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Abstract 
Asymptotic stability of linear and interval linear fractional-order neutral 
delay differential systems described by the Caputo-Fabrizio (CF) fractional 
derivatives is investigated. Using Laplace transform, a novel characteristic 
equation is derived. Stability criteria are established based on an algebraic 
approach and norm-based criteria are also presented. It is shown that 
asymptotic stability is ensured for linear fractional-order neutral delay diffe-
rential systems provided that the underlying stability criterion holds for any 
delay parameter. In addition, sufficient conditions are derived to ensure the 
asymptotic stability of interval linear fractional order neutral delay differential 
systems. Examples are provided to illustrate the effectiveness and applicability 
of the theoretical results. 
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1. Introduction 

Fractional calculus is attracting more and more researchers in applied sciences 
and engineering because of many advantages of fractional derivatives which 
provide important tools in modelling natural phenomena, see, e.g., [1] [2]. There 
are different types of fractional derivatives, those of Riemann-Liouville and Ca-
puto are the most popular in the literature [3] [4] [5] [6]. 

In their recent work, Caputo and Fabrizio [7] introduced a new fractional 
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order derivative with a nonsingular kernel, hereinafter called the fractional Ca-
puto-Fabrizio (CF) derivative. This new fractional derivative is less affected by 
the past compared to the Caputo fractional derivative, which may exhibit slow 
stabilization [8]. The properties and numerical aspects of the CF derivative and 
their corresponding fractional integrals have been studied in [9]-[15]. In this 
paper, we are interested in linear and interval linear fractional-order neutral de-
lay differential equations described by the CF derivative. Recently, a great atten-
tion has been paid to fractional delay differential systems. One of the most im-
portant research topics of the theory of such systems is the stability analysis. 
However, in the literature cited above, there are only few results (see, e.g., [8] 
[16]) on this topic. In [17] the authors study the stability analysis of linear frac-
tional-order ordinary differential equations described by the CF derivative, 
whereas the authors of [18] consider the stability analysis of linear fraction-
al-order systems with time delay, establish a characteristic equation using the 
Laplace transform and provide some brief sufficient stability conditions. In [19] 
the authors consider the asymptotic stability for uncertain singular neutral delay 
systems and in [20] [21] [22] the authors study the stability analysis of interval 
linear fractional ordinary differential systems, interval linear fractional neutral 
differential systems described by the Caputo derivative and interval linear frac-
tional neutral differential-algebraic systems described by the Caputo derivative, 
respectively. While being different, we extend the analysis carried out in the above 
cited references. We apply a spectrum based approach to establish asymptotic sta-
bility criteria for fractional-order neutral delay differential systems and the novelty 
of this work lies in the following aspects. Firstly, the CF definition of the frac-
tional derivative is applied to analyze linear and interval linear fractional-order 
differential systems including neutral time delay. Secondly, by using the Laplace 
transform, we establish a novel characteristic equation. Thirdly, we apply an al-
gebraic approach to establish sufficient asymptotic stability criteria ensuring that 
all the roots of characteristic equation lie in open left half of the complex plane. 
Fourthly, we present sufficient norm criteria to ensure the asymptotic stability of 
such systems. A nice consequence is that these stability criteria avoid solving the 
characteristic (transcendental) equation. 

The rest of the paper is organized as follows: In Section 2 we formulate the 
problem and introduce the notation that will be used throughout the paper. In 
Section 3 we establish the main results for the asymptotic stability criteria for li-
near and interval linear fractional neutral delay differential equations. Finally, 
some concluding remarks are given in Section 4. 

2. Problem Formulation and Notation 

We consider linear fractional-order neutral delay differential systems of the form 

  ( ) ( ) ( ) ( ) , 0,CF D y t Cy t Ay t By t tα τ τ− − = + − ≥           (1) 

( ) ( ) , 0y t t tϕ τ= − ≤ ≤  
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where 0 1α< < , ( )y t  is a real vector of size n (the state vector); A, B and C 
are real n n×  matrices; τ  is a positive parameter (the time delay) and ϕ is a 
consistent initial function. The notation ( )CF D z tα  stands for Caputo–Fabrizio 
fractional order derivative of order α  of z(t) defined by (see [7]) 

