
Advances in Pure Mathematics, 2020, 10, 658-684 
https://www.scirp.org/journal/apm 

ISSN Online: 2160-0384 
ISSN Print: 2160-0368 

 

DOI: 10.4236/apm.2020.1011041  Nov. 27, 2020 658 Advances in Pure Mathematics 
 

 
 
 

The Non-Smooth Problem of Wheel Motion 

Wiesław Grzesikiewicz1, Artur Zbiciak2* 

1Institute of Vehicles, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology,  
Warsaw, Poland 
2Institute of Roads and Bridges, Faculty of Civil Engineering, Warsaw University of Technology, Warsaw, Poland 

 
 
 

Abstract 
Planar motion of a non-deformable wheel under the action of non-ideal unila-
teral constraints is considered. The mathematical description of this phenome-
non has a form of a non-smooth initial value problem. The non-smoothness of 
this problem means that its solution is determined by an absolutely conti-
nuous function having a discontinuous first derivative. For this reason, a colli-
sion problem describing abrupt changes of velocity has been formulated next to 
the equations of motion specifying the acceleration. The non-idealness of con-
straints means that the constraint reaction force includes also a component 
resulting from the friction between the wheel and the constraints. Differential 
equations specifying acceleration of the wheel making contact with the con-
straints and algebraic equations for determining the changes in the wheel’s 
velocity at the moment of collision have been formulated in the paper. The 
principal task in these formulations is to determine the reaction forces of the 
considered constraints. This task is specified by the relationships between ac-
celeration and the constraint reaction force components. In the description of 
the collision, these relations refer to the post-collision velocities and reaction 
force impulses. For determining an approximate solution of the formulated 
wheel motion problem, an original numerical method and a computer pro-
gram for wheel motion simulation have been developed. Selected results illu-
strating the changes in displacements and velocity have been presented. 
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1. Introduction 

In the classical (Newtonian) problem of the motion of a mechanical system with 
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N degrees of freedom, we find—within a fixed time interval—the solution to the 
differential equation, 

( ) [ ), , , 0, endX f t X X t t= ∈  ,                 (1a) 

satisfying the initial conditions, 

( ) ( )o o0 , 0X X X V= = .                   (1a) 

In the initial problem so formulated, it is assumed that the function 
3: Nf R R→  is continuous and that it satisfies the Lipschitz condition for the 

second and third arguments. Then, there exists a conclusive solution describing 
the motion of the system and the function X is continuous and double differen-
tiable, that is, [ )( )2 0, , N

endX C t R∈ . 
Non-smoothness of the problem of motion implies that the function f is 

discontinuous or non-differentiable with respect to its second or third argu-
ment. A problem of this kind applies, for instance, to mechanical systems with 
unilateral constraints or with dry friction forces. In the monograph [1] where a 
system with unilateral constraints is analysed it is demonstrated that the solu-
tion to the problem exists within the class of absolutely continuous functions 

[ )( )o , , N
ab endX C t t R∈ . This means that the derivative X  is discontinuous, 

and, an additional task specifying discontinuous changes in velocity needs to be 
formulated. 

In the further considered non-smooth wheel motion problem, we investigate 
non-ideal unilateral constraints. The said non-idealness implies that the reaction 
force of constraints is combined with the dry friction force perpendicular to the 
reaction force. A hypothesis of this kind was put forward at the close of the 19th 
century by Painlevé [2] [3]. The contemporary analysis of this problem is based 
on the fundamentals of the non-smooth analysis presented in works by Jean, 
Moreau and Panagiotopoulos [4] [5] [6] [7] [8], and in works by the authors of 
this paper on machine and vehicle modelling, for example [9] [10] [11]. One 
should also mention contemporary studies [12] [13] [14] in which a singular 
problem known as the Painlevé paradox, widely discussed at the beginning of 
the 20th century by Prandtl, Hamel, Klein and Mises [2] is considered. 

In relation to the above-mentioned studies, in this study we consider a specific 
method of description of motion with non-ideal unilateral constraints, suited for 
analysing a relatively simple problem relating to planar motion of a rigid wheel. 
The problem defined in this way fully illustrates the non-smooth issues of unila-
teral constraints while allowing leaving out a situation in which the Painlevé pa-
radox occurs. 

In addition to formulating the motion problem, we propose a method for de-
termining the solution to this problem and present the results of wheel motion 
simulations. 

2. Geometric and Kinematic Characteristics of the System 

We consider a non-deformable wheel whose motion in the gravitational field is 

https://doi.org/10.4236/apm.2020.1011041


W. Grzesikiewicz, A. Zbiciak 
 

 

DOI: 10.4236/apm.2020.1011041 660 Advances in Pure Mathematics 
 

constrained by non-deformable planes with rough surfaces. Figure 1 is an illu-
stration of the analysed system, with three coordinates describing the motion of 
the wheel, that is: ( ),x y —the coordinates of the wheel’s centre point, S and ϕ
—the rotation angle of the wheel. 

The motion constraints in Figure 1 are shown by the bold line representing 
the boundary of the area of the admissible positions of the wheel on the plane 

o oOx y . Figure 1 shows also the main dimensions of the boundary line and of 
the wheel, i.e. , ,r h l , given that we are considering the case, when r h>  and 
l r> . The gravitational field vector g is also marked. 

It follows from the preliminary analysis of Figure 1 that the constraints under 
consideration can be specified by the area of the admissible positions of the cen-
tre point of the wheel, since the third coordinate, i.e. the wheel rotation angle 
ϕ , is not constrained. 

Based on the geometrical analysis of Figure 1 we determine the description of 
the said constraint in the form of the relation 

( ) ( )( ) [ )2, 0, endx t y t R t t∈Ω ⊂ ∀ ∈ ,               (2) 

where the set Ω , specifying the area of the admissible positions of the centre 
point of the wheel has the form 

( ) ( ){ }: , : ;x y x r y xΩ = ≥ ≥ Φ ,                  (3) 

if the function Φ  is specified as 

( ) ( )
1

1 1

1

for
: for

for

h r r x l
x f x l x l a

r x l a

+ ≤ ≤
Φ = < ≤ +
 > +

,               (4a) 

where 

1 :l l r= − , ( )22a r r h= − −                  (4b) 

( ) ( )22
1:f x r x l h= − − + .                   (4c) 

Figure 2 shows the set of points Ω  with the interior of the set Ω  marked 
in grey, i.e. Int Ω , and its boundary marked with the dashed line Fr Ω . The  

 

 
Figure 1. Geometrical representation of the considered wheel–constraints system. 
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descriptions of these sets have been established based on Equations (3) and (4), 
i.e. 

( ) ( ){ }Int : , : ;x y x r y xΩ = > > Φ                 (5a) 

( ) { } ( ){ }{ }Fr : , : , ,x y y h r x r y x x rΩ = ≥ + = ∪ = Φ > .       (5b) 

Furthermore, Figure 2 shows also the positions of the wheel in selected sec-
tors of the boundary Fr Ω . A more detailed graph of wheel positions in all the 
characteristic sectors of the boundary Fr Ω  are shown in Figure 3. 

