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Abstract 
 
A cooperative multi-robot system (CMRS) modeling method called fuzzy timed agent based Petri nets 
(FTAPN) is proposed in this paper, which has been extended from fuzzy timed object-oriented Petri net 
(FTOPN). The proposed FTAPN can be used to model and illustrate both the structural and dynamic aspects 
of CMRS, which is a typical multi-agent system (MAS). At the same time, supervised learning is supported 
in FTAPN. As a special type of high-level object, agent is introduced into FTAPN, which is used as a com-
mon modeling object in its model. The proposed FTAPN can not only be used to model CMRS and represent 
system aging effect, but also be refined into the object-oriented implementation easily. At the same time, it 
can also be regarded as a conceptual and practical artificial intelligence (AI) tool for multi-agent systems 
(MAS) into the mainstream practice of the software development. 
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1. Introduction 
 
As a kind of typical manufacturing equipment, coopera-
tive multi-robot systems (CMRS) have been widely used 
in current industries [1]. The key solution for one CMRS 
is to realize the cooperation, which is different from ge-
neric control systems. So, currently, the CMRS modeling, 
analysis and refinement always meet with difficulties 
related to the cooperation problem. As one of the typical 
multi-agent systems (MAS) in distributed artificial intel-
ligence [2], CMRS can be regarded as one MAS. In or-
der to model MAS, some attempts to use object-oriented 
methodology have been tried and some typical agent 
objects have been proposed, such as active object, etc [3]. 
However, agent based object models still can not depict 
the whole structure and dynamic aspects of MAS, such 
as cooperation, learning, temporal constraints, etc [2].  

On one hand, as one of the most proper and promised 
realization technologies, object-oriented concurrent pro-
gramming (OOCP) methodology is always used to real-
ize MAS [3]. In OOCP realization, one special object 
called active object is proposed [3], which can be used to 
model generic agent architectures and behaviors with OO 
methodology. Although OOCP can solve MAS realiza-
tion problem favorably, the modeling problem mentioned 

above still exists.  
On the other hand, as a kind of powerful formal de-

scription and analysis method for dynamic systems [4], 
Petri net (PN) has become a bridge between practical 
application and model theories [4]. Basic Petri nets lack 
temporal knowledge description, so they have failed to 
describe the temporal constraints in time critical or time 
dependent systems. Then in the improved models of Petri 
nets such as Timed (or Time) Petri nets (TPN) [5,6] etc 
al, temporal knowledge has been introduced, which has 
increased not only the modeling power but also the 
model complexity [7]. On the other hand, when Petri nets 
are used to analyze and model practical systems in dif-
ferent fields, models may be too complex to be analyzed. 
These years, object-oriented concepts have been intro-
duced into Petri nets such as object Petri nets (OPN) [8], 
VDM++ [9], Object-Z [10], etc al. are suggested. Among 
the studies, the research on OPN has been focused on the 
extending Petri net formalism to OPN such as HOONet 
[11], OBJSA [12], COOPN/2 [13] and LOOPN++ [14], 
which are suggested on the base of colored Petri Net 
(CPN) [15]. Object-oriented Petri net (OPN) can model 
various systems hierarchically and the models can be 
analyzed even if they have not been completed. So the 
complexity of OPN models can be simplified at the be-
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ginning of modeling stage according to the analysis re-
quirements. Although the results of such studies have 
shown promise, these nets do not fully support time 
critical (time dependent) system modeling and analysis, 
which may be complex, midsize or even small. When 
time critical systems with any sizes are modeled, it re-
quires formal modeling and analysis method supporting 
temporal description and object-oriented concepts. Then 
for providing the ability of modeling time critical com-
plex systems, timed hierarchical object oriented Petri net 
(TOPN) [16] is proposed on the base of HOONet [11]. It 
supports temporal knowledge description and ob-
ject-oriented concepts. Modeling features in TOPN sup-
port describing and analyzing dynamic systems such as 
MAS and CMRS. Recently, some attempts have been 
conducted on modeling MAS by means of OPN [17]. 

Although Petri nets can be used to model and analyze 
different systems, they failed to model learning ability 
and the aging effects in dynamic systems. Recently, 
fuzzy timed Petri net (FTPN) [18] has been presented to 
solve these modeling problems. As a kind of reasoning 
and learning ability, fuzzy reasoning in FTPN can be 
considered as supporting autonomous judging or reason-
ing ability in MAS. In order to solve the reasoning ability 
and other modeling problems in large-scale MAS, fuzzy 
timed object-oriented Petri net (FTOPN) [19] is proposed 
on the base of TOPN [16] and FTPN [18]. In FTOPN, 
agent can be modeled as one FTOPN object with auto- 
nomy, situatedness and sociality. However, in FTOPN 
every agent should be modeled from common FTOPN 
objects and it needs generic FTOPN agent objects on the 
base of active objects.  

