to-pbest\1: 

( ) ( )1 1 2 3 .r pbest r r rV X F X X F X X= + ∗ − + ∗ −            (5) 

The scaling factor [ ]0,1F ∈ , 1r , 2r , 3r  are randomly selected in [ ]1, NP
and are not equal to each other in the same mutation strategy. “Best” means the 
best fitness individual in the current population, and “pbest” means an individu-
al randomly selected from the best p% individuals in the current population. 

3) Crossover: There are two commonly used crossover methods: exponential 
crossover and binomial crossover. The crossover strategy used in this paper is 
binomial crossover. In the binomial crossover, the variation vector and the tar-
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get vector generate the trail individual ,i dU  through formula (6): 

( ),
,

,

,  if 0,1 or ;
, otherwise.

i d rand
i d

i d

V rand Cr j j
U

X
  <     == 


            (6) 

where { }1,2,3, ,randj D∈   represents a random integer on [1, D], randj  can 
ensure that at least one dimension of the D-dimensional variables of ,i dU  is 
contributed by iV , and Cr is the crossover control parameter. 

4) Selection: The selection operator compares the trail individual ,i dU  and 
the parent individual ,i dX  one to one, and selects the better individual as the 

1t +  generation individual 1t
iX + . 

3. The Proposed Approach 

This section mainly introduces the algorithm designed in this paper, the diffe-
rential evolution algorithm based on the covariance matrix learning of correla-
tion, denoted as RCLDE. This section mainly introduces: the correlation-based 
covariance matrix learning mechanism, the double mutation strategy coordina-
tion mechanism, the adaptive parameter control strategy and the general 
framework of the algorithm RCLDE. The details will be described below. 

3.1. Covariance Matrix Learning Mechanism Based on Correlation 

In the covariance matrix learning mechanism, the differences in the construction 
of the covariance matrix directly affect the performance of the mechanism. The 
correlation coefficient between variables can reflect the correlation between two 
indicators. The larger the correlation coefficient, the higher the correlation of the 
information reflected by the two individuals, and part of the information carried 
by the two individuals will overlap. The majority of scholars construct the cova-
riance learning matrix mainly based on the optimality of individual fitness val-
ues, which is beneficial to speed up the optimization performance of the algo-
rithm, but this method does not consider the correlation between individuals, 
which may affect the learning efficiency of the learning mechanism. Therefore, 
in order to improve the performance of the covariance matrix learning mechan-
ism, this paper considers the correlation between individuals when constructing 
the covariance matrix, removes some individuals with strong correlation, and 
then constructs the covariance matrix, performs Eigen decomposition, and ob-
tains the eigenvector The original coordinate system is rotated. 

The covariance matrix learning mechanism includes two steps: Eigen decom-
position and coordinate transformation of the covariance matrix. First, perform 
eigendecomposition on the covariance matrix to obtain the eigenvectors, and 
use the Eigen vectors as the Eigen coordinate system, which is the axial direction 
of the new coordinate system. Then, according to the distribution information of 
the population, the original coordinate system is rotated through the Eigen 
coordinate system to adjust the search direction of the population and improve 
the search efficiency of the global optimal solution. The specific steps of the cor-
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relation-based covariance matrix learning mechanism used in this paper are as 
follows: 

Step 1 Find the correlation coefficients of all individuals in the current popu-
lation, remove one of the two individuals with a correlation coefficient greater 
than α, use the remaining individuals with weak correlations to construct the 
covariance matrix C, and perform Eigen-decomposition on C: 

2 TC BD B=                            (7) 

where is the orthogonal matrix B, each column of B is the eigenvector of the co-
variance matrix C, and D is a diagonal matrix composed of eigenvalues. 

Step 2 Use the orthogonal matrix BT to map the target vector and mutation 
vector to the Eigen coordinate system: 

1 T
i i iX B X B X−′ = =                        (8) 

1 .T
i i iV B V B V−′= =                         (9) 

Step 3 Cross operation of target vector iX ′  and mutation vector iV ′  in the 
Eigen coordinate system to generate trail vector iU ′ : 

( ),
,

,

,    if  0,1   or  

,    otherwise.
i j j rand

i j
i j

V rand CR j j
U

X

′ ≤ =′ =  ′
          (10) 

Step 4 Use the orthogonal matrix B to convert the trail vector iU ′  back to the 
original coordinate system: 

i iU BU ′=                           (11) 

here iU  is the trail vector in the original coordinate system. 