For the description of a constraint to motion to be complete, apart from the 
set Ω , we need to establish also kinematic implications, which follow from the 
relation (2) and will be referred to as its consequences. In the study [3] the au-
thor considered in detail the consequences, which determine the sets of admissi-
ble velocities and admissible accelerations. 

If the wheel (cf. Figure 2) is in such a position that ( ), Int x y ∈ Ω , i.e. when the 
wheel is not in contact with the boundary of a constraint, then the above-mentioned 
kinematic constraints do not occur, and the wheel is moving freely. 

 

 
Figure 2. Graph of the set Ω  and its boundary Fr Ω  and a number of specific posi-
tions in which the wheel is in contact with the boundary of constraint. 

 

 
Figure 3. Six specific positions in which the wheel is in contact with the boundary of 
constraint. 
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When the wheel makes contact with the boundary of a constraint, i.e. 
( ), Fr x y ∈ Ω , the velocity of the centre point of the wheel ( ),x yv v  is con-
strained, as it should satisfy the relation 

( ) ( ) ( )2, , , , Fr x yv v x y R x y∈ Ω ⊂ ∈ Ω ,             (6) 

where Ω  is the mapping referred to as the first consequence of relation (2). 
The definition of the mapping is given in [1], while a detailed description of this 
mapping in the problem under consideration will be provided further in this 
paper. 

If the position and velocity of the centre point of the wheel satisfy the relation 
(6), then the acceleration of the centre point of the wheel can also be con-
strained. However, if 

( ) ( ) ( ), Fr , , Int ,x yx y v v x y∈ Ω ∈ Ω ,              (7) 

then such a constraint does not arise, as the wheel making contact with the 
boundary of constraints moves away from it. 

A limitation to the acceleration of the centre point of the wheel arises when 
the wheel makes contact with the boundary of the constraint and the velocity of 
the centre point of the wheel belongs to the boundary of the set of constraints to 
velocity Ω , i.e. when 

( ) ( ) ( ), Fr    and   , Fr ,x yx y v v x y∈ Ω ∈ Ω .            (8a) 

In such a situation the wheel making contact with the boundary of constraint 
can either roll on it or remain still. Then the acceleration of the centre point of 
the wheel ( ),x ya a  is constrained, as there should be satisfied the relation 

( ) ( ) ( )( )2, , , ,x y x ya a x y v v∈ Ω ,                 (8b) 

where ( ),x ya a  is the mapping referred to as the second consequence of the re-
lation (2), determining the set of the admissible accelerations of the centre point 
of the wheel. A definition of this mapping is provided in [1] and a detailed de-
scription referring to the wheel will be given further in Section 3. 

In the situation specified by Equation (8a), the constraints are acting, which 
means that the reaction force, which will describe further on, is arising out of 
them. During the motion of the wheel there can also occur a situation when the 
position and the velocity of the wheel are such that 

( ) ( ) ( ), Fr ,   , ,x yx y v v x y∈ Ω ∉ Ω ,                (9) 

which means that the velocity of the wheel is not admissible due to constraints, 
as it does not satisfy the condition (6). In this state, the wheel collides with rigid 
constraints. During the collision the velocity of the wheel changes sharply (ab-
ruptly) and reaches a value, which satisfies the relation (6). The formula de-
scribing the change in velocity during the collision will be presented further on 
in the paper. 

As mentioned before, the consequences Ω  and 2Ω  specify the sets of 
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admissible velocities and accelerations of the wheel making contact with the 
constraining surface (Figure 1). The principles of determining these mappings 
have been described in detail in [1] [9]. Taking into account the relatively simple 
form of the boundary of the set Ω  (Figure 2), we will determine the descrip-
tions of these mappings in the form which requires no explanation. 

3. Model of the Action of Constraints on the Wheel 

An action of a constraint on the wheel occurs when the wheel comes into con-
tact with the constraint. In this position, there can be generated a reaction force 
acting on the wheel, which we will discuss in detail further on in the paper. 

Figure 4 is an example illustration of a wheel making contact with a plane 
constraining its motion at point A. A local coordinate system Ant, whose axis 
An is perpendicular, and axis At is tangent to the boundary Fr Ω , is marked in 
the figure; also the velocity of the point A situated on the circumference of the 
wheel is shown in it. Due to the constraints to the motion of the wheel, the nor-
mal component of this velocity should satisfy the condition 

0nv ≥ .                          (10) 

The velocity for which 0nv <  is in admissible due to constraints; in this sit-
uation a collision occurs, which will be considered further on in this paper. 

If 0nv > , then the constraints do not limit the motion of the wheel, as the 
wheel moves away from the boundary. 

Figure 4(b) shows the vector of acceleration of the point A. 
If the velocity of point A is such, that 0nv = , then the constraint forces are 

acting on this acceleration 

0   for 0n na v≥ = .                      (11) 

In the above-described situation, there arises the reaction force illustrated in 
Figure 4(c). In the case of ideal constraints only contact force 0nR ≥  is acting, 
while the tangential component, 0tR =  is not generated. 

For non-ideal constraints a hypothesis is assumed according to which the 
tangential component maps the force of friction between the wheel and the 
boundary of constraints. The non-ideal constraints model so specified is de-
scribed by relations, which determine the relationship between the reaction force 
R and the acceleration and velocity of the point A belonging to the wheel: 

 

 
Figure 4. Velocity, acceleration and reaction vectors acting on the wheel making contact 
with the boundary of the set Ω  at the point A. 
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- for the normal component nR  we have: 

0,   0,   0   for 0n n n n nR a a R v≥ ≥ = = ,             (12a) 

- while the tangential component tR , when 0nR > , is specified by the rela-
tions: 

,   : sign    for 0t n t tR R v vµ τ τ= = ≠ ,              (12b) 

{ }
[ ]
sign for 0

,      for 0
1, 1 for 0

t t
t n t

t

a a
R R v

a
µ τ τ

 ≠= ∈ =
− + =

,        (12c) 

where µ —the coefficient of friction between the wheel and the boundary of 
constraints; τ —the friction multiplier. 

The above relations can be illustrated with graphs; Figure 5(a) represents a 
graph of the relation (12a), while the relation (12c) is shown in Figure 5(b). 
Furthermore, the relation (12a) (Figure 5(a)) can be equivalently described by 
the relationship: 

[ ] ,  0n n nR R aρ ρ+= − > ,                  (13a) 

where [ ]+⋅  denotes such a function, that 

[ ] for 0
:

0 for 0
ξ ξ

ξ
ξ

+ ≥
=  <

.                    (13b) 

Likewise, for the relation (11c) (Figure 5(b)) we obtain 

( ) ,  0taτ τ ρ ρ= Π + > ,                   (14a) 

where the function Π  has been defined as: 

( )
for 1

:
sign for 1
ξ ξ

ξ
ξ ξ

 ≤Π =  >
.                 (14b) 

In the above-presented hypothesis on the interaction between non-deformable 
bodies in contact we have not taken into consideration the moment of forces, 
referred to as rolling resistances of the wheel. This is the moment of friction, the 
limit value of which is proportional to the contact force nR . The direction of 
this moment is opposite to the angular velocity of the wheel. In order to simplify 
the description of the reaction force acting on the wheel, and assuming that the 
value of rolling resistance is very small, we have disregarded their effect on the 
motion of the wheel. 

