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Abstract 
S-allyl-L-cysteine (SAC) is an organosulfur compound derived from aged 
garlic extract (AGE). Studies have reported that AGE possesses bioprotective 
capacity, including antidiabetic, antimicrobial, antioxidant, and antitumor 
effects. The present study examined the protective effects of SAC against car-
bon tetrachloride (CCl4) induced hepatotoxicity in rats. Ten male Wistar rats 
aged 11 - 12 weeks were randomly divided into two groups (five rats/group) 
as control and SAC groups. All rats had ad libitum access to water, and the 
SAC group received water containing SAC intragastrically (200 mg/kg) once 
daily for five consecutive weeks. In the fifth experimental week, 50% CCl4 in 
olive oil (1 mL/kg) was administered intraperitoneally three times a week to 
induce liver injury in both groups. Rats were sacrificed at 24 hours after the 
last CCl4 injection, and liver tissues were excised for histopathological, im-
munohistochemical and antioxidant analyses. The rats in the SAC group did 
not show abnormal behavior, such as decreased water intake or food con-
sumption, during the experimental period. Body weights in all groups did not 
change significantly over the experimental period. Histopathological analysis 
showed that the percentage of hepatic steatosis was lower in the SAC group at 
12.75% ± 3.74% compared to 24.64% ± 5.29% in the control group (p < 0.05). 
The percentage of cytochrome P4502E1 (CYP2E1) distribution area in the 
SAC group was also lower at 19.61% ± 6.18% compared with 25.22% ± 6.21% 
in the control group (p < 0.05). These results suggest that SAC can alleviate 
CCl4-induced liver damage by decreasing hepatic steatosis and reducing 
CYP2E1 expression in rats. 
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1. Introduction 

Oxidative damages to hepatic cells are common sequelae of many liver diseases, 
including hepatic steatosis, chronic hepatitis, cholestasis, and liver cirrhosis [1]. 
Oxidative stress, a consequence of an imbalance between pro and antioxidants in 
cells and tissues, is generally defined as excess formation or insufficient removal 
of damaging molecules, such as reactive oxygen species (ROS). ROS have been 
implicated in pathophysiological changes in the liver, particularly in viral infec-
tions, cholestasis, and alcohol abuse [2]. Excessive alcohol consumption gene-
rates ROS in the liver where alcohol is metabolized, disrupting the liver’s cellular 
antioxidant system [3] [4]. ROS can bind to cellular macromolecules, including 
proteins, lipids, and DNA, leading to physiological dysfunction. 

Carbon tetrachloride (CCl4) has been frequently used to produce xenobiotic 
induced and free radical mediated hepatotoxicity in animal models [5]. Its toxic-
ity requires bioactivation to produce reactive metabolic intermediates using a 
trichloromethyl radical like 3CCl  or peroxy trichloromethyl radicals ( 3CCl OO ) 
by mixed function oxidase cytochrome P450 (CYP450) in hepatic microsomes 
[6]. These free radicals can bind to polyunsaturated fatty acids (PUFAs) and 
form alkoxy ( R  ) and peroxy radicals ( ROO ), which serially generate lipid pe-
roxide, damage cell membranes, and disrupt antioxidant enzyme activity and 
antioxidative substrate content, resulting in hepatic injury [7]. Although several 
isoforms of CYP450 can metabolize CCl4, the focus has been on catalase and cy-
tochrome P4502E1 (CYP2E1), which are ethanol inducible [8] [9]. The histopa-
thological features of CCl4 induced hepatotoxicity are fatty liver, vacuolar dege-
neration, inflammation, necrosis, fibrosis, and cirrhosis [10] [11]. Mechanisms 
for preventing hepatotoxicity induced by oxidative stress involve blocking the 
chain reaction of oxidation, improving phase II antioxidant enzyme activity, and 
increasing levels of antioxidant substances. 

