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Abstract 
We show that the real existence of quantum-events, resulting from sponta-
neously broken unitary-evolution by quantum-transactions, can explain the 
dynamic metric of space-time, governed by Einstein’s equation, if light-clocks 
are being used to measure the rhythm of events. In the derivation of Eins-
tein’s equation there naturally arises a term for a cosmological constant Λ . 
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1. Introduction 

There has been a long-standing quest for a theory of quantum-gravity and 
promising candidates like string-theory or loop-quantum gravity are widely dis-
cussed today. The straightforward way of treating the metric tensor as a spin-2 
quantum field, however, has led to technical difficulties early. There are other 
routes towards harmonizing relativity with quantum theory, where gravity is not 
being treated as a fundamental but an emerging force. All these attempts are 
closely linked to the metaphysical question, what space, time and matter actually 
are, even if this question does normally not stand at the first place in developing 
mathematical models of nature [1]. In this paper we proceed the reverse way. 
Starting from a few foundational assumptions in quantum physics, we develop a 
theory of space-time in the flavor of emerging gravity.  

One of the main differences between relativity and quantum theory is locality. 
While relativity is per design a local theory, quantum physics definitely shows 
non-local features, which are not easily reconciled [2]1. A key notion of relativity 
theory is an “event” in space-time, which we define to be an (idealized) physical 

 

 

1In fact, there are non-local phenomena in GR too, like the non-localizability of gravitational energy. 
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system of mass m occurring at a point in space-time ( ) 4,t x ∈ . Einstein’s equ-
ation encapsulates the local, metric relationship between events under the influ-
ence of gravity. By the collapse-postulate also quantum-fields can be localized in 
space-time and we call these localizations quantum-events. It is therefore a 
straightforward idea to link quantum-events to gravity. In order to do that, we 
must consequently take a quantum-event and the corresponding collapse for a 
real physical process. This is the foundational assumption, on which we are 
going to base our arguments. There has been extensive of work done in the field 
of collapse-theories and we chose ideas from the transactional theory of quan-
tum mechanics [3] [4] [5] [6] as the technical basis of our work.  

The paper is organized as follows: in paragraph 2 we briefly introduce the 
transactional interpretation and some of its key tenets, which are important for 
our work. We do this without entering into the details of the theory and the 
reader is referred to [6] for a comprehensive exposition. In the main paragraph 3 
we derive local gravitational acceleration and the Einstein equation as a result of 
transactions between quantum-systems. Finally, we give a summary and draw 
some further conclusions in paragraph 4. In the appendices we prove some 
technical results.  

2. Quantum Events and Light Clocks 
2.1. Quantum Events 

Quantum states of closed, isolated physical systems are represented as unit- 
elements of a complex Hilbert space Hψ ∈  , 1ψ ψ = , and can under some 
realistic assumptions be uniquely assigned to the respective physical systems [7]. 
In the transactional interpretation [3] a quantum state Hψ ∈   is launched as 
an “offer-wave” by an emitter and gets possible responses by “confirma-
tion-waves” , Iιψ ι ∈ , which are the projections of the dual vector *Hψ ∈   
onto absorbers ι . The indices Iι ∈  denote a range of values, which the sys-
tem can assume in a measurement of some physical operator2. The “selection” of 
a specific confirmation 0 Iι ∈  leads to a “transaction”, which is the actualiza-
tion of emission and absorption as real events in space-time. The specific proba-
bility for a particular transaction 0 Iι ∈  is 

0

2

ιψ ψ  and the “selection” is 
purely random. The relativistic transactional interpretation [4] [5] additionally 
offers an explanation, why offer-waves (and confirmation-waves) are actually 
created. Quantum-fields are elements of abstract mathematical spaces and their 
components are indexed through space-time points. Relativistic interactions can 
be thought of as the mutual exchange of virtual bosons between fields, creating 
possibilities in a pre-space-time process. Transactions, in turn, are triggered by 
the exchange of real bosons and their four-momentum. The amplitude for emis-
sion or absorption of real bosons is the coupling amplitude between the mat-
ter-and gauge-fields and a specific transaction can happen spontaneously, if the 
conservation laws are satisfied. By the exchange of four-momentum the quan-