This paper proposes a high level PN called fuzzy 
timed agent based Petri net (FTAPN) on the base of 
FTOPN [19]. As one of the typical active objects, AC-
TALK object is modeled by FTOPN and is introduced 
into FTAPN, which is used as generic agent object in 
FTAPN. The aim of FTAPN is to solve the agent or 
CMRS modeling ability problem and construct a bridge 
between MAS models and their implementations.  

This paper is organized as the following. Section 2 re-
views the relative preliminary notations quickly and Sec-
tion 3 extends FTOPN to FTAPN on the base of AC-
TALK model. Section 4 discusses the learning which is 
important for representing dynamic behaviors in CMRS. 
Section 5 uses FTAPN to model one CMRS in the wafer 
etching procedure of circuit industry and makes some 
modeling analysis to demonstrate its benefits in model-
ing MAS. Finally, the conclusion and future work can be 
found in Section 6. 

 
2. Preliminary Notations 
 
In this section, the basic concepts of ACTALK are firstly 
reviewed, which is the relative concept in object-oriented 

concurrent programming. Then, the definitions of TOPN 
and FTOPN are introduced quickly, which are the basis 
of the research work in this paper. 
 
2.1. ACTALK 
 
2.1.1. Active Objects [3] 
Object-oriented concurrent programming (OOCP) is one 
of the most appropriate and promising technologies for 
implementing or realizing agent based systems or MAS. 
Combining the agent concept and the object-oriented 
paradigm leads to the notion of agent-oriented program-
ming [20]. The uniformity of objects’ communication 
mechanisms provides facilities for implementing agent 
communication, and the concept of encapsulating objects 
or encapsulation support combining various agent gra- 
nularities. Furthermore, the inheritance mechanism en-
ables knowledge specialization and factorization. 

The concept of an active object has been presented, 
which make it possible to integrate an object and activity 
(namely a thread or process). It also provides some de-
gree of autonomy for objects in that it does not rely on 
external resources for activation. Thus, it provides a 
good basis for implementing agent based systems or 
MAS. However, similar to common objects in ob-
ject-oriented systems, an active object’s behavior still 
remains procedural and only reacts to message requests. 
More generally, the main feature of agent-based systems 
or MAS is autonomous. Agents should be able to com-
plete tasks autonomously. That’s to say, agents must be 
able to perform numerous functions or activities without 
external intervention over extended time periods. In or-
der to achieve autonomy, adding to an active object a 
function that controls message reception and processing 
by considering its internal state is one of the effective 
realization methods [21,22]. 

On one hand, for modelling and realizing MAS, there 
are two basic questions regarding how to build a bridge 
between implementing and modelling MAS requirements 
[23,24]. On the other hand, the facilities and techniques 
OOCP provides [25]: 
l How can a generic structure define an autonomous 

agent’s main features? 
l How do we accommodate the highly structured 

OOCP model in this generic structure? 
The active-object (or actor) concept has been intro-

duced to describe a set of entities that cooperate and 
communicate through message passing. This concept 
brings the benefits of object orientation (for example, 
modularity and encapsulation) to distributed environ-
ments and provides object-oriented languages with some 
of the characteristics of open systems [26]. Based on 
these characteristics, various active object models have 
been proposed [27], and to facilitate implementing ac-
tive-object systems, several frameworks have been pro-
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posed. ACTALK is one example. 
When ACTALK is used to model and realize the MAS, 

there still exist the following shortcomings:  
l Active object is not an autonomous agent. It only 

manifests the procedural actions. 
l Although active object can communicate, they do 

not own the ability to reduce the decision to communi-
cate or order other active objects. 
l If one active object has not received the information 

from other active objects. It is still in none-active state. 
In order to overcome the shortcomings mentioned 

above, the concept of active object has been proposed 
and a general agent framework [22,28]. A universal 
agent architecture has also been proposed so as to fulfil 
the modelling requirements of MAS [25], which can be 
used to model and analyze MAS deeply. For either 
agent-based systems or MAS, the method mostly is on 
the base of active objects. So in this chapter, the concept 
of active object is firstly reviewed quickly. 