Garlic (Allium sativum Lynn.) has been used as a spice and as a folk medicine 
for centuries [12]. In recent years, studies have reported that garlic possesses bi-
oprotective attributes, such as antidiabetic, antimicrobial, antioxidant, antith-
rombotic, anticancer, and cholesterol lowering effects [13] [14] [15] [16]. The 
health benefits of garlic derive from a diversity of its constituents, and it is ad-
ministered in different preparations depending on use. Among its many com-
ponents, S-allyl-L-cysteine (SAC) is a naturally occurring, water soluble, non-
toxic, and odorless organosulfur compound made from aged garlic extract 
(AGE). AGE is produced by aging for up to 20 months to reduce garlic’s harsh 
taste and odor [17]. Pharmacokinetic studies of SAC, the most abundant orga-
nosulfur compound in AGE (6.1 ± 2.7 mg/g dry extract), have revealed that SAC 
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is easily absorbed in the rat gastrointestinal tract and is distributed to the plas-
ma, liver, kidneys, lungs, and heart with a bioavailability of 98% [17]. Further-
more, SAC is 30 fold less toxic than other garlic components, such as allicin and 
diallyl disulfide, and relatively inexpensive and easy to synthesize [17]. SAC has 
been reported to prevent amyloidogenesis, atherosclerosis, glycation, and cho-
lesterol synthesis and to reduce mortality via a decreased incidence of stroke [18] 
[19] [20] [21]. SAC was also found to exert dose dependent inhibition of nuclear 
factor kappa B (NF-KB) activation in human T lymphocytes (Jurkat cells) in-
duced by tumor necrosis factor α (TNF-α) and hydrogen peroxide (H2O2) [22]. 
SAC also mediates chemopreventive effects in carcinogenesis [23] and has been 
shown to be the active compound responsible for mitigating oxidative stress [24] 
[25] [26] [27] [28]. However, evidence of potential hepato-protective effects of 
SAC remains insufficient. In the present study, we examined the hepatoprotec-
tive properties of SAC against CCl4 induced hepatotoxicity in a rat model. 

2. Materials and Methods 
2.1. Chemicals 

SAC was obtained from Tokyo Chemical Industry Co., Ltd. (Japan) at a purity of 
more than 98.0%, as shown by gas chromatography. The water soluble test com-
pound SAC was dissolved in tap water. CCl4 (Sigma-Aldrich Co., USA) was di-
luted in olive oil (Sigma-Aldrich Co., USA) to produce 50% CCl4. All other 
chemicals and solvents were of the highest grade commercially available. 

2.2. Experimental Animals 

Male Wistar rats (11 - 12 weeks old) weighing 353.06 ± 22.09 g were housed in 
conventional cages with ad libitum access to water and a standard rodent chow 
diet. Animals were housed in a controlled environment at a temperature of 22˚C 
± 3˚C and a relative humidity of 50% ± 10% with a 12/12h light/dark cycle. Ani-
mals were randomly divided into two groups: the control group received 50% CCl4 
in olive oil (1 mL/kg) intraperitoneally three times in the fifth week; the SAC 
group was treated intragastrically with water containing SAC (200 mg/kg) once 
daily for the first four weeks and the same amount of CCl4 in olive oil was admi-
nistered at the same frequency in the fifth (Figure 1). Animals were sacrificed at 
24 hours after the last CCl4 dose and liver tissues were excised for histopatholog-
ical, immunohistochemical and antioxidant analyses. All experimental proce-
dures were performed in accordance with the National Institute of Health (NIH) 
Guidelines for the Care and Use of Laboratory Animals. 

2.3. Determination of Antioxidant Enzymes 

Superoxide dismutase (SOD) activity was measured according to the method 
described by Beauchamp and Fridovich [29]. An adequate amount of liver su-
pernatant was mixed with the reaction mixtures containing 0.1 mM ethylene-
diaminetetraacetic acid (EDTA), 25 mM nitroblue tetrazolium (NBT), 0.1 mM  
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Figure 1. Experimental design of the study. 