 

 

2They actually index the spectrum of a Hermitian operator. 
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tum states of the emitter and absorber collapse and the physical systems are 
found at the corresponding space-time points (regions). We will sometimes use 
the term “event-radiation” for the four-momentum transfer in transactions. 
Space-time thus becomes the connected set of emission-and absorption events 
corresponding to transactions, which define, by the four-momentum of the ex-
changed bosons, time-like (or null-like) space-time intervals, whose end points 
are these emission and absorption events. It is here, where the transactional view 
touches causal-set theory [8] [9], in which events spread in space-time by a sto-
chastic Poisson-process. Boson-exchange, understood as a decay-process, is then 
a special case in this model3. Note that the actualization of a space-time interval 
amounts to spontaneously breaking the unitary evolution of the quantum states. 
At the same time the four-momentum, which is exchanged, determines a time 
direction, since positive energy is transmitted, and selects a space-direction. In 
this sense spatio-temporal symmetry is also spontaneously broken. We will in 
the sequel focus on the electromagnetic force and the related exchange of photons. 

2.2. Light Clocks 

It takes a (closed and isolated) quantum-system, represented by a vector in Hil-
bert space, 0 Hψ ∈  , with average energy above ground state ( )0E E− , mi-
nimally a time of  

( )0

,
4

ht
E E

∆ =
−

                            (1)  

in order to unitarily evolve to an orthogonal state 1ψ , 0 1 0ψ ψ = , ( defh =  
Planck’s constant) [10]. We can use such a system as a clock4 with period t∆ . 
Special interest will lie on the case, where the system is a photon of energy 
(above the ground-state) ( )0E E hν− = . The corresponding light-clock then 
has the period 

1 .
4

t
ν

∆ =                                (2) 

We will encounter the situation, where there is not a single photon but many 
of them over a range of frequencies in thermal equilibrium, and where the ener-
gy is given by a temperature T. For oscillators with BE k Tν ≈  ( Bh k Tν  , 

def
Bk =  Boltzmann constant) we get a corresponding clock with period 

.
4 B

ht
k T

∆ =                              (3) 

We call the special light-clock (3) a thermal clock. 

3. Space-Time 

There is an intricate interplay between space-time and quantum-fields, which we 

 

 

3The transactional interpretation thinks of space-time slightly different than the causal-set-approach 
does. This has no impact on our mathematical result. 
4We actually use it as the “core” of a clock, i.e. as an abstract periodic process without ability to “in-
dicate” time. 
 

https://doi.org/10.4236/jmp.2020.1111115


A. Schlatter 
 

 

DOI: 10.4236/jmp.2020.1111115 1845 Journal of Modern Physics 
 

will now start to explore.  

3.1. Minkowski Space-Time 

For any photon in vacuum the ratio between its energy E and its 3-momentum 
p = p  is a constant, namely the speed of light c 

E c
p
= .                               (4) 

Equation (4) is a quantum-identity and, if expressed in space-time, must hold in 
every inertial reference frame. If we write energy and momentum in space-time  

coordinates, we get hE h
t

ν= ∆ =
∆

 and, by the de Broglie-relation, hp
x

=
∆

. 

Therefore (4) takes the form 

E x c
p t

∆
= =
∆

.                            (5) 

Since Equation (5) must hold in every inertial reference frame ( ) 4,x t x= ∈ , 
it constrains the metric in 4  and the result is Minkowski space-time 4  
with its metric tensor 0 0,1 , 3, ,0 3ab ab a aa b aη δ η δ= − ≤ ≤ = ≤ ≤ , and its linear 
isometries ( )1,3O , the Lorentz transformations. As indicated in paragraph 2.1, 
we take the ontological standpoint that quantum-systems spontaneously break 
the unitary time-evolution through the exchange of real bosons and thus become 
manifest in space-time. This is what we call “quantum-events” or synonymously 
“actualizations”. The kind of bosons depends upon the force in action. So we 
treat space and time as distinct attributes of matter, represented by a four- 
dimensional continuum, which adopts its metric structure by the “sprinkling” of 
matter through quantum-events. On the other hand the symmetries of 4  in-
fluence the structure of quantum states, which transform under suitable repre-
sentations of the Lorentz group5. So the influence between space-time and 
quantum states is bidirectional.  