( ) ( ) ( ) ( )
0

d d1 exp d .
1 1 dd

t
CF

z t z
D z t t

tt

α
α

α

µα µ µ
α α

 = = − − − − ∫  

We study two cases. In the first case the matrices A, B, and C are constant and 
in the second case they are interval matrices, that is  

( ) ( ) ( ){ }1 2: , , 1, 2, , ,ij ij ij ijA a a a a i j n= ≤ ≤ =             (2a) 

( ) ( ) ( ){ }1 2: , , 1, 2, , ,ij ij ij ijB b b b b i j n= ≤ ≤ =             (2b) 

( ) ( ) ( ){ }1 2: , , 1, 2, , ,ij ij ij ijC c c c c i j n= ≤ ≤ =             (2c) 

where ( ) ( ),k k
ij ija b  and ( ) , 1, 2k

ijc k =  are given. The equations associated with the 
constant and interval cases will be denoted respectively by (LFNDDE) and 
(ILFNDDE). When a property applies equally to both cases (as in Definition 1 
for example), the corresponding system will simply be referred to as system (1). 

The following notation will be used throughout the paper. For a square com-
plex matrix X,  

*X  denotes conjugate transpose of X, 
( )det X  denotes the determinant of X, 

( )Xρ  denotes the spectral radius of X, 
X  denotes the spectral norm of X; 

         ( )*
maxX X Xλ= , where maxλ  is the largest eigenvalue, 

( )X Xρ=  (if X is Hermitian, that is, if *X X= ) 

[ ]Xµ  denotes the logarithmic norm of X;  

( ) ( )*
max

1
2

X X Xµ λ= + , where maxλ  is the largest eigenvalue, 

( ) ( )maxX Xµ λ=  (if X is Hermitian, that is, if *X X= ) 

If ( ) n n
ijX x C ×= ∈ , we set ( )ijX x= . If ( ) n n

ijX x R ×= ∈  and ( ) n n
ijY y R ×= ∈ , 

the inequality X Y≤  means that ij ijx y≤  for , 1, ,i j n=  . 
The following inequalities, which will be used in the sequel, can be found in 

the literature, see, e.g., [23]. If , n nU V C ×∈  and n nW R ×∈  with U W≤ , then 

( ) ( ) ( ) ( ) ,U V U V U V W Vρ ρ ρ ρ+ ≤ + ≤ + ≤ +  

( )( ) ( )Re U Uλ µ≤  for any eigenvalue ( )Uλ  of U, 

( ) ( ) ( ) ( ) ( ), , .U V U V U U U Uµ µ µ µ ρ+ ≤ + ≤ ≤   

3. Main Results 

Applying the Laplace transform to (1), we obtain 
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( ) ( ) ( )( ) ( ) ( )1 1 e 0 e ,
1

1

s sI C sY s y AY s B Y s
s

τ τ

αα
α

− −− − = +
− +

−

 

where ( )Y s  is the Laplace transform of ( )y t  for 0t ≥ , defined by  

( ) ( )
0

e d .stY s y t t
∞ −= ∫   

This leads after rearrangement to 

( ) ( ) ( ) ( )e 0 ,sP s Y s I C yτ−= −                    (3) 

where  

( ) ( )( )( ) ( )e 1 e es s sP s s I C A B A Bτ τ τα α− − −= − − − + − + . 

The characteristic equation of (1) is defined by 

( ) ( )( ), det 0.Q s P sτ = =                     (4) 

As we will see, it plays an important role in the stability analysis of system (1). 
Definition 1. The zero solution ( ) 0y t =  of system (1) is said to be asymp-

totically stable if for any consistent [ ]( )C ,0 , nRϕ τ∈ −  its analytic solution 
( )y t  satisfies ( )lim 0t y t→∞ =  for any delay parameter 0τ > . 
From Definition 1 we obtain the following theorem whose proof is similar to 

that given in [24]. 
Theorem 1. System (1) is asymptotically stable if the roots of the characteris-

tic equation (4) lie in the open left half of the complex plane and are uniformly 
bounded away from the imaginary axis. 

