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Abstract 
This paper investigates the maximum interval of stability and convergence of 
solution of a forced Mathieu’s equation, using a combination of Frobenius 
method and Eigenvalue approach. The results indicated that the equilibrium 
point was found to be unstable and maximum bounds were found on the de-
rivative of the restoring force showing sharp condition for the existence of 
periodic solution. Furthermore, the solution to Mathieu’s equation converges 
which extends and improves some results in literature. 
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1. Introduction 

Consider a harmonically forced Mathieu’s equation defined by 

( )
2

2

d cos cos
d

x w t x f t
t

ε λ+ + =                   (1) 

For small ε , this equation describes a simple harmonic oscillator whose 
frequency is a periodic function of time with the boundary condition as; 

( ) ( )0 2x x= π  
( ) ( )0 2x x= π                           (2) 

where 
2

2

d
d

x
t

 is the second derivative with respect to time, f is the amplitude of a  

periodic driving force, w and ε  are the Mathieu’s parameters and λ  is the 
angular frequency of the periodic driving force. 
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Mathieu’s equation is a special case of a linear second order homogenous eq-
uation [1]. In [2], Equation (1) was discussed in connection with problem of vi-
brations in elliptical membrane and developed the leading terms of the series 
known as Mathieu’s function. Mathieu’s function was further investigated by a 
number of researchers who found a considerable amount of results. [3] [4] [5] 
[6] wrote that Mathieu’s differential equation occurs in two main categories in-
volving elliptical geometrics, such as analysis of vibrating modes, elliptical mem-
brane, the propagation modes of elliptic pipes and the oscillation of water in a 
lake of elliptic shape. Mathieu’s equation arises after separating the wave equa-
tion using elliptic coordinates. Secondly, problems involving periodic motion are 
the trajectory of an electron in a periodic array of atoms [7]. 

Stability is an important concept in linear and nonlinear analysis. For instance, 
roughly speaking, a physical system is stable if small changes at sometimes cause 
only a small change in the behavior of the system in future [8]. Analytically, stabil-
ity is determined by the interval placed on the total derivative of the system form 
by the given differential equation. Such interval is restricted only on the equili-
brium point of the system. Other intervals of interest which have been studied by 
others researchers in these recent times can be seen in [9] [10]. For linear system, 
stability and boundedness are equivalent; thus, the search for convergence of solu-
tion and maximum interval of stability becomes an issue. Emphasis on stability 
and convergence has been discussed by many authors. For instance see [11] [12] 
[13] [14] [15] and their references therein. For other researchers who have worked 
on stability of non-linear systems, see [16] [17] [18] [19]. 

Motivated by the above literature and ongoing research in this direction, the 
objectives of this paper are to investigate the maximum interval of stability and 
convergence of solution of forced Mathieu’s equation. We further prove that the 
solution converges in that interval of interest and that if all solutions are 
bounded, then the corresponding point in the w and ε  parameter plane is said 
to be stable. 

2. Preliminaries 

Definition 2.1. Frobenius method which was named after Ferdinard Geog 
Frobenius is a method for finding an infinite series solution for a second-order 
ordinary differential equation of the form; 

( ) ( )2 0x y p x y q x y′′ ′+ + =                    (3) 

with d
d
yy
x

′ =  and 
2

2

d
d

yy
x

′′ =  

In the vicinity of the regular singular point 0x = , we can divide (3) by 2x  to 
obtain a differential equation of the form; 

( ) ( )
2 2 0

p x q x
y y y

x x
′+′ + =′                     (4) 
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which will not be solvable with regular power series method if either 
( )

2

p x
x

 or 

( )
2

q x
x

 are not analytic at 0x = . The Frobenius method enables us to make use  

of powers series solution to solve a different equation, given that ( )p x  and 
( )q x  are themselves analytic at 0 or being analytic elsewhere. In this case both 

limit exist at 0 and are finite [20]. 
Definition 2.2. Stability is a qualitative property of behavior of the solutions 

of differential equations by which given a reference solution ( )* * *
0 0, ,x t t x  of 

( )* *
0 0, , nx x t t x= ∈  , *

0t t≥ , *
0 0t ≥ , any other solution ( )0 0, ,x t t x  starting 

close to ( )* * *
0 0, ,x t t x  i.e. *

0 0~t t  and *
0 0~x x  remains close to ( )* * *

0 0, ,x t t x  for 
later times. 