 

 
Figure 5. Graphs of relations (12a) and (12c). 
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Now we will consider a situation when the wheel collides with the constraints, 
that is when 0nv < . Schematic descriptions of the wheel’s velocities imme-
diately before the collision V −  and after the collision V +  are shown in Figure 
6(a) and Figure 6(b), while Figure 6(c) represents the reaction force impulses, 

nR  and tR , inducing the change in the velocity of the wheel. The friction im-
pulse tR  is determined according to the Routh’s hypothesis [3]. 

The already mentioned effect of the collision is described by a relation be-
tween the post-collision velocities V +  (Figure 6(b)) and the reaction impulses 
(Figure 6(c)). This relation is formulated in accordance with the assumed hy-
pothesis. For instance, when smooth (ideal) constraints are analyzed, the tan-
gential component, that is 0tR =  is disregarded. 

In this paper, we will present a description of the hypothesis on plastic colli-
sion, and on elastic collision or elasto-plastic collision, based on the assumption 
that the constraints are non-ideal. 

A description of the plastic collision has a form analogical to the description 
of the reaction force, as given in the formulae (12). The plastic collision is speci-
fied by the relations: 

0,  0,    0n n n nR v v R+ +≥ ≥ =  ,                 (15a) 

{ }
[ ]
sign for 0

,    
1, 1 for 0

t t
t n

t

v v
R R

v
µ τ τ

+ +

+

 ≠= ∈
− + =

  .            (15b) 

The relation (15b) has been determined based on the Routh’s hypothesis [3]. 
Graphs illustrating these relations are analogical to those shown in Figure 5 

and they can be presented in an equivalent form, analogically to the formulae 
(13) and (14). 

The description of the plastic or elastic-plastic collision is based on the New-
ton’s-Poisson’s hypothesis analyzed in [1]. According to this hypothesis the re-
sultant reaction force impulse during such a collision is specified by the formulae: 

( )1n nR Rβ∗ = +  ,                      (16a) 

t nR Rµ τ∗ ∗ ∗=  ,                       (16b) 

{ }
[ ]
sign for 0

1, 1 for 0
t t

t

v v

v
τ

+ +
∗

+

 ≠∈
− + =

,                 (16c) 

 

 
Figure 6. Velocities and impulses acting on the wheel colliding with constraints. 

https://doi.org/10.4236/apm.2020.1011041


W. Grzesikiewicz, A. Zbiciak 
 

 

DOI: 10.4236/apm.2020.1011041 666 Advances in Pure Mathematics 
 

where nR , tR —impulses described in the formulae (15); ( ]0,1β ∈ —the coeffi-
cient of restitution, whose value for the elastic collision is 1. 

4. Description of the Motion of the Wheel 

The motion of the wheel will be described in the matrix form, using generalized 
coordinates. To this end, we introduce the following designations: 

:
x

X y
ϕ

 
 =  
  

—generalized coordinates vector, 

0 0
: 0 0

0 0

m
M m

J

 
 =  
  

—wheel inertia matrix, 

0
:

0
Q mg

 
 = − 
  

—vector of the gravitational force acting on the wheel, 

3
nF R∈ —vector of the reaction force perpendicular to the boundary of the 

set Ω , 
3

tF R∈ —vector of the reaction force tangent to the boundary of the set Ω , 
3X R∈Ω ⊂ —relations describing constraining of the motion of the wheel. 

If the position of the wheel is such that Int X ∈ Ω , then the constraints do 
not act and the motion of the wheel is described as: 

M X Q= ,                         (17a) 

and if the motion of the wheel is constrained, which may occur when Fr X ∈ Ω , 
then the equation of motion should include a description of reaction forces 

n tM X Q F F= + − .                     (17b) 

In the next section of the paper we will define the method of determining the 
reaction forces. 

4.1. Determination of Reaction Forces 

In the descriptions of constraints and reaction forces presented further in the 
text we will use vector functions G and H, which to each vector X satisfying the 
relation Fr X ∈ Ω  assign a pair of vectors, namely the perpendicular vector, 

3G R∈  and the tangent vector, 3H R∈ . With these vectors we can determine 
the velocities and acceleration of the point on the wheel in contact with the 
boundary of the set Ω  (See Figure 3), 

( ) ( )T T: , :n tv G X X v H X X= =  ,               (18a) 

( ) ( ) ( ) ( )T T: , , : ,n n t ta G X X X X a H X X X Xγ γ= + = +    ,     (18b) 

where nγ  and tγ  are scalar functions. Detailed forms of the vector functions, 
G and H, and scalar functions, nγ  and tγ , will be given further on in the pa-
per. 
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Using the functions, G and nγ  one can describe the consequence Ω , ac-
cording to formula (6), determining the set of admissible velocities X , 

( ) ( ){ }3 T: : 0X X R G X XΩ = ∈ ≥  , when Fr X ∈ Ω        (19a) 

and the set of admissible velocities according to the formula (8b), 

( ) ( ) ( ){ }2 3 T, : : , 0nX X X R G X X X XγΩ = ∈ + ≥    , 

when Fr X ∈ Ω  and ( )T 0G X X =              (19b) 

If the position X and the velocity X  satisfy the relations specified in formula 
(19b), then the reaction force F occurs, whose two components nF  and tF  are 
present in the equation of motion (17b). 

We will describe the generalized reaction forces 3,n tF F R∈  on the basis of 
the relations given in formulae (12). The normal reaction force is determined by 
the formula, 

( ):nF G X λ= ,                       (20a) 

if 0λ ≥  is the multiplier of the reaction satisfying relations resulting from the 
formula (12a), that is 

( ) ( ) ( ) ( )( )T T0, , 0, , 0n nG X X X X G X X X Xλ γ λ γ≥ + ≥ + =      (20b) 

If we take into account the description of relations from the formula (11), we 
will obtain an equivalent description, 

( ) ( )( )T ,nG X X X Xλ λ ρ γ
+

 = − + 
  , when Fr X ∈ Ω  and ( )T 0G X X = , (21) 

if ρ  is any positive number. 
Likewise, according to the formulae (12b) and (12c) we determine relations 

describing the tangential reaction 3
tF R∈ , 

( )tF H X Gµ λτ=                      (22a) 

( )( )Tsign signtv H X Xτ = ≡  , when 0tv ≠           (22b) 

{ }
[ ]
sign for 0
1, 1 for 0

t t

t

a a
a

τ
 ≠∈ − + =

, when 0tv = ,            (22c) 

if the vector ta  has been described in the formulae (18b). 
In the formula (20a), we have taken into consideration the fact that the load 

exerted by the wheel on the boundary of constraints, specified by the force from 
the formula (20a), is 

: nN F G λ= =                       (23a) 

and the resulting friction force limit (the Coulomb’s limit) is equal to 

o :T N Gµ µ λ= = .                     (23b) 

The relation between the multiplier τ  and the acceleration X  given with 
the formula (22c) can be presented, analogically to the relation (21), in the form: 
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( ) ( )( )( )T ,tH X X X Xτ τ ρ γ= Π + +  , when 0λ > ,       (23c) 

where ρ  is any positive number. 