3.2. Mutation Strategy 

In order to reduce the influence of mutation strategy on differential evolution 
algorithm, this paper draws on the probability calculation method of [8] and 
proposes a double mutation strategy cooperative coevolution mechanism based 
on probability selection mechanism. Figure 1 shows the pseudocode of the mu-
tation strategy. 

In the early stage of evolution, in order to maintain the diversity and search 
ability of the population, the probability of executing the mutation strategy 
DE/rand/1 is greater. In the later stage of evolution, in order to improve the 
convergence speed of the algorithm and adjust the diversity of the population, 
the probability of executing the mutation strategy DE/rand-to-pbest/1is greater, 
and the information of the optimal individual is fully utilized. The mutation 
strategy can not only maintain the diversity of the population, but also adjust the 
diversity of the population according to the iterative process, and improve the 
convergence speed of the algorithm. 

3.3. Adaptive Parameter Control Strategy 

The setting of the parameter size directly affects the solution effect of the algo-
rithm. In this paper, the scaling factor F and crossover control parameter CR  
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Figure 1. Pseudocode of double mutation collaborative strategy. 

 
refer to Wang et al. [4] proposed the bimodal distribution parameter setting in 
CoBiDE, which adaptively generates the corresponding value for each target 
vector t

iX . Scaling factor F and crossover control parameter CR. If the trail 
vector t

iU  generated by the mutation and crossover of t
iX  successfully enters 

the next generation, then 1t t
i iF F += , 1t t

i iCR CR += , otherwise F and CR will be 
regenerated for the next generation 1t

iX +  as follows: 

( ) ( )
( )
0.65,0.1 ,     if  0,1 0.5

1.0,0.1 ,       otherwise
i

i
i

randc rand
F

randc

<= 


             (12) 

( ) ( )
( )
0.1,0.1 ,     if 0,1 0.5

0.95,0.1 ,       otherwise.
i

i
i

randc rand
CR

randc

<= 


            (13) 

Among them, ( )0,1rand  is a uniformly distributed random number between 
0 and 1, and ( ),irandc a b  is a Cauchy distributed random number with a loca-
tion parameter of a  and a scale parameter of b . 

3.4. Algorithm Main Framework 

This section will specifically introduce the algorithm RCLDE proposed in this 
paper. The algorithm is mainly composed of the above mentioned double muta-
tion cooperative strategy, adaptive parameter control, and covariance matrix 
learning mechanism based on correlation. First, based on the probability formu-
la, the two mutation strategies DE\rand\1 and DE\rand-to-pbest\1 with different 
functions are combined to generate mutant individuals. DE\rand\1 has strong 
randomness, which can improve population diversity and search ability. In the 
early stage of evolution, extensive searches are required, so the probability of set-
ting DE\rand\1 is greater. DE\rand-to-pbest\1 contains the information of ex-
cellent individuals in the current population, which provides a favorable direc-
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tion for search and speeds up the convergence speed. Therefore, the probability 
of setting DE\rand-to-pbest\1 in the later stage of evolution is greater. Secondly, 
in order to eliminate the collinearity between individuals and cause the problem 
of repetitive information transmission, according to the correlation coefficient 
between individuals in the population, the individuals with strong correlation 
are eliminated, and the remaining individuals are used to construct the cova-
riance matrix for coordinate rotation, which improves the search efficiency of 
algorithm. Finally, the crossover process is based on probability selection under 
the covariance matrix learning based on correlation. The algorithm pseudocode 
is shown in Figure 2. 

Lines 1 - 4 in the RCLDE pseudocode are the process of initializing the popu-
lation and parameters, and lines 5 - 42 are the process of the algorithm looping 
to search for the optimal solution. Lines 6 - 10 are mutation operations on each 
target vector. Lines 11 - 29 are crossover operations. First, calculate the correla-
tion coefficient matrix of all individuals in the current population. If it is less 
than the random number generated between 0.5 and 1 and the elements in the 
correlation coefficient matrix are not all 1, then all two individuals are correlated 
One individual with a coefficient greater than α is eliminated, and the remaining 
linearly independent individuals are used to construct a covariance matrix to 
perform coordinate rotation. If the random number generated between 0 and 1 
is less than 0.5, all individuals are sorted according to the function value from 
small to large, and the top 50% of the individuals in the current population are 
taken to construct a covariance matrix, and then coordinate rotation and cros-
sover operations are performed, otherwise in the original coordinates perform 
crossover operations under the department to generate trail vectors. 30 - 39 
compares the target vector and the trail vector according to the function value, 
and selects the smaller function value between the two vector to enter the next 
generation, and the successful F and CR will also enter the next generation. Lines 
40 - 42 represent repeated cycles until the optimal solution is found. 