Next, several sufficient conditions of stability of system (1) are given. 
Lemma 1. If the family of matrices { }, ,A B C  defined in (LFNDDE) satisfies 

the conditions 

(C1) ( )( ) ( ) ( )1
det 1 0s s I C A Bα α

− − + − − + ≠  
, for ( ) 0Re s ≥ ,  

(C2) 
( )

( )( ) ( ) ( )( ) ( )( )( )11 1

0

1sup 1 1
2Re s

s s I C A B B s s Cρ α α α α
−− −

≥
− + − − + + − + 

 
<


 

Then, for all s C∈  such that ( ) 0Re s ≥  

(C3) ( ), 0.Q s τ ≠  

Proof. To simplify the notation, let us denote by 

( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

1

1
.

,1s s

K s s s I C A B B s s C

γ α α

γ γ

−

−

= − +

= − − + +
 

The condition (C2) can then be written 

( ) ( )( )0
1sup
2Re s K sρ≥ < . 

We have 

( ) ( )( )( ) ( )e 1 e es s sP s s I C A B A Bτ τ τα α− − −= − − − + − +  
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( )( )( ) ( )

( )( ) ( )( ) ( )( )( ) ( )

( )( ) ( )( ) ( )( )( )

1

1

e ( e )

e 1

e 1 .

s s

s

s

s s I C A B s

s s I C A B B s s C s

s s I C A B I K s

τ τ

τ

τ

γ γ

γ γ γ

γ

−− −

−−

−

= − − +

= − − + − + −

= − − + − −

 

The condition (C1) ensures that ( )( ) ( )s s I C A Bγ − − +  is nonsingular and the 
condition (C2) ensures that ( )( )e 1 1sK s τρ − − <   and hence ( )( )e 1sI K s τ−− −  
is nonsingular. Therefore, (C3) is satisfied.   

Remark 1. Note that the condition (C3) is a transcendental inequality, which 
is difficult to solve. The sufficient conditions in Lemma 1 avoid this difficulty. 
Since the spectral radius of a matrix is always less than or equal to any induced 
norm of the matrix, Lemma 1 remains valid under the conditions (C1) and 

( 2C′ ) 
( )

( )
0

1sup .
2Re s

k s
≥

<  

Now sufficient conditions for asymptotic stability of system (1) are given in 
the following theorem. 

Theorem 2. If the family of matrices { }, ,A B C  defined in (LFNDDE) satis-
fies the conditions (C1) and (C2), then the system (1) is asymptotically stable for 
all values of the delay τ . 

Proof. By Lemma 1, if the conditions (C1) and (C2) are satisfied, then the con-
dition (C3) holds. This implies that ( ) 0Re s <  for any root of the characteristic 
equation (4). We need to prove that the roots remain bound away from the im-
aginary axis. Suppose the contrary. Then there exists a sequence of roots ( ms ) of 
the characteristic equation where ( ) 0mRe s <  and ( ) 0mRe s →  as m →∞ . 
As in the proof of Lemma 1, we use the notation 

( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

1

1

1 ,

.

s s

K s s s I C A B B s s C

γ α α

γ γ

−

−

= − +

= − − + +
 

Since any eigenvalue ( )( )e 1s
j K s τλ − −   is a continuous function of s for 

( ) 0Re s ≥ , similar to [25] and from the condition (C2), there exists 0ε >  such 
that 

( )
( )( )

( )
( )( )

0 0
sup e 1 sup max e 1 1 .s s

jjRe s Re s
K s K sτ τρ λ ε− −

≥ ≥

   − = − = −     

Hence,  

( )
( )( )

0
sup e 1 1 .

Re
K ωτ

ω
ρ ω ε−

=

 − ≤ −                    (5) 

For sufficiently large m there exists a positive constant *ε  ( *0 ε ε< < ) and a 
characteristic root ms  such that ( )mRe s  is sufficiently small, ( ) 0mRe s <  
and  

  ( )( )
( )

( )( ) *

0
max e 1 sup e 1 .ms

j j m
Re

K s Kτ ωτ

ω
λ ρ ω ε− −

=

   − − − <      (6)  

Then it follows from (5) and (6) that for large m and for 1,2, ,j n=    
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( )( )
( )

( )( ) * *

0
e 1 sup e 1 1 1.ms

j m
Re

K s Kτ ωτ

ω
λ ρ ω ε ε ε− −

=

   − ≤ − + < − + <     

That is, for ( ) 0mRe s <  and ( ) 0mRe s →  as m →∞  we obtain ( ), 0mQ s τ ≠ , 
which contradicts the assumption that ( ms ) is a sequence of roots of the charac-
teristic equation. 