4.2. Wheel Acceleration 

The equations of motion represent a set of relations based on which the wheel 
acceleration vector ( ) 3X t R∈  can be determined at any instant of time 

[ )0, endt t∈ , provided that constraints of motion are satisfied, that is when 
( )X t ∈Ω  and ( ) ( )( )X t X t∈ Ω  . 

If the wheel is in contact with the boundary of constraint, that is when 

( ) Fr X t ∈ Ω  and ( ) ( )( )Fr X t X t∈ Ω  ,            (24) 

then the constraint reaction forces considered in the previous section are acting 
on the wheel. 

On this basis we formulate a set of relations from which the value of the acce-
leration vector can be unequivocally determined. The set includes: 

- the equation of motion (17b), which includes the expressions (20a) and 
(22a) 

M X Q G H Gλ µ λτ= + −                   (25a) 

- the relations specifying the multipliers according to the formulae (21) and 
(24) 

( )T
1 1, 0nG Xλ λ ρ γ ρ

+
 = − + > 

               (25b) 

( )
( )( )

T T

T T
2 2

sign for 0

, 0 for 0t

H X H X

H X H X
τ

τ ρ γ ρ

 ≠= 
Π + + > =

 

 

,        (25c) 

however, in the formulae (25) the arguments of the mappings G, H, nγ  and tγ  
have not been specified. 

Equation (25) determine at any moment in time [ )0, endt t∈ , the value of the 
acceleration vector ( )X t  and the values of multipliers ( )tλ  and ( )tτ , which 
specify the values of the reaction forces. 

The relations (25) comprise the mappings G, H, nγ  and tγ , the descriptions 
of which will be given in the next section. 

4.3. Description of Additional Mappings 

The mappings G, H, nγ  and tγ  given in the previous section of the paper 
serve as a description of the geometrical features of the boundary of constraints 
Fr Ω , with the use of generalized coordinates. As mentioned before, the vector 
mapping G determines, in each point of the boundary Fr X ∈ Ω , the vector 
( ) 3G X R∈ , which is perpendicular to to the boundary of constraints, and the 

mapping H determines the vector ( )H X , which is tangent to it. The scalar 
mappings, nγ  and tγ  serve to determine the effect of the curvature of the 
boundary and of the velocity of the wheel on its acceleration. 
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The considered boundary of the set is presented in Figure 2. It is composed of 
four segments, including two singular points A and B (cf. Figure 7). 

The description of the mappings under consideration depends on the curve 
segment and follows from the formulae (3) and (4). Hence, we obtain: 

- Segment I, ( ){ }IFr : , : ,x y x r y r hΩ = = > +  

I I
I I

1 0
: 0 , : 1 , 0

0
n tG H

r
γ γ

   
   = = = =   
   −   

              (26a) 

- Segment II, ( ){ }II
1Fr : , : ,x y r x l y r hΩ = < ≤ = +  

II II
II II

0 1
: 1 , : 0 , 0

0
n tG H

r
γ γ

   
   = = = =   
      

             (26b) 

- Segment III, ( ) ( ){ }III
1 1Fr : , : ,x y l x l a y f xΩ = < < + =  

( )
( ) ( ) ( )III 2 III

III III

1
: 1 , : , : , :

0
n t

f x
G H f x f x x f x xy

r
γ γ

′−   
   ′ ′′ ′′= = = =   
     

    (26c) 

- Segment IV, ( ){ }IV
1Fr : , : ,x y x l a y rΩ = > + =  

IV IV
IV IV

0 1
: 1 , : 0 , 0

0
n tG H

r
γ γ

   
   = = = =   
      

            (26d) 

In the formulae (26) we have used designations marked in Figure 2 and asso-
ciated with the function f, described in the formula (4c). Thus, we obtain: 

( )
( )

( )
( )

1
22

1

2 1 1

3 222
1

:

   for  
:

x lf x
r x l

l x l a
rf x

r x l

− ′ = − 
− −  < ≤ +

′′ = −
 − −   

         (26e) 

The singular positions of the wheel are specified by the wheel centre point 
coordinates, i.e. 

 

 
Figure 7. The boundary of the set Fr Ω  with marked segments and singular points. 
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point : ,A x r y r h= = +                   (27a) 

1point : ,B x l a y r= + = .                 (27b) 

In these positions the wheel comes into contact with the constraints at two 
points (Figure 8).Thus, the resulting descriptions of the sets of admissible veloc-
ities are as follows: 

( ) { }3 T T
I II: : 0, 0AX X R G X G XΩ = ∈ ≥ ≥               (28a) 

( ) { }3 T T
II III: : 0, 0BX X R G X G XΩ = ∈ ≥ ≥   ,           (28b) 

where designations from formulae (26) have been used. 
As mentioned before, a constraint to the wheel’s acceleration and a reaction 

force arise when the velocity vector is situated at the boundary of the set Ω , 
which has been described in the formulae (19) and (20). 

On this basis, we specify the relations for the normal component of the reac-
tion force in the position A (27a) 

T T
I I I II 1

T T
II II I II 2

T T
I I II II I II

if 0, 0 for point 
: if 0, 0 for point 

if 0, 0 for both points

A
n

G G X G X A
F G G X G X A

G G G X G X

λ
λ
λ λ

 = >


= > =
 + = =

 

 

 

.     (29) 

Values of the multipliers Iλ  and IIλ  are connected with the vector of acce-
leration X  by the relation described in the formula (25b). 

The force of reaction B
nF , acting on the wheel in position B (27b) is calcu-

lated analogically to the formula (29), i.e. 
T T

III III III IV 1
T T

IV IV III IV 2
T T

III III IV IV III IV

if 0, 0 for point 
: if 0, 0 for point 

if 0, 0 for both points

B
n

G G X G X B
F G G X G X B

G G G X G X

λ
λ
λ λ

 = >


= > =
 + = =

 

 

 

   (30) 

The form of the description of the relations between the multipliers λ  and 
the vector of acceleration X  has been specified by the formula (25b). 

The tangential component of the reaction force tF  will be specified based on  
 

 
Figure 8. The singular positions in which the wheel makes contact with the constraints at 
two points. 
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the relation (22), but after taking into account the proper indices of the vectors 
G, H and of the multipliers λ , τ . 