2.1.2. ACTALK [29] 
One of the typical active objects is ACTALK. ACTALK 
is a framework for implementing and computing various 
active-object models into a single programming envi-
ronment based on Smalltalk, which is an object-oriented 
programming language. ACTALK implements asyn-
chronism, a basic principle of active-object languages, by 
queuing the received messages into a mailbox, thus dis-
sociating message reception from interpretation. In 
ACTALK, an active object is composed of three com-
ponent classes (see Figure 1), which are instances of the 
classes. 
l Address encapsulates the active object’s mailbox. It 

defines how to receive and queue messages for later in-
terpretation. 
l Activity represents the active object’s internal ac-

tivity and provides autonomy to the actor. It has a 
Smalltalk process and continuously removes messages 
from the mailbox, and the behavior component interprets 
the messages. 
l ActiveObject represents the active object’s behav-

ior—that is, how individual messages are interpreted. 
To build an active object with ACTALK, the algo-

rithm must describe its behavior as a standard Smalltalk 
(OOCP) object. The active object using that behavior is 
created by sending the message active to the behavior: 

active 
“Creates an active object with self as corresponding 

behavior” 
^self activity: self activityClass address: self address-

Class 
The activityClass and addressClass methods represent 

the default component classes for creating the activity 
and address components (along the factory method de-
sign pattern). To configure the framework of ACTALK 
means to define the components of its sub-classes. That’s 

 
Figure 1. Components of an ACTALK active object. 

to say, it allows users to define special active object mo- 
dels. So ACTALK is the basis to model agent based sys-
tems or MAS.  

 
2.2. Timed Object-Oriented Petri Net (TOPN) 
 
Formally TOPN is a four-tuple (OIP, ION, DD, SI), 
where (OIP, ION, DD) is an ordinary object Petri 
net—“HOONet” [30] and SI associates a static (firing) 
temporal interval SI: {o}→[a, b] with each object o, 
where a and b are rationals in the range 0≤a≤b≤+∝, 
with b≠+∝. The four parts in TOPN have different 
function roles. Object identification place (OIP) is a 
unique identifier of a class. Internal timed object net 
(ION) is a net to depict the behaviors (methods) of a 
class. Data dictionary (DD) declares the attributes of a 
class in TOPN. And static time interval function (SI) 
binds the temporal knowledge of a class in TOPN. There 
are two kinds of places in TOPN. They are common 
places (represented as circles with thin prim) and abstract 
places (represented as circles with bold prim). Abstract 
places are also associated with a static time interval. Be-
cause at this situation, abstract places represent not only 
firing conditions, but also the objects with their own be-
haviors. So, abstract places (TABP) in TOPN also need 
to be associated with time intervals. One problem to be 
emphasized is that the tokens in abstract places need to 
have two colors at least. Before the internal behaviors of 
an abstract place object are fired, the color of tokens in it 
is one color (represented as hollow token in this paper). 
However, after fired, the color becomes the other one 

 
Figure 2. The general structure of TOPN. 
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Figure 3. Places and transitions in TOPN. 

 
(represented as liquid token in this paper). At this time, 
for the following transitions, it is just actually enabled. 
There are three kinds of transitions in TOPN. The timed 
primitive transition (represented as rectangles with thin 
prim) (TPIT), timed abstract transition (represented as 
rectangles with bold prim) (TABT) and timed communi-
cation transition (represented as rectangles with double 
thin prim) (TCOT). 

Static time intervals change the behavior of TOPN just 
similar to a time Petri net in the following way. If an 
object o with SI(o) = [a, b] becomes enabled at time I0, 
then the object o must be fired in the time interval [I0+a, 
I0+b], unless it becomes disabled by the removal of to-
kens from some input place in the meantime. The static 
earliest firing time of the object o is a; the static latest 
firing time of o is b; the dynamic earliest firing time 
(EFT) of t is I0+a; the dynamic latest firing time (LFT) of 
t is I0+b; the dynamic firing interval of t is [I0+a, I0+b]. 

The state of TOPN (Extended States—“ES”) is a 3- 
tuple, where ES = (M, I, path) consists of a marking M, a 
firing interval vector I and an execution path. According 
to the initial marking M0 and the firing rules mentioned 
above, the following marking at any time can be calcu-
lated. The vector—“I” is composed of the temporal in-
tervals of enabled transitions and TABPs, which are to 
be fired in the following states. The dimension of I 
equals to the number of enabled transitions and TABPs 
at the current state. The firing interval of every enabled 
transition or TABP can be got according to the calcula-
tion formula of EFT and LFT in TOPN [16]. 

For enabling rules in TOPN, two different situations 
exist. A transition t in TOPN is said to be enabled at the 
current state (M, I, path), if each input place p of t con-
tains at least the number of solid tokens equal to the 
weight of the directed arcs connecting p to t in the mark-
ing M. If the TABP object is marked with a hollow token, 
it is enabled. At this time, its ION is enabled. After the 
ION has been fired, the tokens in TABP are changed into 
solid ones.  