Theorem 2.3. Suppose 
(i) 0x  is a regular singular point and 
(ii) ( ) ( )0x x p x−  and ( ) ( )2

0x x q x−  are analytic at 0x  
Then Frobenius method is effective at regular singular point of the form. 

( ) ( )0 0
0

n
n

n
x x a x x

∞

=

− −∑
 

Theorem 2.4. Assume that 0 0x =  otherwise the point 0x x=  is a singular 
point of 

( ) ( ) ( ) ( ) ( ) 0P x y x Q x y R x y x′′ ′+ + =                (5) 

and that ( ) ( )
( )1

x
x

x
Q

Q x
P

=  and ( ) ( )
( )

2

2Q
x R X

x
P x

=  are analytic at 0x = , then 

they will have Maclaurin series expansion 

( ) ( ) ( ) ( ) ( )3
30 0 0

0
2! 3! !

n
nf f f

f x f x x x
n

′′
= + + + + +          (6) 

with radius of convergence 1 0r >  and 2 0r >  respectively. That is  

( ) ( )
( )1 0

n
nn

xQ x
Q x P X

P x
∞

=
= = ∑  which converges for 2X r< . Then the point 

0 0x =  is called a regular singular point of (5). 

Theorem 2.5. Consider a power series 

( ) 0
n

nnf x a x∞

=
= ∑                        (7) 

with radius of convergence R, then term by term differential and integration of 
the power series is permitted and does not change the radius of convergence that 
is; 

1
00 0 1

d d d ,
d d d

n n
n n nn n n

f a x a x na x x R
x x x

∞ ∞ ∞ −
= = =

= = = <∑ ∑ ∑        (8) 

( )
1

0 0 0d d d ,
1

n
n n n

n nn n n

a x
f x x x a x xa x x R

n

+
∞ ∞ ∞

= = =
= = = <

+∑ ∑ ∑∫ ∫ ∫     (9) 

Theorem 2.6. Let A be an n n∗  matrix and let the eigenvalue of A be de-
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noted by ( )Aλ  and consider the linear system of differential equation 

( ) ( ) , nx t Ax t x R= ∈                      (10) 

(i) If ( )( ) 0Re Aλ ≤  and all the eigenvalues of A with real part zero are sim-
ple, then zero is a stable fixed point of (10) 

(ii) If ( ) 0Re Aλ < , then zero is a globally asymptotically stable solution of 
(10) 

(iii) If there is an eigenvalue of A with positive real part, then zero is unstable 

3. Results and Discussion 
3.1. Stability Analysis of Mathieu Equation 

We consider the equation 
2

2

d 0
d

x px
t

+ =                         (11) 

where p is a positive constant. Equation (11) can be written as 

0x px+ =                          (12) 

Let 1 1 2 1 2, ,x x x x x x= = =   
then equation (12) can be written as 

2 1 0x px+ =                          (13) 

The equivalent system is given by 

1 2

2 1

x x
x px
=
= −





                         (14) 

(14) can be reduced in matrix form as 

1 1

2 2

0 1
0

x x
x xp

    
=    −    





                     (15) 

(15) can further be written as 

x Ax=  

where, 1 1

2 2

,
x x

x x
x x

   
= =   
   







 and 
0 1

0
A

p
 

=  − 
 

For the eigenvalue of A we compute 

0A Iλ− =                          (16) 

0 1 1 0
0

0 0 1
A I

p
λ λ

   
− ⇒ − =   −   

               (17) 

0 1 0
0

0 0p
λ

λ
   

⇒ − =   −     
1

0
p
λ

λ
−

⇒ =
− −

                       (18) 

2 0pλ + =                          (19) 
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Evaluating λ  in (19) we have 
1
2ipλ = ±                           (20) 

Since the eigenvalue is in complex form with real part equals to zero, then the 
equilibrium point is unstable. 