5. Description of the Collision 

In the situation specified by the relation (9), the velocity of the wheel is inad-
missible due to constraints, which results in a collision. As a result, there occurs 
an impulse reaction of the constraints, adjusting the wheel’s velocity to the limi-
tations. In section 3 we have presented a local description of the collision model, 
in the form of a relation specifying the association between the impulse reaction 
and the abrupt change in the velocity of the wheel. We will now present the rela-
tions described in that section using the generalized coordinates. 

Description of a plastic collision includes also the momentum balance equa-
tion and the relations specifying the impulse reaction forces. The general form of 
this description is analogical to the equations of motion (17) and (25), i.e. 

n tM X M X F F+ −− = −                        (31) 

,n tF G F G Hλ µ λτ= =                      (32) 

and the description of the relations from the formulae (15) now has a form ana-
logical to (25b) and (25c), i.e. 

T
1G Xλ λ ρ

++ = − 
                        (33a) 

( )T
2 H Xτ τ ρ += Π +  ,                    (33b) 

where the force impulses acting on the wheel have been marked with the index 
“~”. 

When the collision of the wheel with the constraints occurs in the singular 
position of the wheel specified by point A or B (according to the formulae (27)), 
then two reaction forces are acting on the wheel, i.e. 

I I II IInF G Gλ λ= +   for point A,               (34a) 

III III IV IVnF G Gλ λ= +   for point B.              (34b) 

The relations specifying the multipliers, λ  and τ , from the formulae (34), 
have the same form as in the formulae (33) but after taking into account the 
suitable indices. 

As mentioned before, the relations from the formulae (32) and (33) specify an 
abrupt change in the velocity of the wheel :V V V+ −∆ = − , and the reaction force 
impulses, nF  and tF , arising during the plastic collision. 

If an elastic or elasto-plastic collision is considered, then—according to the 
Newton’s and Poisson’s hypothesis specified by the formulae (16)—we need to 
take into account an additional collision phase (restitution) described by the eq-
uations 

n tM X M X F F∗ + ∗ ∗− = −    ,                   (35a) 

where 3X R∗ ∈ —the velocity vector after the elastic or elasto-plastic collision; 
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nF ∗ , tF ∗ —the reaction force impulses generated in this phase, specified by the 
relations: 

nF Gλ∗ ∗= , λ βλ∗ =  ,                   (35b) 

tF G Hµ λ τ∗ ∗ ∗= , ( )T
2 H Xτ τ ρ∗ ∗ ∗= Π +  .           (35c) 

In the above relations, the value of the multiplier λ∗  is known, which follows 
from the formula (35c), where ( ]0,1β ∈  is the coefficient of restitution, the 
value of which for the elastic collision is 1. 

Relations (35) determine the velocity vector after the collision X ∗
  and the 

multiplier τ ∗ , specifying the effect of friction on this collision phase. 

6. Wheel Motion Simulation 
6.1. Description of the Method of Solving the Initial Problem 

The non-smooth problem of a mechanical system motion was closely analyzed 
in the monograph [1], where perfect unilateral constraints were considered. It 
follows from these considerations that the motion of such system is described by 
an absolutely continuous function. A staged method of determining such a func-
tion was also specified in this work. We will use this method to determine the 
function describing the motion of the wheel. 

The descriptions of the relations considered in sections 4 and 5, specifying the 
motion of the wheel will be now presented in a synthetic form by means of two 
equations, 

( ) ( ), ,    if  ,X X X X X X= ∈Ω ∈ Ω                 (36) 

( ) ( ), ,    if  Fr ,X X X X X X+ − −= ∈ Ω ∉ Ω    ,          (37) 

where 3X R∈ —the vector of the generalized coordinates, 6 3: R R→ —the 
mapping determining the vector of acceleration, 3 3: R R→ —the mapping 
determining an abrupt change in velocity in the moments of collisions. 

The mapping   is specified in the implicit form by means of the relation 
(25). In this case, determining the value of the mapping   comes down to de-
termining the solution of the relation (25), i.e. to calculating the values of mul-
tipliers λ  and τ , and of the vector X . 

The mapping   is also implicit and its values are determined by the solu-
tion to relations (32)-(35), specified by the multipliers λ  and τ  and the vec-
tor X +

 . 
At every stage of the above-mentioned method the solution of the initial 

problem specified by Equation (36) is determined. The continuous and differen-
tiable function X so established, describes the motion of the wheel up to the 
moment when the collision specified by the conditions from the formula (37) 
occurs. Then an abrupt change in the wheel’s velocity described by the mapping 
  takes place. In this situation the considered stage of the solution comes to an 
end. 

This staged method of finding the initial problem solution has served as a ba-
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sis for developing calculation software for wheel motion simulation. The pro-
gram includes algorithms for determining the values of implicit mappings   
and  , in all segments of the set Fr Ω  described by the formulae (26) and at 
all singular points (27) designated in Figure 7. It needs to be added, that in order 
to determine the values of the implicit mapping  , it is necessary to solve a 
system of algebraic equations containing five unknowns: 3X R∈ , λ  and τ . 
The values of the implicit mapping   are determined in the same way. 

6.2. Detailed form of the Equations of Motion and Reaction 

To start with, we will consider the detailed form of equations of motion and 
reaction, when the wheel makes contact with the boundary of constraints in 
sector IV (See Figure 7). In Figure 3 the wheel with index 6 illustrates such a 
position. In the considered situation, the conditions specified in the formula 
(24), that is 1x l a> + , y r=  and 0y =  are satisfied, where a, 1l —dimensions 
described in the formula (4b). 

The equations of motion (25) in expanded form, and after taking into account 
the formulae (26d), for sector IV, have the form: 

mx µλτ= −                          (38) 

m y mg λ= − +                        (39) 

J rϕ µλ τ= −                         (40) 

[ ] , 0yλ λ ρ ρ+= − >                     (41) 

( )
( )( )

sign if 0
, 0 if 0

x r x r
x r x r
ϕ ϕ

τ
τ ρ ϕ ρ ϕ

+ + ≠= Π + + > + =

  

  

.           (42) 

The above system of equations describes the accelerations of the wheel ( x , 
y , ϕ ), and the multipliers of reactions ( λ , τ ). This is an implicit form of the 

mapping  , when the wheel is in contact with the boundary of sector IV. De-
termining the solution to the above system of equations is relatively simple: 

- if the wheel is slipping, i.e. 0x rϕ+ ≠ , then the value τ  is determined di-
rectly from Equation (421); 

- if the wheel is rolling without slip, then from Equations (422) and (38) and 
(39) we obtain that 0τ = ; 

- from the relatively simple system of Equations (39) and (41) we obtain 
mgλ = ; 

- having determined the values, λ  and τ , from Equations (38), (39) and 
(40), we can determine acceleration values, and in particular we have 0y = . 