An object o is said to be fireable in state (M, I, path) if 
it is enabled, and if it is legal to fire o next. This will be 
true if and only if the EFT of o is less than or equal to the 
LFT of all other enabled transitions. Of course, even with 
strong time semantics, o’s being fireable in state (M, I, 
path) does not necessarily mean that t will fire in the time 
interval I. 

2.3. Fuzzy Timed Object-Oriented Petri Net  
(FTOPN) 

 
Similar to FTPN [19], fuzzy set concepts are introduced 
into TOPN [16]. Then FTOPN is proposed, which can 
describe fuzzy timing effect in dynamic systems. 

Definition 1: FTOPN is a six-tuple, FTOPN = (OIP, 
ION, DD, SI, R, I) where 

1) Suppose OIP = (oip, pid, M0, status), where oip, pid, 
M0 and status are the same as those in HOONet [30] and 
TOPN [16]. 
l oip is a variable for the unique name of a FTOPN. 
l pid is a unique process identifier to distinguish mul-

tiple instances of a class, which contains return address. 
l M0 is the function that gives initial token distribu-

tions of this specific value to OIP. 
l status is a flag variable to specify the state of OIP. 
2) ION is the internal net structure of FTOPN to be 

defined in the following. It is a variant CPN that de-
scribes the changes in the values of attributes and the 
behaviors of methods in FTOPN. 

3) DD formally defines the variables, token types and 
functions (methods) just like those in HOONet [30] and 
TOPN [16].  

4) SI is a static time interval binding function, SI: 
{OIP}→Q*, where Q* is a set of time intervals.  

5) R: {OIP} → r, where r is a specific threshold. 
6) I is a function of the time v. It evaluates the result-

ing degree of the abstract object firing.  
Definition 2: An internal object net structure of TOPN, 

ION = (P, T, A, K, N, G, E, F, M0) 
1) P and T are finite sets of places and transitions with 

time restricting conditions attached respectively. 
2) A is a finite set of arcs such that P∩T = P∩A = 

T∩A = Φ. 
3) K is a function mapping from P to a set of token 

types declared in DD. 
4) N, G, and E mean the functions of nodes, guards, 

and arc expressions, respectively. The results of these 
functions are the additional condition to restrict the firing 
of transitions. So they are also called additional restrict-
ing conditions.  

5) F is a special arc from any transitions to OIP, and 
notated as a body frame of ION. 

6) M0 is a function giving an initial marking to any 
place the same as those in HOONet [30] and TOPN [16].  

Definition 3: A set of places in TOPN is defined as P 
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= PIP∪TABP, where 
1) Primary place PIP is a three-tuple: PIP = (P, R, I), 

where 
l P is the set of common places similar to those in PN 

[4,31]. 
2) Timed abstract place (TABP) is a six-tuple: TABP 

= TABP(pn, refine state, action, SI, R, I), where 
l pn is the identifier of the abstract timed place. 
l refine state is a flag variable denoting whether this 

abstract place has been refined or not. 
l action is the static reaction imitating the internal 

behavior of this abstract place. 
l SI, R and I are the same as those in Definition 1. 
Definition 4: A set of transitions in TOPN can be de-

fined as T = TPIT∪TABT∪TCOT, where 
1) Timed primitive transition TPIT = TPIT (BAT, SI), 

where 
l BAT is the set of common transitions. 
2) Timed abstract transition TABT = TABT (tn, refine 

state, action, SI), where  
l tn is the name of this TABT. 
3) Timed communication transition TCOT = TCOT 

(tn, target, comm type, action, SI). 
l tn is the name of TCOT.  
l target is a flag variable denoting whether the be-

havior of this TCOT has been modeled or not. If target = 
“Yes”, it has been modeled. Otherwise, if target = “No”, 
it has not been modeled yet. 
l comm type is a flag variable denoting the commu-

nication type. If comm type = “SYNC”, then the com-
munication transition is synchronous one. Otherwise, if 
comm type = “ASYN”, it is an asynchronous communi-
cation transition. 

4) SI is the same as that in Definition 1. 
5) Refine state and action are the same as those in De- 

finition 3.  
Similar to those in FTPN [19], the object t fires if the 

foregoing objects come with a nonzero marking of the 
tokens; the level of firing is inherently continuous. The 
level of firing (z(v)) assuming values in the unit interval 
is governed by the following expression: 

)()))((()(
1

vtswvxrTvz iii

n

i
Ι′→=

=
     (1) 

where T (or t) denotes a t-norm while “s” stands for any 
s-norm. “v” is the time instant immediately following v′. 
More specifically, xi(v) denotes a level of marking of the 
ith place. The weight wi is used to quantify an input 
coming from the ith place. The threshold ri expresses an 
extent to which the corresponding place’s marking con- 
tributes to the firing of the transition. The implication 
operator (→) expresses a requirement that a transition 
fires if the level of tokens exceeds a specific threshold 
(quantified here by ri).  