The concept of a thermal clock (3) unfolds its power, if we consider multiple 
events of interacting quantum-systems. Multiple events manifest themselves in 
space-time by acceleration. In 4  physical systems of constant acceleration 
κ  in x-direction, say, can be expressed in Rindler-coordinates. This happens by 
choosing a co-moving coordinate system, defined in the wedge limited by 
x t= , and given by the transformations  

( ) ( )cosh , sinh , 0, .x tκϑ κϑ ϑ= = ≥ −∞ < < ∞             (6) 

The corresponding line-element is 
2

2 2 2 2 2 2
2d d d d d .s c y z

c
κ ϑ = − − − 
 


                 (7) 

Contrary to velocity, acceleration is not purely perspectival and cannot be 
transformed away by a Lorentz transformation. But there are local inertial ref-
erence-frames at 0t ϑ= = , where systems are instantaneously at rest. By the 

 

 

5The spin-number serves to classify these representations. 

https://doi.org/10.4236/jmp.2020.1111115


A. Schlatter 
 

 

DOI: 10.4236/jmp.2020.1111115 1846 Journal of Modern Physics 
 

Tolman-Ehrenfest effect [11] we have in thermal equilibrium for systems being 
instantaneously at rest and located at arbitrary 1 2,    

1 2
1 2d d .T T

c c
κ κ

ϑ ϑ= 
                          (8) 

For a system at the origin 
2

1
c
κ

=  and an arbitrary one at 2  we get with 

1
T Tκ =    

2

2

2 .cT T constκ κ
= =                           (9) 

The constant on the right does no longer depend on κ . Assume that in this 
chart (coordinate system) there is a thermal bath of temperature Tκ , and we 
want to gauge proper time by a corresponding thermal clock. By (3), (6) and (9)  

we get for a system instantaneously at rest at the origin and with ˆd dcs s
κ

=  

2ˆd 4d d .B
s ck T

ht κτ ϑ
κ

= =
∆

                       (10) 

We want to fix the constant in (9) and for this purpose synchronize6 (10) with 
a quantum-clock, defined by a matter-wave with rest mass 0m , frequency 

2ω ν= π  and corresponding acceleration ωκ . In its respective oscillatory rest-  

frame and for 0 2m
c
ω


, the matter-clock measures time in analogy to (10) in 

units of 
24d d .cE

hω ω
ω

τ ϑ
κ

=                          (11) 

By the de Broglie-relation there holds with k = k  denoting the wave number 
2 2 2 2 2 2 2 4

0 .E c k m cω ω= = +                       (12) 

Further with u
kω
ω

=  and 2 kv cω ω
=  denoting the phase-and group veloci-

ty, respectively, we have 

2 uω ωκ ω= π .                           (13) 

By (12) and (13) Equation (11) turns into  
2 2

2 2 2

4d d d d .
2

vc k c k
h

ω
ωτ ω ϑ ϑ ϑ

ω ω
= = =

π π π
                (14) 

If we synchronize the two clocks, d d ωτ τ= , we therefore get 
2

2

4 .B
vck T

h
ω

κ κ
=
π

                          (15) 

For the temperature Tκ  this implies 

2 .
2k

B

v
T

k c
ωκ

=
π


                           (16) 

 

 

6By “synchronization” we just understand equality of periods. 
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Expression (16) is a generalized Davies-Unruh temperature. If we choose a 
massless wave ( 0 0m = ), then we are in the situation u v cω ω= =  and (16) turns 
into the familiar Davies-Unruh temperature formula [12] [13]  

.
2 B

T
k cκ
κ

=
π
                            (17) 

We will use formula (17) in pargraph 3.2.3 in a concrete physical situation.  