The above-described Equations (38)-(42) apply to motion of the wheel mov-
ing (rolling) on the boundary. Now, we will deal with describing a collision of 
the wheel with the boundary in sector IV.A general description of the collision 
has been given in the formulae (32), (33) and (35). In the considered situation 
the expanded description of the collision, assuming the plastic collision hypo-
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thesis, has the form: 

mx mx µλτ+ −− = − 

                       (43) 

m y m y λ+ −− =                          (44) 

J J rϕ ϕ µλ τ+ −− = − 

                       (45) 

, 0xλ λ ρ ρ
++ = − > 

 

                    (46) 

( ) , 0tvτ τ ρ ρ+= Π + >                     (47) 

:tv x rϕ+ + += +  .                       (48) 

This is a system of equations in regard to x+
 , y+

 , λ , τ . The solution is 
determined in the following steps: 

- from Equations (44) and (46) we can directly determine m yλ −= −

 ; 

- according to the formula (48) and Equations (43) and (44) we obtain the re-
lationship, 

21: ; :t t t
rv v v x r

m J
µλτ ϕ+ − − − − 

= − + = + 
 



 ,            (49) 

and next, from Equation (47) we determine the values, τ  and tv+ ; 

- having determined the values, λ  and τ  we calculate the post-collision 
velocities, x+

  and y+
 . 

The solution determined specifies the effect of the plastic collision. When 
considering an elastic or elasto-plastic collision it is necessary to take into ac-
count the change in velocity in the second phase of the collision, described in the 
formulae (35). In the example under consideration, this description, with respect 
to the coefficient of restitution ( ]0,1β ∈ , has the form: 

λ βλ∗ =  ,                          (50) 

mx mx µλ τ∗ + ∗ ∗= − 

  ,                     (51) 

m y m y λ∗ + ∗= +   ,                       (52) 

J J rϕ ϕ µλ τ∗ + ∗ ∗= − 

                       (53) 

( ) , 0tvτ τ ρ ρ∗ ∗ ∗= Π + > ,                   (54) 

21:t t
rv x r v

m J
ϕ µλ τ∗ ∗ ∗ + ∗ ∗ 

= + = − + 
 



 .              (55) 

The effect of the collision is described by the velocities x∗ , y∗
 , ϕ∗

  and mul-
tipliers λ∗

  and τ ∗ . The value λ∗
  is specified by the formula (50), while the 

values τ ∗  and tv+  are obtained directly from the formulae (54) and (55). 
During the motion of the wheel in sector III (cf. Figure 6), the wheel makes 

contact only with the corner of the curb, which is illustrated in Figure 3 (the 
wheel with index 4). In this case the centre point of the wheel takes the position 
specified by the conditions (see formula (26c)), 
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1 1l x l a≤ < + , ( )y f x=                   (56a) 

and the velocity of the wheel is such, that 

( ): 0nv y f x x′= − =  .                    (56b) 

The condition (56b) indicates, that the normal component of the velocity of 
the point on the wheel (Figure 3 and formula (10)) making contact with the 
constraints equals zero, i.e. the wheel does not get separated from the curb. 

In the formulae (26c) we included definitions of the vectors G and H and ex-
pressions nγ  and tγ . To simplify further descriptions we will omit indices 
“III” present next to the enumerated designations. 

For the wheel status so specified (formulae (56a) and (56b)), we formulate an 
expanded description of the wheel’s acceleration and constraint reactions ac-
cording to the formulae (25): 

( )mx f x Gλ µ λτ′= − − ,                   (57) 

( )m y mg G f xλ µ λτ′= − + − ,                (58) 

J G rϕ µ λ τ= − ,                      (59) 

[ ] , 0naλ λ ρ ρ+= − > ,                    (60) 

( )
sign if 0

, 0 if 0
t t

t t

v v
a v

τ
τ ρ ρ

≠
= Π + > =

,               (61) 

where the following designations have been introduced: 

( ) ( ) T
: 1 0G x f x′= −   , (according to the formula (26c))    (62) 

G λ —the contact force exerted by the wheel on the curb, 

tv —the tangential component of the velocity of the point on the wheel in 
contact with the curb, 

( ):tv x f x y rϕ′= + +                        (63) 

na —the normal component of the acceleration of the point on the wheel in 
contact with the curb 

( ) ( ) 2:na y f x x f x x′ ′′= − +   ,                 (64a) 

from the condition of constraints (11) it follows that the value of this accelera-
tion may be greater than or equal to zero. If in the formula (64a) we include Eq-
uations (57) and (58), we will obtain: 

( )( ) ( )2 21: , :na G g f x x
m

λ γ γ ′′= + − =              (64b) 

ta —the tangential component of the acceleration of the point on the wheel n 
contact with the curb, 

( ) ( ):ta x f x y r f x x yϕ′ ′′= + + +    ,               (65a) 

if in the above equation we include Equations (57), (58) and (59), and make 
suitable transformations, we will obtain: 
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( ) ( )
2

21:t
ra G G f x g f x x y

m J
µ λτ

 
′ ′′= − + + + 

 
  .       (65b) 

To determine the value of multiplier λ  we need to substitute the expression 

na  into Equation (60) according to the formula (64b); from this we can directly 
calculate the value λ . 

When the value of the velocity of the wheel’s slip on the curb tv  (according 
to the formula (63)) is different from zero, then from the formula (611) we ob-
tain the value of the multiplier sign tvτ = . If 0tv = , then we should substitute 
the expression ta  into Equation (612) according to the formula (65b); in this 
way we obtain the value of the multiplier τ . 

Having determined the values of the multipliers λ  and τ  we calculate the 
values of the accelerations x , y  and ϕ  according to the formulae (57), (58) 
and (59). 

The collision of the wheel with the curb occurs when the velocity nv  accord-
ing to the formula (56b) is negative, i.e. 0nv <  (See Figure 3(a)). The effect of 
this phenomenon, on the assumption of the plastic collision hypothesis, is de-
scribed by the equations: 

( )mx mx f x Gλ µ λτ+ − ′− = − − 

                  (66) 

( )m y m y f x Gλ µ λτ+ − ′− = − 

  ,                (67) 

J J G rϕ ϕ µ λ τ+ −− = − 

  ,                   (68) 

, 0nvλ λ ρ ρ
++ = − > 

  ,                   (69) 

( ) , 0tvτ τ ρ ρ+= Π + > .                   (70) 

Solving these equations in regard to x+
 , y+

 , ϕ+
 , λ , τ  determines the 

velocity of the wheel after the plastic collision and the reaction force impulses. 
To determine the solution, we establish the expressions specifying nv+  and tv+ , 
depending on the multipliers, λ  and τ . 