Once the transition has been fired, the input places 
involved in this firing modify their markings that is 
governed by the expression 

xi(v) = xi(v′)t(1−z(v))             (2) 
(Note that the reduction in the level of marking de-

pends upon the intensity of the firing of the correspond-
ing transition, z(v).) Owing to the t-norm being used in 
the above expression, the marking of the input place gets 
lowered. The output place increases its level of tokens 
following the expression: 

y(v) = y(v′)sz(v)              (3) 
The s-norm is used to aggregate the level of firing of 

the transition with the actual level of tokens at this output 
place. This way of aggregation makes the marking of the 
output place increase. 

The FTOPN model directly generalizes the Boolean 
case of TOPN and OPN. In other words, if xi(v) and wi 
assume values in {0, 1} then the rules governing the be-
havior of the net are the same as those encountered in 
TOPN. 

 
3. Agent Objects and Fuzzy Timed Agent 

Based Petri Nets 
 
The active object concept [29] has been proposed to de-
scribe a set of entities that cooperate and communicate 
through message passing. To facilitate implementing 
active object systems, several frameworks have been 
proposed. ACTALK is one of the typical examples. 
ACTALK is a framework for implementing and com-
puting various active object models into one object-ori- 
ented language realization. ACTALK implements asyn-
chronism, a basic principle of active object languages, by 
queuing the received messages into a mailbox, thus dis-
sociating message reception from interpretation. In ACTALK, 

 

 
Figure 4. The FTOPN model of ACTALK. 
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an active object is composed of three component classes: 
address, activity and activeObject [29]. 

ACTALK model is the basis of constructing active 
object models. However, active object model is the basis 
of constructing multi-agent system model or agent-based 
system model. So, as the modeling basis, ACTALK has 
been extended to different kinds of high-level agent 
models. Because of this, ACTALK is modeled in Fig.4 
by FTOPN. 

In Figure 4, OIP is the describer of the ACTALK 
model and also represents as the communication address. 
One communication transition is used to represent as the 
behavior of message reception. According to the com-
munication requirements, it may be synchronous or 
asynchronous. If the message has been received, it will 
be stored in the corresponding mail box, which is one 
“first in and first out queue”. If the message has been 
received, the next transition will be enabled immediately. 
So mail box is modeled as abstract place object in 
FTAPN. If there are messages in the mail box, the fol-
lowing transition will be enabled and fired. After the 
following responding activity completes, some active 
behavior will be conducted according to the message. 

Figure 4 has described the ACTALK model based on 
FTOPN on the macroscopical level. The detailed defini-
tion or realization of the object “Activity” and “Behav-
ior” can be defined by FTOPN in its parent objects in the 
lower level. The FTOPN model of ACTALK can be used 
as the basic agent object to model agent based systems. 
That is to say, if the agent based model—ACTALK 
model is used in the usual FTOPN modeling procedure, 
FTOPN has been extended to agent based modeling 
methodology. So it is called fuzzy timed agent based 
Petri net (FTAPN). 

 
4. Learning in Fuzzy Timed Agent Based 

Petri Nets 
 

The parameters of FTAPN are always given beforehand. 
In general, however, these parameters may not be avail-
able and need to be estimated just like those in FTPN 
[19]. The estimation is conducted on the base of some 
experimental data concerning marking of input and out-
put places. The marking of the places is provided as a 
discrete time series. More specifically we consider that 
the marking of the output place(s) is treated as a collec-
tion of target values to be followed during the training 
process. As a matter of fact, the learning is carried out in 
a supervised mode returning to these target data. 

The connections of the FTOPN (namely weights wi 
and thresholds ri) as well as the time decay factors αi are 
optimized (or trained) so that a given performance index 
Q becomes minimized. The training data set consists of 
(a) initial marking of the input places xi(0),…, xn(0) and 
(b) target values—markings of the output place that are 

given in a sequence of discrete time moments, that is 
target(0), target(1),…, target(K). 

In FTAPN, the performance index Q under discussion 
assumes the form of Equation (4) 

Q = ∑
=

−
K

k

kykett
1

2))()(arg(            (4) 

where the summation is taken over all time instants (k =1, 
2,… , K). 