3.2. Convergence of Mathieu Equation 

We consider the Mathieu equation of the form; 
2

2

d 0
d

x px
t

+ =                         (21) 

From (21) we assume a power series solution of the form; 

0
n k

nnx a t∞ +
=

= ∑                        (22) 

Differentiating (21) term by term we have 

( ) 1
0

n k
nnx n k a t∞ + −

=
= +∑                     (23) 

( )( ) 2
0 1 n k

nnx n k n k a t∞ + −
=

= + + −∑                 (24) 

Substituting (23) and (24) into (21) we have 

( )( ) 2
0 01 0n k n k

n nn nn k n k a t p a t∞ ∞+ − +
= =

+ + − + =∑ ∑           (25) 

The indicial equation is obtained by looking at the coefficient of the lowest 
power 2kx − . Since this only occur in the first sum (for n = 0), it must vanish. 
This reduces (25) to 

( ) 2
01 0kk k a t −− =                       (26) 

There are therefore two possible values of the index k = 0, k = 1 and this is 
quite typical for a second order equation. Changing the dummy index in the first 
sum by 2n n→ +  we have 

( )( ) 22 02 1 0n k n k
n nn nn k n k a t p a t∞ ∞+ +
+=− =

+ + + + + =∑ ∑         (27) 

All the powers now look alike and we can now compare coefficient to obtain 
the recurrence relation given by 

( )( ) 22 1 0n nn k n k a pa++ + + + + =                (28) 

which reduces to 

( )( )2 2 1n n
pa a

n k n k+
−

=
+ + + +

                  (29) 

Given the value of 0a , we can evaluate 2a , 4a , etc. The odd na  are com-
pletely independent and as far as getting a solution is concerned, we can put 
them all to zero. This independent of the odd and even na  is a consequence of 
the fact that odd and even solution of the differential equation are possible. 

In order to generate these odd/even solution, it is easiest to put 1 0a =  in or-
der not to create extra solution by merely using some of the key solution into 
that of 0k = . 

https://doi.org/10.4236/wjm.2020.1011015


E. O. Eze et al. 
 

 

DOI: 10.4236/wjm.2020.1011015 215 World Journal of Mechanics 
 

The recurrence relation for 0k =  given by 

( )( )2 2 1n n
pa a

n n+
−

=
+ +

                    (30) 

has the solution 

( ) 0 1cos sinx t a t a t= +                     (31) 

The recurrence relation for 1k =  is 

( )( )2 3 2n n
pa a

n n+
−

=
+ +

                    (32) 

with the solution 

( ) 1 0sin cosx t a t a t= +                     (33) 

Recall that 

( )
( )

2 2 4

0

1
cos 1

2 ! 2! 4!

n

n

t t tt
n

∞

=

−
= = − + −∑                 (34) 

( )
( )

2 1 3 5

0

1
sin

2 1 ! 3! 5!

n n

n

t t tt t
n

+
∞

=

−
= = − + −

+∑                (35) 

Combining equations (31) and (33) we have  

( ) 0 1cos sinx t a t a t= +  

where 0a  and 1a  are arbitrary parameter 
Using Ratio Test on cos t , we have 

( )
( )2 2

1
2

2 !
lim lim

2 2 !

n
n

n nn
n

na t
a n t

+
+

→∞ →∞
= ⋅

+
                                (36) 

( )
( )

( )( )
2

2
2

2 ! 1lim lim
2 2 ! 2 1 2 ! 4 6 2n n

nt t
n n n n n→∞ →∞

= ⋅ =
+ + − +

 
2

2

1lim 0
4 6 2n

t
n n→∞

= =
− +

                              (37) 

Similarly for 
( ) 2 1

0 1
sin

2 1

n n
n t

x
n

∞ +
=

−
=

+
∑  we have 

( )
( )

( )( )