3.2. Lorentz Space-Time 

We now want to generalize our approach by assuming that space-time is just lo-
cally flat7. In order to apply formula (17) we must have an appropriate accelera-
tion. Of course, we want it to be gravitational acceleration. In the next pargraph 
we will show how transactions can give rise to local gravitational acceleration 

Rg .  

3.2.1. Gravitational Acceleration 
The following argument bases on an exposition in [14]. Let a quantum-event be 
given by two physical systems of mass m and M, respectively, which come into 
being by a photon-transaction in locally flat space-time at relative rest and dis-
tance R to each other. Let further an elementary bit of information be connected 
to the existence or non-existence of a physical system in space-time. Since a 
photon offer-wave is a priori emitted symmetrically in all space-directions, we 
find that the information about the spatial existence of (actualized) systems at  

time 1 Rt
cν

∆ = =  is located on the surface of the sphere with radius R around  

M8. This is a kind of holographic principle. We may also assume that a bit of in-
formation is part of the surface-information, once it is at a distance of its Compton  

length 
mc

λ =
  from the sphere, and that this information changes linearly 

with the distance 0 x
mc

≤ ∆ ≤
  [14] [15]9. This holds because structureless  

systems can reasonably be supposed to have the size of their Compton-length. So 
the quantum-event causes an entropy change of 

2 .B
mcS k x∆ = π ∆


                        (18) 

For the total energy within the ball of radius R we have by the holographic prin-
ciple 

2 1 .
2 BE Mc k NT= =                       (19) 

The number T is the surface-temperature on the sphere of radius R and N 

 

 

7“Locally flat” means approximately flat in small regions around a point 0x . Technically this 

amounts to ( )0ab abg x η= , ( )0 0k
ij xΓ = , but generally ( ), 0 0k

ij xνΓ ≠ , 0 , , , 3i j k ν≤ ≤ . 
8Since transactions can go either way, there is a priori a symmetry regarding the question, which of 
the two masses is actually in the center. This is why all masses mutually gravitate. 
9This assumption implies R λ> . 
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denotes the number of bits on the surface, for which we have with the Planck-  

length 3P
Gl
c

=
 10 

2 3

2

4 .R

P

A R cN
Gl
π

= =


                         (20) 

By (19) and (20) we get for the surface-temperature T 

2 .
2 B

MGT
R k c

=
π

                            (21) 

For the total energy-change on the surface we have the entropic-force equation 

.S T F x∆ ⋅ = ⋅∆                            (22) 

By plugging (18) and (21) into (22), we arrive at 

2 .R
MmF G m g
R

= ⋅ = ⋅                         (23) 

Therefore we can think of local gravitational acceleration as the result of a 
kind of “osmotic pressure” towards the other emerging parts of space-time. Lo-
cal gravity is a consequence of light-induced quantum-events and the second 
law. 

3.2.2. Einstein Equation 
Let a test-system at small distance R be actualized by exchanging photons with 
M and consequently feel the acceleration Rg . The energy-emission by the pho-
tons must appear in the local rest-frame of the accelerated system as a spontan-
ous emission from a heat bath in the environment. The temperature is 

RgT  
(17), since the period of the corresponding thermal clock must be synchronous 
with the one of the underlying light-clock (11). This synchronization amounts 
by (15) to the equation 

2

4 1 .
RB g

R

ck T
h g

=
π

                         (24) 

with 2
3, P

GE Mc l
c

= =
  and 24RA R= π  we derive from (24) 

24 .
RB g R Pk T A l E=                          (25) 

By using (17), this leads to 

2

4 .R R
Gg A E

c
π

=                          (26) 

Note that Equation (26) is interesting per se, since it encapsulates the Gauss- 
Bonnet theorem for compact orientable surfaces in 3  of genus 2 (i.e. without 
handles) (see Appendix B). We are interested, however, in a dynamic develop-
ment of (26). In the sequel we will continue to work in the local inertial coordi-
nate-chart around the origin (M) and develop Einstein’s equation for the oo(tt)- 