4. Experimental Study 

In order to verify the effectiveness of the algorithm RCLDE, this paper will test 
RCLDE on the CEC2005 standard test function [9], and compare it with other 
differential evolution algorithms jDE [10], SaDE [11], COBiDE [5], etc. Select 
the function g01 - g20 in CEC2005 as the test function. Among them, g01 - g05 are 
unimodal functions, g06 - g12 are basic multimodal functions, g13 - g14 are ex-
panded multimodal functions, and g15 - g20 are hybrid composition functions. 

In this experiment, the population size NP of the RCLDE algorithm is set to 
60, and the dimension D is 30. The algorithm runs 25 times independently, and 
the mean (Mean) and variance (STD) of the results of the 25 runs are used as in-
dicators for evaluating performance. According to the numerical results obtained 
from the experiment, the Mann-Whitney rank sum test [12] and Frideman test 
[13] are used for statistical analysis. 
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Figure 2. Pseudocode of RCLDE. 
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4.1. Parameter Setting Experiment Analysis 

In order to verify the validity of the parameter setting in the learning of the cor-
relation covariance matrix, an experiment in this section is set up. Generally, the 
correlation coefficient is greater than or equal to 0.6, indicating that the two va-
riables are correlated. In order to test what the correlation threshold is set to, the 
algorithm works best. In this section, four correlation coefficient thresholds of 
0.6, 0.7, 0.8, and 0.9 are selected for experiments. The experiment in this section 
is run 25 times independently on the 30D CEC2005, and the population size is 
set to 60. The numerical results obtained by the algorithm under different thre-
sholds are shown in Table 1. Table 2 is the Frideman test numerical results of 
the average of the optimal values obtained by running 25 times. The black bold 
font is the rank sum of the optimal parameters.  
 

Table 1. Comparison of experimental results of correlation coefficient threshold. 

Relevance 
threshold 

0.6 0.7 0.8 0.9 

Mean STD Mean STD Mean STD Mean STD 

g01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g02 2.11E−22 5.01E−22 7.61E−23 1.40E−22 9.25E−23 2.10E−22 3.35E−23 3.53E−23 

g03 4.86E+04 2.75E+04 4.25E+04 2.70E+04 3.98E+04 3.17E+04 4.71E+04 2.63E+04 

g04 3.06E−07 4.74E−07 1.90E−06 7.13E−06 2.62E−07 3.81E−07 3.46E−07 6.48E−07 

g05 1.04E+02 1.59E+02 1.15E+02 1.53E+02 6.35E+01 1.30E+02 8.52E+01 1.54E+02 

g06 2.01E−19 6.89E−19 4.29E−18 2.13E−17 6.38E−01 1.49E+00 4.78E−01 1.32E+00 

g07 9.06E−03 9.37E−03 1.30E−02 1.19E−02 6.40E−03 7.71E−03 5.62E−03 7.34E−03 

g08 2.00E+01 7.09E−03 2.00E+01 1.19E−02 2.00E+01 1.26E−05 2.00E+01 3.28E−05 

g09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.58E−01 6.96E−01 

g10 4.45E+01 1.38E+01 4.19E+01 1.30E+01 4.58E+01 1.23E+01 4.68E+01 1.23E+01 

g11 1.03E+01 3.29E+00 1.04E+01 3.20E+00 9.33E+00 2.11E+00 8.70E+00 3.02E+00 

g12 2.58E+03 3.06E+03 4.23E+03 5.10E+03 5.06E+03 9.40E+03 5.52E+03 7.74E+03 

g13 1.95E+00 3.55E−01 2.09E+00 4.34E−01 2.63E+00 7.62E−01 2.39E+00 6.80E−01 

g14 1.25E+01 5.27E−01 1.27E+01 3.01E−01 1.24E+01 3.66E−01 1.26E+01 3.72E−01 

g15 4.28E+02 4.58E+01 4.24E+02 4.36E+01 4.20E+02 4.08E+01 4.12E+02 6.00E+01 

g16 6.91E+01 1.42E+01 6.69E+01 1.30E+01 7.22E+01 1.95E+01 8.59E+01 6.89E+01 

g17 7.85E+01 3.42E+01 7.14E+01 2.07E+01 6.63E+01 1.58E+01 8.70E+01 7.21E+01 

g18 9.04E+02 9.46E−01 9.04E+02 4.08E−01 9.04E+02 1.07E+00 9.00E+02 2.09E+01 

g19 9.04E+02 8.90E−01 9.04E+02 9.04E−01 9.04E+02 5.90E−01 9.04E+02 1.05E+00 

g20 9.04E+02 7.37E−01 9.04E+02 6.43E−01 9.04E+02 7.89E−01 9.00E+02 2.09E+01 
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Table 2. The frideman test result of the mean of the experimental results of the correla-
tion threshold. 