Lemma 2. Let { }, ,A B C  be the family of matrices defined in (LFNDDE) and 
satisfying (C1). Assume that ( ) ( )I C A B− − +  is nonsingular and define the ma-
trices 

( ) ( )( ) ( )1
,F I C A B B C

−
= − − + +  

( ) ( )( ) ( )1
,G I C A B B C

−
= − − + −  

( ) ( )( ) ( ) ( )( )1
J I C A B I C A B

−
= − − + − + + . 

If  

( )( ) 1 11
1

zs s
z

α α
− −

− + =
+

 for ( ) 0Re s ≥  and 1z ≤ ,         (7) 

then the following equality holds for ( ) 0Re s ≥  and 1z ≤  

( )( ) ( ) ( )( ) ( )( )( )
( ) ( )

11 1

1

1 1

.

s s I C A B B s s C

I zJ F zG

α α α α
−− −

−

− + − − + + − +

= − +
   (8) 

Proof. Note first that there is a z satisfying (7). Indeed such a z is given by 
( )
( )

1
2 1

s
z

s s
α
α
−

=
+ −

 and since ( ) 0Re s ≥  and 0 1α< < , it is easy to check that 

1z ≤ . 

A simple algebraic manipulation yields  

( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )

1

1 11

1
2 1

2 2 1 ,

s
I zJ I I C A B I C A B

s s

I C A B s s I C A B s s s

α
α

γ γ α

−

− −−

−
− = − − − + − + +

+ −

 = − − + − − + + − 

 

where ( ) ( )( ) 1
1s sγ α α

−
= − + . Note that the condition (C1) ensures that I zJ−  

is nonsingular.  
Likewise, we have 

( ) ( )( ) ( )
( ) ( )

( ) ( )( ) ( )( ) ( ) ( )( )

1

1 11

1
2 1

2 2 1 .

s
F zG I C A B B C B C

s s

I C A B B s s C s s s

α
α

γ γ α

−

− −−

 −
+ = − − + + + −  + − 

= − − + + + −

   

Combining the expressions of I zJ−  and F zG+  above leads to the desired 
result. 

In view of Theorem 2 and Lemma 2, we obtain the following 
Theorem 3. If the family of matrices { }, ,A B C  defined in (LFNDDE) 

satisties the assumptions (C1) and 

( 2C′′ ) ( ) ( )1
1

1sup
2z I zJ F zGρ −

≤
 − + <  , 
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where the matrices F, G and J are defined in Lemma 2, then the system (1) is 
asymptotically stable for all values of the delay τ . 

Remark 2. Note that Theorem 3 remains valid if the condition for ( 2C′′ ) is re-
placed by 

( 2C′′′ ) ( ) ( )1
1

1sup
2z I zJ F zG−

≤ − + < . 

In the following, we give other sufficient conditions ensuring asymptotic sta-
bility. For this purpose, we need the following lemma whose proof can be found, 
for example, in [26]. 

Lemma 3. For , 0n nB C τ×∈ ≥ , and ( ) 0Re s ≥ , 

( ) ( ) ( )2 2e s
h kB B Bτµ ρ ρ− ≤ + ,  

where ( ) ( )* *1 ,
2 2h k

iB B B B B B= + = −  and 2 1i = − . 

Theorem 4. If the family of matrices { }, ,A B C  defined in (LFNDDE) satis-
fies the following conditions  

(H1) ( )( )1 1,C A Bα+ − + <  

(H2) ( ) ( ) ( )
( )

( )( )

2 2
2 2

1
0,

1 1h k

CA CB A AB BA B
A B B

C A B

α
µ ρ ρ

α

 + + − + + + + + + <
 − + − + 

  

where hB  and kB  are defined in Lemma 3, then system (1) is asymptotically 
stable for all values of the delay τ . 