The crux of the training in FTOPN models follows the 
general update formula in Equation (5) being applied to 
the parameters: 

param(iter+1) = param(iter) − γ∇paramQ    (5) 
where γ is a learning rate and ∇paramQ denotes a gradient 
of the performance index taken with respect to all pa-
rameters of the net (here we use a notation param to 
embrace all parameters in FTOPN to be trained).  

In the training of FTOPN models, marking of the input 
places is updated according to Equation (6): 

)()0(~ kTxx iii =              (6) 

where Ti(k) is the temporal decay. And Ti(k) complies 
with the form in Equation (7). In what follows, the tem-
poral decay is modeled by an exponential function, 



 >−−

=
others

kkifkk
kT iii

i 0
,))(exp(

)(
α

   (7) 

The level of firing of the place can be computed as 
Equation (8): 

~
1

( (( ) ))
n

i i ii
z T r x sw

=
= →           (8) 

The successive level of tokens at the output place and 
input places can be calculated as that in Equation (9): 

y(k) = y(k−1)sz, xi(k) = xi(k−1)t(1−z)     (9) 
We assume that the initial marking of the output place 

y(0) is equal to zero, y(0) = 0. The derivatives of the 
weights wi are computed as the form in Equation (9): 

2( arg ( ) ( ))

( )2( arg ( ) ( ) )

i

i

t et k y k
w

y kt et k y k
w

∂
−

∂

∂
= − −

∂

       (10) 

where i =1,2,…, n. Note that y(k+1) = y(k)sz(k). 
 

5. A Modeling Example 
 
5.1. A CMRS Model 
 
In many typical integrated circuit manufacturing equip-
ments such as etching tools, PVD, PECVD etc al., usu-
ally there is an EFAM platform which is made up of 
three Brooks Marathon Express (MX) [32] robots to 
transfer wafers to be processed. Among these three robots,  
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(a) The agent based FTAPN model                         (b) The behavior model in every agent 

Figure 5. The FTAPN model. 

 
Figure 6. The relevance. 

 
one is up to complete transferring wafers between at-
mospheric environment and vacuum environment, which 
is conducted in the atmospheric environment. In the 
vacuum environment, the other two robots are up to 
complete transferring one unprocessed wafer from the 
input lock to the chamber and fetch the processed wafer 
to the output lock in the vacuum environment. Any robot 
can be used to complete the transferring task at any time. 
If one robot is up to transfer one new wafer, the other 
will conduct the relative transferring or fetching task. 
They will not conflict with each other. Figure 5 depicts 
this CMRS FTAPN model, where three agent objects 
(ACTALK) are used to represent these three cooperative 
robots. 

Figure 5(a) has depicted the whole FTAPN model. 
The agent object—“ACTALK” is used to represent every 
robot model. Different thresholds are used to represent 
the firing level of the behavior conducted by the corre-
sponding robot (agent). They also satisfy the unitary re-
quirements and change according to the fuzzy decision in 
the behavior of every agent in Figure 5(b). In the model 
of Figure 5(b), three communication transition objects 
are used to represent the behavior for getting different 
kinds of system states. These states include the state of 
the other robot, its own goal and its current state, which 
can be required by the conductions of the communication 
transitions tA1, tA2 and tA3. When one condition has 
been got, the following place will be marked. In order to 
make control decisions (transition object tA4) in time, all 
of these state parameters are required in the prescriptive 

time interval. However, the parameter arrival times com-
plies with the rule in Figure 5(a). The other two kinds of 
information comply with that in Figure 5(b). After the 
decision, a new decision command with the conduction 
probability will be sent in this relative interval and it also 
affects which behavior (transfer or fetch) will be con-
ducted by updating the threshold in Figure 5(a). 

 
5.2. Application Analysis 
 
Table 1 summarizes the main features of FTAPN and 
contrast these with the structures with which the pro-
posed structures have a lot in common, namely MAS and 
FTOPN. It becomes apparent that FTAPN combines the 
advantages of both FTOPN in terms of their learning 
abilities and the glass-style of processing (and architec-
tures) of MAS with the autonomy. 

 
6. Conclusions and Future Work 

 
CMRS is a kind of usual manufacturing equipments in 
manufacturing industries. In order to model, analyze and 
simulate this kind of systems, this paper proposes fuzzy 
timed agent based Petri net (FTAPN) on the base of 
FTOPN [19] and FTPN [18]. In FTAPN, one of the ac-
tive objects—ACTALK is introduced and used as the 
basic agent object to model CMRS, which is a typical 
MAS. Every abstract object in FTOPN can be trained 
and reduced independently according to the modeling 
and analysis requirements for OO concepts supported in 
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Table 1. MAS, FTOPN and FTAPN: A comparative analysis. 