Relevance threshold 0.6 0.7 0.8 0.9 

Rank sum 2.63 2.58 2.28 2.53 
 

It can be seen from Table 1 that when the correlation coefficient threshold is 
0.8, the average of the optimal value performs best overall, and the variance is 
relatively stable relative to other parameters. Specifically, when the correlation 
coefficient threshold is set to 0.8, the numerical results of the optimal values of 
functions g01, g04, g08, g09, g11, g14, g15, g17, and g19 are better than those of 
other groups. It can be seen more intuitively from Table 2 that in the Frideman 
test results of the optimal mean value, the rank sum is the smallest when the 
correlation coefficient threshold is 0.8, indicating that when the algorithm 
RCLDE correlation threshold parameter is set to 0.8, and the algorithm effect is 
the best and the correlation is when the threshold parameter is set to 0.9, the al-
gorithm effect is second. The effect is not good when the correlation threshold is 
set to 0.6. It means that the correlation threshold is too large or too small, and 
0.8 is the most suitable. The effect is not good when the correlation threshold is 
set to 0.6. The relevance threshold is set too small, and there are many related 
individuals, which causes overlap of information and affects the search efficiency 
of the population. If the correlation threshold is set too large, more individuals 
may be screened out, reducing the search information of the population, and it is 
easy to cause the population to fall into a local optimal solution. 

4.2. Comparative Analysis with Other Differential Evolution  
Algorithms 

In order to prove the effectiveness of this algorithm RCLDE, the algorithm was 
tested 25 times on the 20 standard tests of 30D CEC2005, and compared with 
algorithms such as jDE, SaDE, COBiDE, etc. The experimental results of jDE, 
SaDE and COBiDE are directly taken from the literature [5]. 

The experimental numerical results of the RCLDE algorithm and the three 
evolutionary algorithms are shown in Table 3. In the data in Table 3: 1) Nu-
merical results slanted bold font indicates the solution result of the RCLDE algo-
rithm. 2) Regular font indicates that the numerical result of the RCLDE solution 
is worse than the comparison algorithm. 3) Bold font indicates the value of 
RCLDE The result is better than or similar to other comparison algorithms. 

The Mann-Whitney rank sum test is used in Table 4 to compare the degree of 
difference of different algorithms in the same problem. The significance level of 
the Mann-Whitney rank sum test in the algorithm is set to 0.05. The comparison 
results are shown in Table 4, where “+”, “≈”, and “−” respectively indicate that 
the numerical results of PIMDE are better than the number of functions of the 
comparison algorithm, approximation The number of functions that are similar 
to the comparison algorithm result is worse than the number of functions of the 
comparison algorithm. 
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Table 3. Comparison table of experimental results between RCLDE and other evolutionary algorithm test functions. 

IEEE  
CEC 2005 

jDE SaDE CoBiDE RCLDE 

Mean STD Mean STD Mean STD Mean STD 

g01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g02 1.11E−06 1.96E−06 8.26E−06 1.65E−05 1.60E−12 2.90E−12 9.25E−23 2.10E−22 

g03 1.98E+05 1.10E+05 4.27E+05 2.08E+05 7.26E+04 5.64E+04 3.98E+04 3.17E+04 

g04 4.40E−02 1.26E−01 1.77E+02 2.67E+02 1.16E−03 2.74E−03 2.62E−07 3.81E−07 

g05 5.11E+02 4.40E+02 3.25E+03 5.90E+02 8.03E+01 1.51E+02 6.35E+01 1.30E+02 

g06 2.35E+01 2.50E+01 5.31E+01 3.25E+01 4.13E−02 9.21E−02 6.38E−01 1.49E+00 

g07 1.18E−02 7.78E−03 1.57E−02 1.38E−02 1.77E−03 3.73E−03 6.40E−03 7.71E−03 

g08 2.09E+01 4.86E−02 2.09E+01 4.95E−02 2.07E+01 3.75E−01 2.00E+01 1.26E−05 

g09 0.00E+00 0.00E+00 2.39E−01 4.33E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g10 5.54E+01 8.46E+00 4.72E+01 1.01E+01 4.41E+01 1.29E+01 4.58E+01 1.23E+01 