 
xanthine, 50 mM sodium carbonate buffer (pH 10.2), and distilled water to a fi-
nal volume of 3 mL. The reaction was initiated by the addition of 2 mU/mL 
xanthine oxidase and maintained under two 40 W lamps at 25˚C. After 15 min, 
the inhibition rate of NBT reduction was spectrophotometrically determined at 
560 nm. One unit of SOD was defined as the amount of enzyme required to re-
duce NBT by 50%. The specific activity of SOD is expressed as unit/mg for each 
supernatant. Catalase activity was measured according to the method described 
by Aebi [30]. One unit of catalase was defined as the amount of enzyme required 
to decompose 1.0 μM of H2O2 in 1 min. The reaction was initiated by the addi-
tion of 1.0 mL of freshly prepared 20 mM H2O2. The decomposition rate of H2O2 
was measured spectrophotometrically at 240 nm at 1 min. Enzyme activity is 
expressed as unit/mg. 

2.4. Determination of Glutathione Levels 

Glutathione (GSH) and glutathione disulfide (GSSG) were prepared in 0.1 M so-
dium phosphate containing 0.005 M EDTA buffer (pH 8.0) and kept on ice until 
used. O-phthalaldehyde (OPT) solution was prepared in reagent-grade absolute 
methanol just prior to use. Liver samples were homogenized on ice with a ho-
mogenizer in a solution containing 3.75 mL of phosphate EDTA buffer and 1 
mL of 25% H3PO4 for protein precipitation. Total homogenate was centrifuged 
at 4˚C at 100,000 g for 20 min, and the supernatant was then decanted to assess 
GSH and GSSG levels. Determination of GSH values was performed as described 
by Hissin and Hilf [31]. An aliquot of 4.5 mL of phosphate-EDTA buffer (pH 
8.0) was added to 0.5 mL of the supernatant for a final assay mixture of 2.0 mL 
containing 100 μL of diluted tissue supernatant, 1.8 mL of phosphate EDTA 
buffer, and 100 μL of OPT solution containing 100 μg of OPT. After mixing and 
incubation at room temperature for 15 min, the solution was transferred to a 
cuvette. Fluorescence at 420 nm was assessed, with activation at 350 nm. In the 
GSSG assay, a 0.5 mL portion of the supernatant generated above was incubated 
at room temperature with 200 μL of 0.04 M N-ethylmaleimida (NEM) for 30 
min to interact with GSH in the tissues. An aliquot of 4.3 mL of 0.1 N NaOH 
was added to the mixture, and a 100 µL portion thereof was used to measure 
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GSSG as described above, using 0.1 M NaOH as a diluent rather than phos-
phate-EDTA buffer. Results are expressed as nM/mg. 

2.5. Determination of Lipid Peroxidation 

Liver homogenate was assayed for lipid peroxidation level using a lipid perox-
idation (LPO)-586 assay kit (OxisResearch, Portland, OR, USA) according to 
the manufacturer’s instructions. This assay is based on the reaction of a chro-
mogenic reagent, N-methyl-2-phenyl indole, with malondialdehyde (MDA) and 
4-hydroxyalkenals (HAE) at 45˚C. One molecule of either MDA or HAE reacts 
with two molecules of chromogenic reagent to yield a stable chromophore with 
maximal absorbance at 586 nm. Aliquots of 200 µL of samples were mixed with 
650 µL of chromogenic reagent and 150 µL of methanesulfonic acid. Prepara-
tions were incubated at 45˚C for 60 min and then centrifuged at 15,000 g for 10 
min. The supernatant was transferred to a cuvette and its absorbance was meas-
ured at 586 nm. MDA and MDA + HAE values were calculated using an MDA 
standard curve. The detection limit for the assay was 0.1 nmol/mL in the final 
reaction medium. Results are expressed as nM/mg. 

2.6. Determination of ROS Generation 

Intracellular production of ROS was measured with 2',7'-dichlorofluorescein di-
acetate (H2DCF-DA) (Molecular Probes, Eugene, OR, USA). This nonpolar 
compound is converted to the polar, membrane-impermeable derivative H2DCF 
by esterases upon cellular uptake. H2DCF is nonfluorescent but is rapidly oxi-
dized to the highly fluorescent DCF by intracellular H2O2 and other peroxides 
[32] [33]. Stocks of H2DCF-DA were made in absolute ethanol at a concentra-
tion of 12.5 mM and stored at −80˚C in the dark under argon. The 25 μM 
H2DCF-DA was added to the liver homogenate at a final concentration of 250 
μM. After 30 min incubation, the homogenate was collected in a microcentri-
fuge, and the supernatant was removed and diluted 50-fold. Fluorescence was 
measured with excitation and emission wavelengths of 485 nm and 535 nm, re-
spectively. Results are expressed as fluorescence/min/mg. 