Proof. First, we show that the characteristic equation (4) has no roots on the 
closed right half plane. Let s with ( ) 0Re s ≥  and  
( ) ( )( )( )e 1 es sR s I C A Bτ τα− −= − + − + . Since  

( )( )
( )( ) ( )( )

e 1 e

e 1 e 1 1

s s

s s

C A B

C A B C A B

τ τ

τ τ

ρ α

α α

− −

− −

 + − + 

≤ + − + ≤ + − + <
  

by condition (H1), we deduce that ( )R s  is nonsingular for all s with ( ) 0Re s ≥  
and  

( )
( )( )

1 1 .
1 1

R s
C A Bα

− ≤
 − + − + 

                (9) 

Let 

( )( )( ) ( ) ( ) ( )e 1 e e ,s s ss I C A B A B R s T sτ τ τα α− − −− − − + − + =  

where  

( ) ( ) ( ) ( ) ( )1, e .sT s sI M s M s R s A B τα − −= − = +  

The eigenvalues of ( )T s  and ( )T s  are related by  

( ) ( ) , 1, , .j jT s s M s j nλ αλ= − =                   (10) 

Using the formula ( ) ( ) ( )( )1 1R s I R s I R s− −= + − , the inequality (9), the 
properties of the logarithmic norm mentioned at the end of Section 2, and 
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Lemma 3, we obtain for all s with ( ) 0Re s ≥  

( )( ) ( ) ( )( )( )( )
( ) ( ) ( ) ( ) ( )( )( )

1

12 2

e e

e

s s
j j

s
h k

Re M s Re A B R s I R s A B

A B B R s I R s A B

τ τ

τ

λ λ

µ ρ ρ

−− −

− −

 = + + − +    

≤ + + + − +
   

and 

( ) ( )( )( )
( ) ( )( )( )

( )
( )( )

1

1

2 2

e

e

1
.

1 1

s

s

R s I R s A B

R s I R s A B

CA CB A AB BA B

C A B

τ

τ

α

α

− −

− −

− +

≤ − +

 + + − + + + ≤
 − + − + 

 

Therefore from the condition (H2) it follows that 

( ) ( )( )0sup max 0.j jRe s Re M sλ≥ <                   (11) 

In particular, (10) and (11) show that ( )T s  is nonsingular and therefore the 
roots of the characteristic Equation (4) belong to the open left half of the com-
plex plane. The roots remain uniformly bounded away from the imaginary axis 
since otherwise for 0ε >  sufficiently small (so that   

( )
( )( )1

0
0 sup max j n j

Re s
Re M sε λ≤ ≤

≥
< < −    ), there would exist a sequence ms  of 

roots such that for large m, ( ) 0mRe s →  and 

( )( )
( )

( )( )1 1
0

max sup max .j n j m j n j
Re

Re M s Re M
ω

λ λ ω ε≤ ≤ ≤ ≤
=

  − ≤      

But then 

( )( )

( )( )
( )

( )( )

( )
( )( )

( )
( )( )

1

1 10

1
0

1
0

max

max sup max

sup max

sup max 0,

j mj n

j m jj n j nRe

j n j
Re

j n j
Re

Re M s

Re M s Re M

Re M

Re M

ω

ω

ω

λ

λ λ ω

λ ω

ε λ ω

≤ ≤

≤ ≤ ≤ ≤=

≤ ≤
=

≤ ≤
=

  

 
 = −     

 

+   

≤ + <  

 

contradicting the assumption that ( ms ) is a sequence of roots of the characteris-
tic equation. 

Now we consider the stability of system (1) in the case (ILFNDDE). From (2) 
we have 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2, , ,A A A B B B C C C≤ ≤ ≤ ≤ ≤ ≤  

where  
( ) ( ) ( ) ( ) ( ) ( )

1 , 1 , 1 ,
, , , 1, 2.k k k k k k

ij ij iji j n i j n i j n
A a B b C c k

≤ ≤ ≤ ≤ ≤ ≤
     = = = =       

Let  

( ) ( )( ) ( )1 2 21ˆ ˆ ˆ, , ,
2 MA A A A A A A A A= + ∆ = − = −          (12a) 
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 ( ) ( )( ) ( )1 2 21ˆ ˆ ˆ, , ,
2 MB B B B B B B B B= + ∆ = − = −          (12b) 

  ( ) ( )( ) ( )1 2 21ˆ ˆ ˆ, , .
2 MC C C C C C C C C= + ∆ = − = −          (12c) 

Then it is easy to see that  

, , .M M MA A B B C C∆ ≤ ∆ ≤ ∆ ≤                (13) 