( ) 21:n nv y f x x v G
m

λ+ + + −′= − = + 

                 (71) 

( )
2

21:t t
rv x f x y r v G G

m J
ϕ µ λτ+ + + + −  

′= − + = + + 
 



         (72) 

Having included the formula (71) in Equation (69), we obtain the value of 
multiplier λ . Next, from Equation (70) and from the relationship (72) we de-
termine the values, τ  and tv+ . Having determined the multipliers we calculate 
the values of velocities looked for after the plastic collision, x+

 , y+
  and ϕ+

 . 
If we consider an elastic or elasto-plastic collision, we should consider a de-

scription of the second phase of collision (35), analogical to the formulae 
(50)-(55), 

λ βλ∗ =  , ( ]0,1β ∈                      (73) 
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( )mx mx f x Gλ µ λ τ∗ + ∗ ∗ ∗′= − − 

                  (74) 

( )m y m y f x Gµ λ τ∗ + ∗ ∗′= − 

  ,                 (75) 

J J G rϕ ϕ µ λ τ∗ + ∗ ∗= − 

  ,                   (76) 

( ) , 0tvτ τ ρ ρ∗ ∗ ∗= Π + > ,                   (77) 

2
21:t t

rv v G G
m J

µ λ τ∗ + ∗ ∗ 
= + + 

 
 .               (78) 

Based on Equations (77) and (78) we can directly determine the value of the 
multiplier τ ∗ , and subsequently the values of the wheel’s velocity. 

If the wheel assumes the singular position specified by point B (Figure 8), 
then the description of the action on the wheel becomes more complex, as the 
wheel makes contact with constraints at two points B1 and B2 marked in Figure 
8. The position of the wheel is determined by the coordinates of the wheel’s cen-
tre point, 1x l a= + , y r= , while the description of the set of the admissible 
velocities of the wheel at this position is as follows: 

( ) { }1: , : 0, 0B BX x y R f x y y′Ω = ∈ − + ≥ ≥     ,           (79) 

where Bf ′—the value of the derivative of the function f for 1x l a= +  

2 2
:B

af
r a

′ = −
−

, a r<                     (80) 

Figure 9 shows a schematic graph of the set Ω . 
It is clear from an analysis of Figure 9, that in the considered position the 

constraints are acting, that is they are limiting accelerations, only when the ve-
locity vector belongs to the boundary of the set Ω , which is written in the 
formula (8a). Figure 9 shows three examples of velocity vectors [ ]T: ,V x y=    
situated on the boundary. For the vectors 1V  and 2V , only one constraint is 
acting, while for the vector 0V  both constraints are acting. 

The action of individual constraints has been described before, and now we 
will deal with the situation specified by velocity 0V  that is, situation when 

0By f x′− =   and 0y = . It follows from these conditions, that the translational  
 

 
Figure 9. Graph of the set Ω  in the singular point B (cf. Figure 7). 
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velocity equals zero, but we assume that the wheel is rotating, i.e. 0ϕ ≠ . In this 
situation the wheel is slipping on the constraints. 

In the state described above the acceleration of the wheel is constrained, and 
the set of admissible accelerations has the form 

( ) { }2 1, : , : 0, 0B B BX V x y R f x y y′Ω = ∈ − + ≥ ≥     .          (81) 

The equations specifying the acceleration and reaction forces now have the 
form: 

1 1 1 2 2Bmx f Gλ µ λ τ µλ τ′= − − −                 (82) 

1 1 1 2Bm y mg G fλ µ λ τ λ′= − + − + ,               (83) 

1 1 2 2J G r rϕ µ λ τ µ λ τ= − − ,                  (84) 

1 1 1 , 0naλ λ ρ ρ
+

 = − >  ,                   (85) 

2 2 2 , 0naλ λ ρ ρ
+

 = − >  ,                  (86) 

where the reaction multipliers acting on the wheel at points iB  showed in Fig-
ure 7 are marked as iλ , iτ , for { }1,2i∈ ; and 1

na , 2
na —normal components 

of the acceleration of the wheel at points 1B  and 2B . 

1 :n
Ba y f x′= −  , 2 :na y=                      (87) 

Since we have assumed that 0ϕ ≠ , then 

1 2 signτ τ ϕ= =                         (88) 

On the basis of the above equations we should determine the values x , y , 
ϕ , and 1λ  and 2λ . To this end, from the formulae (87) and Equations (82), 
(83) and (84) we establish the expressions: 

( )2
1 1 2 2

1 1n
Ba g G f

m
λ µ τ λ ′= − + + +  .             (89) 

( )2 1 1 2
1 1n

Ba g f G
m

µ τ λ λ ′= − + − +  .              (90) 

Upon substituting the expression (89) into the formula (85) and assuming 
2: m Gρ = , we obtain 

2
1 2 2G mgλ γ λ

+−  = −  , if 2 2: 1Bfγ µ τ′= + .           (91) 

Likewise, from Equations (90) and (86), when : mρ = , we obtain 

2 1 1mgλ γ λ
+

 = −  , if 1 1: 1 Bf Gγ µ τ′= − .            (92) 

The solution of Equations (91) and (92) determines the values of multipliers 

1λ  and 2λ , while the values of accelerations x , y , ϕ  are calculated from 
the formulae (82), (83) and (84) after taking consideration (88). 

It follows from an analysis of Equations (91) and (92) that, if 

0ϕ < , i.e. 1 2 1τ τ= = − , then                (93a) 

1 0λ = , 2 mgλ = ,                   (93b) 
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that is an obvious result is obtained—the wheel moves away from the curb, that 

is x gµ= − , 0y = , 
1 mgr
J

ϕ µ= − . 

If 0ϕ > , i.e. 1 2 1τ τ= = ,                  (94a) 

then two solutions are possible: 

1 0λ > , 2 0λ > , when 2
1G γ> ,              (94b) 

1 2

mg
G

λ = , 2 0λ = , when 2
1G γ≤ .             (94c) 

In the case specified by the formula (94b), the centre point of the wheel is not 
changing position 0x y= =  , but the wheel is rotating 0ϕ > , 0ϕ <  (spin-
ning); while in the second case (94c) the wheel is climbing the curb, because 

0x < , 0y > . 
In the considered position of the wheel, a collision with the curb occurs, when 

the velocities x−


 and y−
  fail to satisfy the conditions given in the formula 

(79), that is they do not belong to the set ( )BXΩ  whose graph is shown in 
Figure 8. The resulting plastic collision is described by the following relations, 
given in Section 5, in the formulae (32)-(34): 

1 1 1 2 2Bmx mx f Gλ µ λ τ µλ τ+ − ′= − − −  

  ,             (95) 

1 1 1 2Bm y m y f Gλ µ λ τ λ+ − ′= + − +  

  ,               (96) 

1 1 2 2J J G r rϕ ϕ µ λ τ µ λ τ+ −= − − 

  ,               (97) 

1 1 1 , 0nvλ λ ρ ρ
++ = − > 

  ,                   (98) 

2 2 2 , 0nvλ λ ρ ρ
++ = − > 

  ,                  (99) 

( )1 1 1 , 0tvτ τ ρ ρ+= Π + > ,                  (100) 