2.7. Histopathology 

Liver tissue blocks were fixed in 10% neutral buffered formalin and processed 
routinely. Paraffin embedded liver sections were cut into 4 - 5 µm slices. Liver 
tissue blocks were then stained with hematoxylin and eosin (H&E) for histopa-
thological analysis. 

2.8. Immunohistochemistry 

Liver sections were deparaffinized in xylene and toluene, rehydrated in a series 
of graded alcohol concentrations, incubated in 3% hydrogen peroxide (H2O2) in 
methanol for 30 min and microwaved at 750 W for 10 min in 10 mmol/L citrate 
buffer (pH 6.0). Tissue sections were washed with PBS. After blocking with rab-
bit serum (Vector Laboratories, Burlingame, CA, USA) for 1 h at room temper-
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ature, sections were immunostained using anti-catalase and anti-cytochrome 
P4502E1 (CYP2E1) antibodies (Chemicon International, Inc., USA) at a dilution 
of 1:800. Antigen antibody complexes were visualized with an avidin biotin pe-
roxidase complex solution using an ABC kit (Vector Laboratories, Burlingame, 
CA, USA). The sections were subsequently rinsed in distilled water and coun-
terstained with Mayer’s hematoxylin. 

2.9. Histomorphometry 

Histomorphometry was performed with a computerized analysis system (Im-
age-Pro Plus, Media Cybernetics, Silver Spring, MD). Areas of the tissue sections 
to be measured were captured by a microscope connected to the system. Cali-
bration was performed according to the instructions accompanying the software. 
The area of hepatic steatosis on H&E slides and the distribution area of CYP2E1 
in immunohistochemistry were measured. Results are expressed as percentages 
of stained area. 

2.10. Statistical Analysis 

All data are presented as mean ± SD. Statistical analysis was performed using a 
one-way analysis of variance (ANOVA) followed by Student’s t-test. A p-value 
of less than 0.05 was considered statistically significant. 

3. Results 
3.1. Body Weight of Experimental Rats 

The rats in the SAC group did not show abnormal behavior, such as decreased 
water intake or food consumption, and their body weights did not change sig-
nificantly (p < 0.05) from the control group prior to CCl4 treatment. After CCl4 
dosing, rats in the control group showed a slight reduction in body weight, al-
though this reduction was not significantly different (p > 0.05) from the SAC 
group (Figure 2). 

 

 

Figure 2. Body weight measurements of experimental animals; bars represent 
mean values ± SD of 5 animals. 
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3.2. SAC Effects on Antioxidant Enzymes 

We measured superoxide dismutase (SOD) and catalase activities as indicators 
of oxidative stress. Hepatic SOD activity was 0.41 ± 0.09 unit/mg in the control 
group, while that in the SAC group increased to 0.46 ± 0.10 unit/mg. Catalase 
activity in liver tissue in the control group was 1.71 ± 0.52 unit/mg, but treat-
ment with SAC resulted in an increase thereof to 3.69 ± 0.26 unit/mg (p < 0.05) 
over the control group (Figure 3). 

3.3. SAC Effects on Glutathione Levels 

Glutathione is the first line of defense against free radicals. Levels of glutathione 
(GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, and total liver gluta-
thione (GSH + GSSG) are shown in Figure 4. GSH in the control group was 1.37 
± 0.24 nM/mg, while that in the SAC group increased to 2.14 ± 0.38 nM/mg (p < 
0.05). GSSG was 0.94 ± 0.18 nM/mg in controls and decreased to 0.84 ± 0.10 
nM/mg in the SAC group (p < 0.05). The GSH/GSSG ratio of 1.83 ± 0.59 in the 
control group was lower than the 2.75 ± 0.56 in the SAC group. Total gluta-
thione (GSH + GSSG) in the control group was 2.31 ± 0.20 nM/mg, while that in 
the SAC group increased to 2.98 ± 0.35 nM/mg (p < 0.05) (Figure 4). 