The following theorem gives sufficient conditions for the stability of (ILFNDDE). 
Theorem 5. If the family of matrices { }, ,A B C  defined in (ILFNDDE) satis-

fies the following conditions 

(P1) ( )ˆ 1MC Cρ + < , 

(P2) ( )( ) ( )1 ˆ ˆdet 1 0s s I A Bα α
− − + − + ≠  

, for ( ) 0Re s ≥ , 

(P3) 
( )

( )( ) ( )( ) 11

0

ˆ ˆsup 1 1
Re s

s s I A B Kρ α α
−−

≥

 
− + − + < 

 
, 

where  

( )( ) ( )(
( )( ))

1
ˆ ˆ ˆ ˆ ˆˆ3 3

ˆ ˆ ˆ3 3 2

M M M

M M M M M

K I C C CA CB C B A

C A A B B A B B

−

= − + + + +

+ + + + + + +
 

then system (1) is asymptotically stable for all values of the delay τ . 
Proof. As in the proof of Theorems 2 and 4, we first show that the characteris-

tic Equation (4) has no roots on the closed right half plane. Let s with ( ) 0Re s ≥ . 
Since 

( ) ( )( ) ( ) ( )ˆ ˆ ˆe e 1s s
MC C C C C C Cτ τρ ρ ρ ρ− −≤ ∆ + ≤ ∆ + ≤ + <  

by condition (P1), we deduce that e sI C τ−−  is nonsingular for all s with 
( ) 0Re s ≥  and 

( ) ( )( ) 11 ˆe .s
MI C I C Cτ

−−−− ≤ − +                   (14) 

It is straightforward to verify that 

( )( )( ) ( ) ( ) ( )e 1 e e e ,s s s ss I C A B A B I C T sτ τ τ τα α− − − −− − − + − + = −  

where 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( )

1 1

1

e e ,

1 ,

s sT s s s I I C A B s

s s

τ τγ γ

γ α α

− −− −

−

= − − +

= − +
 

and that 

( ) ( ) ( )( ) ( ) 1
1 2 ,T s R s I R s sγ −= −  

where  

( ) ( ) ( )1
ˆ ˆ ,R s s s I A Bγ= − +  
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( ) ( ) ( )
( ) ( ) ( )

1
2 1

11
1

e 1

ˆ ˆe e e 1 .

s

s s s

R s R s A B B

R s I C C A B A B B

τ

τ τ τ

− −

−− − − −

 = ∆ + ∆ + − 

 + − + + ∆ + ∆ + − 

 

The condition (P2) says that ( )1R s  is nonsingular. From (12), (13) and (14) we 
obtain 

( ) ( ) ( )( ) 11
2 1

ˆˆ ˆ3 2 ,M M M MR s R s A B B I C C R
−

−  ≤ + + + − +  
 

where 

( ) ( )( )ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ3 3 3 .M M M M M MR CA CB C B A C A A B B= + + + + + + +  

It follows from the condition (P3) that ( )( )2 1R sρ <  and hence ( )2I R s−
and ( )T s  are nonsingular. Thus, the roots of the characteristic equation (4) 
belong to the open left half of the complex plane. The proof that the roots re-
main bounded away from the imaginary axis is a simple repetition of the proof 
of Theorem 2. 

4. Numerical Examples 

Example 1. Consider a system (LFNDDE) with 0.97α =  and the matrices 
10.00 0.27 0.52
0.59 10.00 0.58 ,
0.45 0.09 10.00

0.21 0.29 0.41 0.03 0.01 0.02
0.32 0.81 0.17 , 0.01 0.02 0.01 .
0.40 0.62 0.61 0.00 0.02 0.01

A

B C

− 
 = − 
 − 
   
   = =   
   
   

 

A simple calculation shows that 

( )( )1 0.4 1,C A Bα+ − + = <  

( ) ( ) ( )
( )

( )( )

2 2
2 2

1

1 1

0.41 0.

h k

CA CB A AB BA B
A B B

C A B

α
µ ρ ρ

α

 + + − + + + + + +
 − + − + 

= − <

 

We deduce form Theorem 4 that the system is asymptotically stable. 
Example 2. Consider a system (ILFNDDE) with 0.5α =  and the matrices 

( ) ( )1 21.2 0 0.8 0
, ,

0 1.3 0 0.7
A A

− −   
= =   − −   

 

( ) ( )1 20 0.6 0 1.4
, ,

0 0 0 0
B B   

= =   
   

 

( ) ( )1 20.1 0 0.2 0
, .