 

 

10The Planck-length can be understood as a minimal Schwarzschild radius, as shown in Appendix A. 
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component of the metric-tensor. This will suffice to reveal the structure of the 
equation. With ( )RV t  denoting the volume of a small ball of test-systems at ra-
dius ( )R t  around the origin, with ( )0R R= , ( )0 0R =  and ( )0 RR g= , we 
can rewrite (26) as [16] [17]  

2

2 2
0

d 4 .
d R

t

GV E
t c=

π
=                         (27) 

If we introduce the energy-momentum tensor ,0 , 3abT a b≤ ≤ , with zero- 

component 00 0lim R
R

R

ET
V→= 11, denoting the energy density at the origin, and  

use the local properties of the Ricci tensor ,0 , 3abR a b≤ ≤ , we have at the origin 
[16] [17] (see Appendix C) 

0 2
00

0

.RR

R t

V c R
V

→

=

→


                       (28) 

Hence (26) turns in the limit 0R →  into 

00 004

4 .GR T
c
π

=                           (29) 

3.2.3. Momentum-Flow 
In a transaction there is a transfer of four-momentum through photons con-
nected to a quantum-event. In paragraph 3.1 we called this momentum-transfer 
“event-radiation”. In order to synchronize local light-clocks (24) we have so far on-
ly made use of the energy (zero)-component of event-radiation. Let , 1, 2,3iA i = , 
be small surface elements with 0,

iA j i j= ≠n e . From the 3-momentum there 
arises pressure in the spatial-directions, which defines the Laue-scalar at the ori-
gin 

3 3 3
0 01 1 1

d1lim lim .
di i

i i
ii A Ai i i

i i

F p
T T

A A t→ →= = =
= = =∑ ∑ ∑          (30) 

This quantity also contributes to the energy density in (29). Let ( )RN t  be 
the number of actualizations within volume RV  at time t. We have with  

( ) 0
0 0, R R

x
x ct N x N

c
 = =  
 

  and the de Broglie-relation hp
R

=  

( ) ( ) ( )0 0

0 0

d dd
3 3 .

d 3 d d
RR

R R

N x xN t h c hT c h
tA R x V x

λ⋅
= ⋅ = ⋅ = ⋅ ⋅



          (31) 

The function ( ) ( )0
0

R

R

N x
x

V
λ =



 denotes the number of events per 3-volume 

at time 0x  and therefore 
( )0

0

d
d

x
x

λ
 is the change-rate of actualizations per  

3-volume. We assumed in (31) that ( )0xλ  is constant over 3-space (i.e. in par-
ticular independent of R), which amounts to the homogeneity and isotropy of 
space with respect to actualizations. We have also tacitly assumed that ( )0xλ  is 

 

 

11We assume E to be homogeneously distributed over VR. 

https://doi.org/10.4236/jmp.2020.1111115


A. Schlatter 
 

 

DOI: 10.4236/jmp.2020.1111115 1850 Journal of Modern Physics 
 

a differentiable function in 0x . This is an assumption, which cannot hold in the 
quantum-realm, since events represent discrete sets and are not deterministic, 
but obey a random-process. The only known Lorentz-invariant stochastic law 
for the spreading of events in 4 , such that ~N V , is a Poisson-process with 
constant average (photon) transaction-rate γ  [18]. The homogeneity and 
isotropy of space-time are thus an immediate consequence of this law. Hence, 
in the above terminology we have for the averages (expectation values) and 

0 0x∆ > 12 

( ) ( )0 0 0 0Δ Δx x x xγλ λ+ = + ⋅ .                   (32) 

So by (32) we can define in analogy to (31) 

( )0

0

3 .
3

xc hT c h
xγ γ

λ∆⋅
= ⋅ = ⋅ ⋅

∆
                    (33) 

If we set ( )00T T Tγ= −  we can complete the right hand side of (29) to 

00 00 004 4

4 8 1 .
2

G GT T T
c c

δπ π  − 
 

→                    (34) 