 

 

Figure 3. Effects of SAC on hepatic superoxide dismutase (SOD) and catalase activ-
ity in CCl4 induced hepatotoxicity in rats: (A) SOD activity in control and SAC 
groups (mean ± SD) was 0.41 ± 0.09 and 0.46 ± 0.10 unit/mg, respectively. (B) Cat-
alase activity was 1.71 ± 0.52 and 3.69 ± 0.26 unit/mg in control and SAC groups 
(mean ± SD), respectively. Bars represent mean values ± SD of 5 animals. *P < 0.05. 
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Figure 4. Effects of SAC on reduced hepatic glutathione (GSH) concentration, oxidized 
glutathione (GSSG) concentration, hepatic GSH/GSSG ratio, and total glutathione (GSH 
+ GSSG) following CCl4-induced hepatotoxicity in rats: (A) GSH concentrations were 
1.37 ± 0.24 and 2.14 ± 0.38 nM/mg in control and SAC groups (mean ± SD), respectively. 
(B) GSSG concentrations in control and SAC groups (mean ± SD) were 0.94 ± 0.18 and 
0.84 ± 0.10 nM/mg, respectively. (C) The GSSH/GSSG ratios in control and SAC groups 
(mean ± SD) were 1.83 ± 0.59 and 2.75 ± 0.56 nM/mg, respectively. (D) The GSH + 
GSSG levels in control and SAC groups (mean ± SD) were 2.31 ± 0.20 and 2.98 ± 0.35 
nM/mg, respectively. Bars represent mean values ± SD of 5 animals. *P < 0.05. 
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3.4. SAC Effects on Lipid Peroxidation and ROS Generation 

Lipid peroxidation is critically implicated in CCl4-induced hepatotoxicity. Ma-
londialdehyde (MDA) and 4-hydroxyalkenals (HAE), end products of lipid pe-
roxidation, are common markers thereof. MDA and MDA + HAE contents in 
the SAC group were lower than those in the control group (Figure 5), suggesting 
that CCl4-induced oxidative stress was slightly mitigated by SAC treatment. ROS  
 

 
Figure 5. Effects of SAC on hepatic malondialdehyde (MDA) concentration, 
MDA + 4-hydroxyalkenals (HAE) concentration, and hepatic reactive oxygen 
species (ROS) production in CCl4-induced hepatotoxicity in rats: (A) MDA pro-
duction by liver tissue in control and SAC groups (mean ± SD) was 39.7 ± 12.2 
and 34.9 ± 5.38 nM/mg, respectively. (B) MDA + HAE production by liver tissue 
was 18.1 ± 6.76 (control) and 16.1 ± 3.11 nM/mg (SAC). (C) ROS production in 
control and SAC groups (mean ± SD) was 13.2 ± 0.31 and 12.7 ± 0.85 fluores-
cence/min/mg, respectively. Bars represent mean values ± SD of 5 animals. 
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generation was measured to examine SAC effects on radical scavenging during 
hepatic CCl4 toxicity. Figure 5 shows the amount of fluorescent dichlorofluo-
rescein (DCF) in the liver tissues of rats from the SAC and control groups as an 
index of ROS formation. DCF content in the SAC group was slightly diminished 
compared to the control group, indicating that SAC attenuated CCl4 induced 
free radicals. 

3.5. Histopathological Change after SAC Treatment 

Histopathological changes in liver sections after CCl4 administration were as-
sessed in control and SAC groups (Figure 6). Typical intense fatty hepatocytes 
surrounding central veins were observed in CCl4-treated rats (Figure 6(A) and 
Figure 6(C)). Centrilobular necrosis, inflammatory cell infiltration, and bal-
looning degeneration were also observed (Figure 6(A) and Figure 6(C)). These 
hepatic histological changes were markedly reduced by treatment with SAC 
(Figure 6(B) and Figure 6(D)). SAC administration also significantly decreased 
lipid droplets and areas of lipid laden cells. 