Characteristics MAS FTOPN FTAPN 

Learning Aspects  

Significant dynamic learn-
ing abilities. Dynamic learn-
ing and decision abilities are 
supported in every autono-
mous agent.  

Significant learning abilities. 
Distributed learning (training) 
abilities are supported in dif-
ferent independent objects on 
various system model levels.  

Significant dynamic learning abilities. 
Distributed dynamic learning and deci-
sion abilities are supported in every 
autonomous agent.  

Knowledge Repre-
sentation Aspects  

Transparent knowledge re- 
presentation (glass box proc-
essing style) the problem (its 
specification) is mapped di-
rectly onto the topology of the 
agent model. Additionally, 
agents deliver an essential 
feature of continuity required 
to cope with dynamic changes 
encountered in a vast array of 
problems (including autono-
mous decision tasks)  

 Glass Box Style (Transpar-
ent Knowledge Representation) 
and Black Box Processing is 
supported at the same time. The 
problem (its specification) is 
mapped directly onto the to-
pology of FTOPN. Knowledge 
representation granularity re-
configuration reacts on the 
reduction of model size and 
complexity.  

Glass Box Processing Style and Black 
Box Processing style are all supported. 
The problem (its specification) is 
mapped directly onto the topology of 
FTAPN, which can not only represent 
dynamic knowledge, but also deal with 
dynamic changes with well-defined 
semantics of agent objects, places, tran-
sitions, fuzzy and temporal knowledge.  

 
FTOPN. The validity of this modeling method has been 
used to model Brooks CMRS platform in etching tools. 
The FTAPN can not only model complex MAS, but also 
be refined into the object-oriented implementation easily. 
It has provided a methodology to overcome the devel-
opment problems in agent-oriented software engineering. 
At the same time, it can also be regarded as a conceptual 
and practical artificial intelligence (AI) tool for integrat-
ing MAS into the mainstream practice of software de-
velopment. 

State analysis needs to be studied in the future. An ex-
tended State Graph [16] has been proposed to analyze the 
state change of TOPN models. With the temporal fuzzy 
sets introduced into FTAPN, the certainty factor about 
object firing (state changing) needs to be considered in 
the state analysis. 

 
7. Acknowledgement 

 
This work is jointly supported by the National Nature 
Science Foundation of China (Grant No: 60405011, 
60575057, 60875073) and National Key Technology 
R&D Program of China (Grant No: 2009- BAG12A08). 

 
8. References 

 
[1] Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng, 

“Cooperative mobile robotics: Antecedents and direc-
tions,” Autonomous Robots, Vol. 4, pp. 7–27, 1997.  

[2] N. R. Jennings, K. Sycara, and M. Wooldridge, “A road-
map of agent research and development,” Autonomous 
Agents and Multi-Agent Systems, Vol. 1, pp. 7–38, 1998.  

[3] Z. Guessoum and J. P. Briot, “From active objects to 

autonomous agents,” IEEE Concurrency, Vol. 7, No. 3, 
pp. 68–76, July–September 1999. 

[4] T. Murata, “Petri nets and properties, analysis and appli-
cations,” Proceedings of IEEE, Vol. 77, pp. 541–580, 
1989. 

[5] Y. L. Yao, “A Petri net model for temporal knowledge 
representation and reasoning,” IEEE Transactions on 
Systems, Man and Cybernetics, Vol. 24, pp. 1374–1382, 
1994. 

[6] P. Merlin and D. Farber, “Recoverability of communica-
tion protocols—Implication of a theoretical study,” IEEE 
Transactions on Communication, Vol. 24, pp. 1036–1043, 
1976. 

[7] J. Wang, Y. Deng, and M. Zhou, “Compositional time 
Petri nets and reduction rules,” IEEE Transactions on 
Systems, Man and Cybernetics (Part B), Vol. 30, pp. 
562–572, 2000. 

[8] R. Bastide, “Approaches in unifying Petri nets and the 
object-oriented approach,” Proceeding of the Interna-
tional Workshop on Object-Oriented Programming and 
Models of Concurrency, Turin, Italy, June, 1995, http:// 
eprints. kfupm.edu.sa/26256/. 

[9] D. Harel and E. Gery, “Executable object modeling with 
statechart,” Proceedings of the 18th International Con-
ference on Software Engineering, Germany, pp. 246–257, 
March 1996. 

[10] S. A. Schuman, “Formal object-oriented development,” 
Springer, Berlin, 1997. 

[11] J. E. Hong and D. H. Bae, “Software modeling and analy-
sis using a hierarchical object-oriented Petri net,” Infor-
mation Sciences, Vol.130, pp. 133–164, 2000. 