( )2 2 2 , 0tvτ τ ρ ρ+= Π + > ,                  (101) 

where the following designations have been introduced: 

1 :n Bv x f y− − −′= −  , 1 :n Bv x f y+ + +′= −  ,              (102) 

2 :nv y− −=  , 2 :nv y+ +=  ,                    (103) 

1 :t Bv x f y rϕ− − − −′= + +   , 1 :t Bv x f y rϕ+ + + +′= + +   ,          (104) 

2 :tv x rϕ− − −= +  , 2 :tv x rϕ+ + += +  .                (105) 

From the above-given equations we should determine the velocities of the 
wheels after the collision x+

 , y+
 , ϕ+

  and reaction impulse multipliers 1λ , 

2λ , 1τ , 2τ . Since it is a relatively complex system of nonlinear equations, an 
iterative method has been used to solve it. This method involves looking for a 
vector 

T 7
1 2 1 2: , , , , , ,Y x y Rϕ λ λ τ τ+ + + = ∈ 
 

  , which satisfies the equation 

( )Y Y= Ψ ,                        (106) 

where 7 7: R RΨ →  denotes a mapping specified by the right sides of the 
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above-given equations. 
When we consider an elastic or elasto-plastic collision, then based on Equa-

tion (35) we should formulate relevant relations taking into account detailed da-
ta specifying the state of the wheel at point B. On this ground we establish the 
following equations: 

, 1, 2i i iλ βλ∗ = =  ,                     (107) 

1 1 1 1 2 2Bmx mx f Gλ µ λ τ µλ τ∗ + ∗ ∗ ∗ ∗ ∗′= − − −  

  ,            (108) 

1 1 1 1 2Bm y m y f Gλ µ λ τ λ∗ + ∗ ∗ ∗ ∗′= + − +  

  ,             (109) 

1 1 1 2 2J J G rϕ ϕ µ λ τ µλ τ∗ + ∗ ∗ ∗ ∗= − − 

  ,              (110) 

( ) , 0, 1, 2i i tiv iτ τ ρ ρ∗ ∗ ∗= Π + > = ,               (111) 

1 :t Bv x f y rϕ∗ ∗ + ∗′= + +   ,                    (112) 

2 :tv x rϕ∗ ∗ ∗= +  .                      (113) 

On the basis of the above relations we can obtain two nonlinear equations in 
regard to 1τ

∗  and 2τ
∗ , which we solve by iteration. Having determined their 

values we can determine the values of acceleration after the second phase of the 
considered collision x∗ , y∗

 , ϕ∗
 . 

The relations given in this subsection refer to determining the acceleration of 
the wheel and its velocity after the collision when the wheel is positioned in 
segments IV, II and III and at point B (Figure 7). We do not present equations 
for segment I, as they are analogical to the equations for segment IV; while the 
equations at the singular point A, are similar to the above-described equations 
for point B. 

6.3. Results of Computer Calculations 

We consider planar motion of the non-deformable wheel on which constraints 
presented in Figure 1, Figure 2 and Figure 6 are acting. The wheel motion si-
mulation is performed assuming the following values of the wheel’s parameters: 
the mass 10 kgm = , moment of inertia 20.05 kg mJ = ⋅ , and radius 0.1 mr = . 
The dimensions represented in Figure 1 are 5 cmh =  and 0.5 ml = . Fur-
thermore, we assume that the gravitational acceleration is 29.81 m sg = , and 
the initial conditions are defined with two vectors, 

o

0.8 m
0.2 m
0 rad

X
 
 =  
  

, o

5 m s
3 m s

0 rad s
V

− 
 = − 
  

                (114) 

Based on the relations presented in section 4, sets of relations specifying the 
acceleration of the wheel and forces of reaction and relations specifying discon-
tinuous changes in the wheel’s velocity induced by the collision have been estab-
lished for each segment of the boundary of constraints (Figure 6). 

The simulation of the motion of the wheel has been performed over the time 
interval ( ]0;1 st∈ . We assumed the value of the coefficient of friction between 
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the wheel and the boundary of constraints, 0.4µ = . Two tasks differing only 
with the value of the coefficient of restitution β  have been considered. In the 
first task, the motion of the wheel has been simulated with the assumption of the 
hypothesis of plastic collisions 0β = . In the case of the second task, we have 
assumed 0.3β = , which corresponds to the elasto-plastic hypothesis. 

The wheel position sequences during the simulation are illustrated in Figure 
10 (plastic collisions) and Figure 11 (elasto-plastic collisions). The figures show 
also the initial conditions of the wheel. It follows from them that in the initial 
stage of its motion the wheel moves in a translational motion and after the first 
collision it starts rotating. 

The next Figure 12 represents two trajectories (paths of the wheel in motion) 
followed by the centre point of the wheel in the two tasks under analysis. 

The two last graphs illustrate the positions of the wheel’s centre point and the 
angle of rotation in time (Figure 13), as well as the speed of change of these values  

 

 
Figure 10. The sequence of the positions of the wheel during simulation (plastic collisions). 

 

 
Figure 11. The sequence of the positions of the wheel during simulation (elasto-plastic 
collisions). 
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Figure 12. Trajectories followed by the centre point of the wheel: plastic collisions (solid 
line), elasto-plastic collisions (dashed line). 

 

 
Figure 13. Curves of wheel centre point positions (a) and (b) and of the rotation angle (c) 
over time: plastic collisions (solid line), elasto-plastic collisions (dashed line). 

 
in time (Figure 14). The results illustrated in these figures reveal major differ-
ences in the behaviour of the wheel, depending on the collision hypothesis as-
sumed. 

7. Conclusions 

An analysis of the non-smooth problem of the motion of a mechanical system in 
the form of a wheel with constrained motion has been presented in the paper. It 
has been demonstrated that the formulation of the non-smooth problem of mo-
tion encompasses relations determining accelerations of bodies and relations 
determining discontinuous changes in the velocity of the bodies induced by the  
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Figure 14. Curves of wheel centre point positions (a) and (b) and of the angular velocity 
(c) over time: plastic collisions (solid line), elasto-plastic collisions (dashed line). 

 
collision. Descriptions of these relations have been established according to the 
hypotheses specifying interactions (reactions) between non-deformable bodies 
coming into contact. 

In the wheel example under consideration, the interpretation of the assumed 
hypotheses is clear, and therefore the formulation of a non-smooth problem of 
motion is relatively simple. In the case of a rigid body in a three-dimensional 
space, the description of the reactions is more complex, and apart from that, it is 
impossible to unequivocally determine the acceleration and the reaction force 
for individual positions of the body. Such singular states of the system result 
from the approximate character of the hypotheses specifying the forces acting 
between the bodies in contact, which applies in particular to friction forces. 

Non-smooth problems of motion expand on the body of classical problems of 
the theoretical mechanics, thus increasing the scope of modeling methods and 
simulation studies on the motion of and loads applied to machines, vehicles and 
components of engineering structures [15]. 
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