 

 
 

 
Figure 6. Accumulation of fat droplets and percentage of hepatic steatosis in the rat liver: 
(A and C) hepatic steatosis in control group and (B and D) hepatic steatosis reduced in 
SAC group. The average hepatic steatosis area percentages were 24.64 ± 5.29 (control) 
and 12.75 ± 3.74 (SAC) (mean ± SD). *P < 0.05. Hematoxylin & eosin (H&E) staining. 
Bars represent mean values ± SD of 5 animals. Magnification: (A, B) 50X; (C, D) 100X. 
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3.6. Immunohistochemical Changes after SAC Treatment 

Immunohistochemical changes to CYP2E1 levels were observed after CCl4 ad-
ministration in liver sections in both control and SAC groups. CYP2E1 expres-
sion in the control group was found at the injured hepatocytes around central 
veins in a pattern similar to hepatic steatosis (Figure 7(A) and Figure 7(C)), 
demonstrating that histological expression of CYP2E1 in the SAC group was re-
pressed in CCl4 induced hepatocyte damage (Figure 7(B) and Figure 7(D)). 

3.7. Hepatic Histomorphometry after SAC Treatment 

The percentages of hepatic steatosis area and CYP2E1 distribution area are 
shown in Figure 6 and Figure 7. The SAC group showed less hepatic steatosis 
and less hepatic CYP2E1 than the control group (p < 0.05, both) (Figure 6 and 
Figure 7). 
 

 
 

 
Figure 7. Immunohistochemical expression and percentage of cytochrome P4502E1 
(CYP2E1) distribution area in a CCl4-induced hepatotoxic rat liver: (A and C) im-
munohistochemical assay of CYP2E1 in control group and (B and D) immunohis-
tochemical assay of CYP2E1 significantly reduced numbers of injured hepatocytes 
around the central vein in SAC group. The average CYP2E1 distribution area per-
centages in control and SAC groups (mean ± SD) were 25.22 ± 6.21 and 19.61 ± 6.18, 
respectively.*P < 0.05. Original magnification: (A, B) 50X, (C, D) 100X. 
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4. Discussion 

Studies have shown that various components of garlic preparations exhibit a 
wide range of physiological, biochemical, and pharmacological effects [13] [16]. 
Garlic (Allium sativum Lynn.) has long been considered a valuable spice by 
many cultures and is still used today for its medicinal properties. Aged garlic ex-
tract (AGE) is produced by aging for up to 20 months, reducing garlic’s harsh 
taste and odor [17]. SAC is a major water soluble organosulfur compound de-
rived from AGE whose bioprotective capacity has been described in many re-
ports. Its bioavailability has been well established in animal models as it has been 
shown to be easily absorbed and evenly distributed [17]. 

CCl4 treatment has been shown to cause high levels of oxidative damage by 
significant increases in lipid peroxidation products, ROS generation, and hepa-
totoxic features, and by significant decreases in GSH concentration and antioxi-
dant enzyme activity. In this study, treatment with SAC was associated with a 
significant protective effect against CCl4 induced acute hepatic injury in rats. 
Superoxide dismutase (SOD) and catalase are major antioxidant enzymes that 
catalyze ROS in most cells; these enzymes are critical for the elimination of ROS 
via reduction of xenobiotics in liver tissue and are easily inactivated by lipid pe-
roxide or ROS. SOD is an extremely effective antioxidant enzyme responsible for 
catalytic dismutation of highly reactive and potentially toxic superoxide radicals 
( 2O − ) to hydrogen peroxide (H2O2) [34]. SOD is most abundant in the liver and 
catalyzes H2O2 to oxygen (O2) and water (H2O) [35]. In this study, SOD and cat-
alase activities were significantly increased in the SAC treated group (Figure 3), 
suggesting that SAC could restore or activate SOD and catalase enzymes in CCl4 
damaged liver tissue. 