g11 2.79E+01 1.61E+00 1.65E+01 2.42E+00 5.62E+00 2.19E+00 9.33E+00 2.11E+00 

g12 8.63E+03 8.31E+03 3.02E+03 2.33E+03 2.94E+03 3.93E+03 5.06E+03 9.40E+03 

g13 3.94E+00 1.35E−01 3.94E+00 2.81E−01 2.64E+00 1.13E+00 2.63E+00 7.62E−01 

g14 1.26E+01 2.00E−01 1.26E+01 2.83E−01 1.23E+01 4.90E−01 1.24E+01 3.66E−01 

g15 3.77E+02 8.02E+01 3.76E+02 7.83E+01 4.04E+02 5.03E+01 4.20E+02 4.08E+01 

g16 7.94E+01 2.96E+01 8.57E+01 6.94E+01 7.38E+01 3.66E+01 7.22E+01 1.95E+01 

g17 1.37E+02 3.80E+01 7.83E+01 3.76E+01 7.25E+01 2.02E+01 6.63E+01 1.58E+01 

g18 9.04E+02 1.08E+01 8.68E+02 6.23E+01 9.03E+02 1.05E+01 9.04E+02 1.07E+00 

g19 9.04E+02 1.11E+00 8.74E+02 6.22E+01 9.03E+02 1.04E+01 9.04E+02 5.90E−01 

g20 9.04E+02 1.10E+00 8.78E+02 6.03E+01 9.04E+02 5.95E−01 9.04E+02 7.89E−01 

 
Table 4. Mann-whitney rank sum test results of each differential evolution algorithm 
under 30D. 

RCLDE vs jDE SaDE CoBiDE 

+ 14 13 9 

≈ 5 1 3 

− 1 6 8 
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Judging from the numerical results in Table 3, the numerical results of the 
algorithm RCLDE perform well in the unimodal function and the basic multi-
modal function. Specifically, the algorithm RCLDE solves the function g01 - g06, 
g08, g09, g13, g17 to obtain the optimal value of the average value is better than 
or similar to the numerical results of the algorithm jDE, SaDE, COBiDE; The 
numerical result of the algorithm RCLDE to solve the optimal value of the func-
tion g07, g10, g11 is better than or similar to jDE, SaDE, and slightly worse than 
COBiDE.  

It can be seen from Table 4 that the algorithm RCLDE is generally better or 
not worse than the other three differential evolution algorithms jDE, SaDE, CO-
BiDE. The numerical results of the algorithm RCLDE are better than, similar to, 
and the number of functions worse than jDE is 14, 5, and 1, respectively; the 
numerical results of the algorithm RCLDE are better than, similar to, and the 
number of functions worse than SaDE is 13, 1, respectively. 6; The numerical 
results of algorithm RCLDE are better than, similar to, and worse than SaDE, the 
number of functions is 9, 3, and 8, respectively. 

5. Conclusions 

This paper first selects two mutation strategies with different performances to 
form a double mutation strategy cooperative coevolution mechanism. The 
probability of the two mutation strategies being used changes correspondingly 
with the evolution of the population, which improves the search efficiency of the 
population; secondly, this paper proposes based on correlation. The learning of 
the covariance matrix takes into account the correlation between individuals in 
the population, eliminates the individuals with collinearity based on the strength 
of the correlation, and uses the individuals with weak correlation to construct 
the covariance matrix, which avoids information duplication and other prob-
lems, and improve the search efficiency of the algorithm. Finally, based on the 
principle of probability, the covariance matrix learning mechanism of con-
structing the covariance matrix according to the fitness value is combined with 
the correlation-based covariance matrix learning mechanism proposed in this 
paper to generate test individuals. 

The analysis of the experimental results shows that the algorithm performs 
best when the correlation coefficient threshold in the algorithm RCLDE pro-
posed in this paper is set to 0.8. The algorithm RCLDE is compared with other 
advanced differential evolution algorithms on the CEC2005 standard test func-
tion. The experimental results show that the algorithm proposed in this paper 
performs well and has certain competitiveness. 
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