[12] E. Battiston, F. D. Cindio, and G. Mauri, “OBJSA nets: A 
class of high-level nets having objects as domains,” 
APN’88, Lecture Notes in Computer Science, Vol. 340, 
pp. 20–43, 1988. 



X. L. HUANG  ET  AL. 
 

Copyright © 2009 SciRes.                                                                                IJCNS 

835 

[13] O. Biberstein and D. Buchs, “An object-oriented specifi-
cation language based on hierarchical algebraic Petri 
nets,” Proceedings of the IS-CORE Workshop Amster-
dam, September 1994, http://citeseerx.ist.psu.edu/view- 
doc/summary?doi=10.1.1.45.3092. 

[14] C. Lakos and C. Keen, “LOOPN++: A new language for 
object-oriented Petri nets,” Technical Report R94-4, Net- 
working Research Group, University of Tasmania, Aus-
tralia, April 1994. 

[15] K. Jensen, “Coloured Petri nets: Basic concepts, analysis 
methods and practical use,” Springer, Berlin, 1992. 

[16] H. Xu and P. F. Jia, “Timed hierarchical object-oriented 
Petri net-part I: Basic concepts and reachability analysis,” 
Lecture Notes in Artificial Intelligence (Proceedings of 
RSKT2006), Vol. 4062, pp. 727–734, 2006. 

[17] W. Chainbi, “Multi-agent systems: A Petri net with ob-
jects based approach,” Proceedings of IEEE/WIC/ACM 
International Conference on Intelligent Agent Technol-
ogy, Beijing, pp. 429–432, 2004. 

[18] W. Pedrycz and H. Camargo, “Fuzzy timed Petri nets, 
fuzzy sets and systems,” Vol. 140, pp. 301–330, 2003. 

[19] X. Hua and J. Peifa, “Fuzzy timed object-oriented Petri 
net,” Artificial Intelligence Applications and Innovations 
II-Proceedings of AIAI2005, Springer, pp. 155–166, 
September 2005. 

[20] Y. Shoham, “Agent-oriented programming,” Artificial In- 
telligence, Vol. 60, No.1, pp. 139–159, 1993. 

[21] J. P. Briot, “An experiment in classification and spe- 
cialization of synchronization schemes,“ Lecture Notes in 
Computer Science, No. 1107, pp. 227–249, 1996. 

[22] T. Maruichi, M. Ichikawa, and M. Tokoro, “Decentralized 
AI,” Modeling Autonomous Agents and Their Groups, 
Elsevier Science, Amsterdam, pp. 215–134, 1990. 

[23] C. Castelfranchi, “A point missed in multi-agent, DAI and 
HCI,” Lecture Notes in Artificial Intelligence, No. 890, 
pp. 49–62. 1995. 

[24] L. Gasser, ”An overview of DAI, ” Distributed Artificial 
Intelligence, N. A. Avouris and L. Gasser, eds., Kluwer 
Academic, Boston, pp. 1–25, 1992. 

[25] L. Gasser and J. P. Briot, ”Object-oriented concurrent 
programming and distributed artificial intelligence,” Dis- 
tributed Artificial Intelligence, N. A. Avouris and L. 
Gasser, eds., Kluwer Academic, Boston, pp. 81–108, 
1992. 

[26] G. Agha and C. Hewitt, “Concurrent programming using 
actors: Exploiting large scale parallelism,” Lecture Notes 
in Computer Science, S. N. Maheshwari, ed., Springer- 
Verlag, New York, No. 206, pp. 19–41, 1985. 

[27] A. Yonezawa and M. Tokoro, “Object-oriented con- 
current programming,” The MIT Press, Cambrige, Mass., 
1987. 

[28] Y. Shoham, “Agent-oriented programming,” Artificial In- 
telligence, Vol. 60, No.1, pp. 139–159, 1993. 

[29] Z. Guessoum and J. P. Briot, “From active objects to 
autonomous agents,” IEEE Concurrency, Vol. 7, No. 3, 
pp. 67–76, 1999. 

[30] J. E. Hong and D. H. Bae, ”Software modelling and 
analysis using a hierarchical object-oriented Petri net,” 
Information Sciences, Vol. 130, pp. 133–164, 2000. 

[31] J. L. Peterson, “Petri net theory and the modeling of 
systems,” Prentice-Hall, N.Y., USA, 1991. 

[32] J. H. Lee and T. E. Lee, “SECAM: A supervisory equip- 
ment control application model for integrated semi- 
conductor manufacturing equipment, ” IEEE Robotics & 
Automation Magazine, Vol. 11, No. 1, pp. 41 – 58, 2004.. 

 
 
 
 
 
 
 