GSH (γ-glutamylcysteinylglycine) is an intracellular and extracellular nonen-
zymatic antioxidant that acts in conjunction with enzymatic processes to reduce 
H2O2 and lipid hydroperoxides [36] [37]. It has also been theorized to contribute 
to the conservation of normal cell structure and function via reduction and de-
toxification reactions. The reduced form of GSH helps detoxify reactive, toxic 
metabolites of CCl4 [5]. In the present study, treatment with SAC was shown to 
significantly ameliorate CCl4 induced depletion of reduced GSH and elevation of 
GSSG, an oxidized form of GSH, in rat livers (Figure 4). Total GSH + GSSG le-
vels were significantly elevated and GSH/GSSG ratios were increased in the SAC 
treated group compared with controls (Figure 4). Glutathione results pointed to 
both the restoration of GSH and elimination of GSSG by antioxidant SAC effects 
in CCl4 treated rats. Specially, thiol group-containing agents such as cysteine 
(Cys), thioproline, 2-mercaptopropionylglycine, captopril, and N-acetylcysteine 
have been reported to possess antioxidant capacity based on an association with 
increased amounts of reduced GSH [38]-[44]. SAC possesses a Cys structure, but 
without the SH residue, and may exert its protective activity by supplying Cys to 
hepatocytes. 

Lipid peroxidation is an ROS mediated mechanism implicated in the patho-
genesis of liver injuries in experimental animals and humans [45] [46]. MDA 
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and HAE are major reactive aldehydes that present during the decomposition of 
PUFAs in biological membranes and are reliable markers of lipid peroxidation 
[6]. Hepatic contents of MDA and HAE are often assessed as indicators of liver 
tissue damage involving a series of chain reactions. Lipid peroxidation of hepa-
tocyte membranes is a principal cause of CCl4 induced hepatotoxicity that is 
mediated by the production of free radical derivatives of CCl4 [5] [29]. In this 
study, amounts of hepatic MDA and MDA + HAE in the SAC group were re-
duced compared with the control group (Figure 5), suggesting that treatment 
with SAC could reduce hepatic lipid peroxidation induced by CCl4 in rats. ROS 
production was examined to evaluate the scavenging of free radicals by SAC and 
decreased concentrations of hepatic ROS in the SAC group indicate that SAC 
could scavenge free radicals produced by CCl4 in rats (Figure 5). 

Hepatocellular steatosis, inflammation, necrosis, and vacuolar degeneration 
induced by CCl4 were more pronounced in the control group compared with the 
SAC group (Figure 6). Liver tissue damaged by CCl4 was accompanied by 
CYP2E1 expression, as evidenced by immunohistochemistry, in a pattern similar 
to hepatic fatty changes around central veins in the control group; this pattern 
was less prevalent in the SAC treated group (Figure 7) and could indicate anti-
oxidant action by SAC. Histomorphometry of liver sections with H&E staining 
and immunostained for CYP2E1 revealed that SAC treatment significantly re-
duced the average percentages of steatosis and CYP2E1 distribution areas 
(Figure 6 and Figure 7). Although a previous study found that SAC did not in-
hibit hepatic CYP2E1 protein expression nor CYP2E1 mRNA levels [47], in this 
study, SAC treatment was associated with significantly reduced immunohisto-
chemical CYP2E1 expression in liver tissue compared to controls (Figure 6 and 
Figure 7). This activity suggests SAC as a potential inhibitor of P4502E1. 

5. Conclusion 

In conclusion, this study demonstrated that SAC treatment was associated with 
the alleviation of CCl4 induced oxidative liver injury, accompanied by an eleva-
tion in antioxidant enzyme expression and action, and increased levels of re-
duced glutathione (GSH) together with decreased oxidized glutathione (GSSG) 
content, inhibition of lipid peroxidation, scavenging of free radicals, and CYP2E1 
mediated hepatic steatosis induced by CCl4. Taken together, our findings indi-
cate that SAC could be an effective hepatoprotective dietary supplement. Future 
studies are needed, however, to explore the potential of SAC to reduce hepato-
toxicity in humans. 
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