0 0.1 0 0.3
C C   

= =   
   

 

Then  

1 0 0.2 0 0 1 0 0.4ˆ ˆ, , , ,
0 1 0 0.3 0 0 0 0M MA A B B
−       

= = = =       −       
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0.15 0 0.05 0ˆ , .
0 0.2 0 0.1MC C   

= =   
   

 

We verify that 
• The eigenvalues of ˆ

MC C+  are equal to 0.2 and 0.3. Hence, the condition 
(P1) is satisfied. 

• The equation ( )2 ˆ ˆdet 0
1

s I A B
s
 − + = + 

 has the unique solution 1 3s = − . 

Hence, the condition (P2) is satisfied. So that ( )
12 ˆ ˆ

1
s I A B

s

−
 − + + 

 exists and 

( )

2

1
1 1

2 3 1 3 1ˆ ˆ
1 10

3 1

s s
s s sI A B

s s
s

−

 + +
 

+ +   − + =   +  +  + 

, 

( )
1 1 12 ˆ ˆ

0 11
s I A B

s

−   − + =   +   
,  

where ( )
12 ˆ ˆ

1
s I A B

s

−
 − + + 

 is a matrix formed by taking maximum magnitude 

of each element of ( )
12 ˆ ˆ

1
s I A B

s

−
 − + + 

 for ( ) 0Re s ≥ . 

• For condition (P3), The matrix K is given by 

( )( ) ( )(
( )( ))

1
ˆ ˆ ˆ ˆ ˆˆ3 3

ˆ ˆ ˆ3 3 2

M M M

M M M M M

K I C C CA CB C B A

C A A B B A B B

−

= − + + + +

+ + + + + + +
 

We have  

0.2 3.2ˆ3 2
0 0.3M MA B B  

+ + =  
 

 

( )( ) 1 1.25 0ˆ
0 1.4285MI C C

−  
− + =  

 
 

0.15 0ˆ ˆ
0 0.2

CA  
=  
 

 

0 0.45ˆ ˆ3
0 0

CB  
=  
 

 

( )
0.03 0.18ˆ 3

0 0.06M MC B A  
+ =  

 
 

( )( ) 0.06 0.21ˆ ˆ3
0 0.13M M MC A A B B  

+ + + =  
 

 

So that 
0.5 4.25
0 0.85

K  
=  
 

. For ( ) 0Re s ≥  we have 
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( )
1 0.5 5.12 ˆ ˆ

0 0.851
s I A B K

s

−   − + =   +   
 

and the eigenvalues of ( )
12 ˆ ˆ

1
s I A B K

s

−
 − + + 

 are equal to 0.5 and 0.85. Hence 

( )
12 ˆ ˆ 1.

1
s I A B K

s
ρ

−  − + <  +   
 

We deduce form Theorem 5 that the system is asymptotically stable. 

5. Conclusion 

This paper is concerned with the asymptotic stability of linear fractional-order 
neutral differential delay systems described by the Caputo-Fabrizio derivative. 
The systems matrices can be constant or interval matrices. Using the Laplace 
transform, we have derived a new characteristic equation for such systems. This 
characteristic equation, though interesting in theory, involves a transcendental 
term which makes it difficult to use in practice and in particular to study the 
asymptotic stability of such systems. To overcome this difficulty, sufficient alge-
braic criteria have been given to ensure the asymptotic stability of such systems 
in the case of constant matrices (Lemma 1 and Lemma 2). We have successfully 
shown that under these algebraic criteria, asymptotic stability holds (Theorem 2 
and Theorem 3). Also, norm-based criteria have been given to ensure the 
asymptotic stability. In particular, in case of constant matrices, Theorem 4 in-
volves easily verifiable criteria based only on matrix norm computations. Finally, 
sufficient conditions are derived to ensure the asymptotic stability of such sys-
tems in the case of interval matrices. We have shown that this system is asymp-
totically stable for any delay parameter (Theorem 5). The effectiveness of the 
theoretical results has been illustrated by numerical examples.  
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