2 2
1

2 1

2

2 1 !
lim lim

2 3 !

lim 0
2 3 2 2

n
n

n nn
n

n

na t
a n t

t
n n

+
+

→∞ −→∞

→∞

+
= ⋅

+

= =
+ +

             (38) 

Thus the interval of convergence is ( ),∞ −∞ , radius = infinity 
Therefore 

( ) 0 1

0 1

cos sin
0 0

0

x t a t a t
a a⋅

=

+ ⋅

+

=

=
                    (39) 
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Since the limit of the odd and even function is equal to zero we conclude that 
the solution of Mathieu equation converges. Applying the boundary condition 
we have that 

( ) ( ) 10 2x x a= π =                       (40) 

3.3. Numerical Simulation of Forced Mathieu’s Equation 
0.01p =  

Define a function that determines a vector of derivatives values at any solution 
point ( ),t X  

( )
( )

1
2

0 0

, :
100

X
D t X

X p X

 
=  

− −    
Define an additional argument for solving the ODE 

0 : 0t =   Initial value of independent variable 

1 : 10t =   Final value of independent variable 

0

0
:

1
X  

=  
 

  Vector of initial function values 

: 1500N =   Numbers of solution values on [ ]0 1,t t  

( )0 0 1: , , , ,X t tS N D=  
0:t S=   Independent variables values 

1
1 :X S=   First solution function values 

2
2 :X S=   Second solution function values 

4. Conclusions 

From our result, we observed that the solution existed using the Frobenius me-
thod and also periodic. The solution converged at the equilibrium point but un-
fortunately this convergence did not imply asymptotic stability, and the converse 
is true. The solution was observed to be unbounded for the given parameters 
w-ε. Since the solution is unbounded, we concluded that the corresponding 
equilibrium point in w-ε plane is unstable. This can be seen in Figure 3 where 
the phase portrait is far away from the equilibrium point. Due to the periodic 
nature of Mathieu’s equation, its application can be seen in propagation of waves 
in radios and television. MATHCAD software was also used to demonstrate the 
numerical behavior of the solution of Mathieu’s equation. The numerical beha-
vior is explained as follows: 

In Figure 1, periodic solution of Mathieu equation was shown by the rela-
tionship between the first solution function values and the independent variable 
values as seen in Table 1. The variable values were generated using the vector of 
initial function values X0 and the constant p. The periodic nature shown is unst-
able since the trajectory did not start from the equilibrium point. The maximum 
displacement reached by the trajectory is at ±0.1 representing a value along the 
first solution function values. 
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Table 1. The solution matrix table for solution function values. 

 0 1 2 

0 0 0 1 

1 6.667 6.662 0.998 

2 0.013 0.013 0.991 

3 0.02 0.02 0.98 

4 0.027 0.026 0.965 

5 0.033 0.033 0.945 

6 0.04 0.039 0.921 

7 0.047 0.045 0.893 

8 0.053 0.051 0.861 

9 0.06 0.056 0.825 

10 0.067 0.062 0.786 

11 0.073 0.067 0.743 

12 0.08 0.072 0.697 

13 0.087 0.076 0.647 

14 0.093 0.08 0.595 

15 0.1 0.084 ... 

 

 
Figure 1. Periodic profile of Mathieu’s equation obtained by plotting X1 against t for 

1500N = . 
 

 
Figure 2. Periodic profile of Mathieu’s equation obtained by plotting X2 against t for 

1500N = . 
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Figure 3. Phase portrait showing instability of solution of Mathieu’s equation for 
1500N = . 

 
In Figure 2, the solution was also periodic using the second solution function 

values and independent variable values. The starting point of the trajectory was 
far from the origin hence showing instability of the system. 

In Figure 3, phase portrait of Mathieu’s equation was obtained by relating X2 
and X1. The phase portrait was seen to be far away from the equilibrium point. 
This shows that the solution of Mathieu’s equation is unstable with the maxi-
mum displacement coinciding with the maximum displacement of X1 in Figure 
1. These values represent the maximum interval of stability of the system. 
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