We may alternatively shift the added amount Tγ  to the left of (29). We have by 
(33) 

2 2
4 3

4 4 8 .P
G GhT l

c cγ γ γ
π π

= = π                     (35) 

Therefore, with 
2 28 ,Pl γΛ = π                            (36) 

the synchronization-equation takes the form 

00 00 004

4 .GR T
c

δ π
−Λ =                       (37) 

Note that Λ has the dimension of 
( )2

1
length

. If matter-energy does not only  

stem from a static mass M, but from more complicated material systems, which 
also exercise pressure T, we finally get our main result by repeating the proce-
dure in (34) 

00 00 00 004

8 1 .
2

GR T T
c

δ δπ  − Λ = − 
 

                 (38) 

Under the assumption of known transformation rules, the full Einstein equa-
tions are equivalent to the fact that (38) holds in every local inertial coordinate 
system around every point in space-time [17].  

4. Summary 

To derive Equation (38) we have used three ideas. The first one is that quan-
tum-events are real actualizations of quantum-systems in space-time and are 
accompanied by the transfer of four-momentum through bosons, so called 

 

 

12We can expect that there is a lower bound 
0 00 ct x< ≤ ∆ . 
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event-radiation. The number of events follows a Poisson-process, and the type of 
bosons depends on the respective force in action [3] [4] [5] [6]. The second idea 
is that quantum-systems can serve as (abstract) clocks and that the rhythm of 
actualizations induced by the electromagnetic force is best measured by the 
light-clocks, naturally given by the transferred photons. The third idea is that 
quantum-events induce an “osmotic” force, which locally leads to gravitational 
acceleration and that clock-periods from the perspective of unequally accelerated 
systems need to be synchronized, in order to define the same rhythm of time. If 
the acceleration is of gravitational origin, then the full synchronization-equation 
turns out to be (38).  

The dynamic and expanding space-time of general relativity is hence a conse-
quence of quantum-events and their corresponding event-radiation together 
with a fixed “yardstick”, namely the locally constant speed of light c, implicit in 
the light-clocks used to measure time. There is in particular no direct connection 
of the constant Λ to the energy of the quantum-vacuum. This is a fundamentally 
different picture to the one we get by trying to attribute fundamental reality to 
the metric field and quantize it. It furthermore explains quite naturally, why gra-
vitational influence spreads with the speed of light.  

Our result was derived under the assumption of a constant cosmological term 
Λ (i.e. γ ). It is well possible that the value of Λ is in fact varying with cosmic 
time and only appears to be constant over the time periods, which we can possi-
bly oversee. This allows the connection to the Hubble “constant” 2~ HΛ , which 
seems to hold, given the empirical data and the theoretical models at our dispos-
al today [19].  
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Appendix A 
We follow the exposition in [20]. It is well known that an amount of energy 

~E M  has an associated Schwarzschild radius ( ) 2

2
S S

GMr r M
c

= = , which  

screens it off from the rest of space-time, if it is concentrated within a sphere of 
radius Sr r≤ . The question is, whether there is some lower bound min

Sr  on the 
radii, below which no mass can concentrate. Indeed such a minimum exists due 
to quantum considerations. Assume that there is a system of energy E with  

corresponding mass 2

EM
c

= . By the uncertainty relation we know that, if the 

object is localized within a range ~L, then its momentum satisfies p
L

≥
 . We 

further assume that clssically 2~S
GMr
c

, because the horizon-radius varies for  

spinning black holes, and we are looking for a minimum13. Further, since we 
want to localize very precisely, we will be in the relativistic limit and ~E pc . If 
we take L arbitrarily small, then M will grow so much that Sr  becomes larger 
than L and we lose localization. So we can lower L only until we have Sr L= . 
Hence there is the following sequence for a minimal radius minL  

min 2 4 3 3
min

.GM GE Gp GL
c c c c L

= = = =
                   (A1) 

Therefore we get the Planck-length min PL l=  

3 .P
Gl

c
=

                             (A2) 

No object in space-time can be concentrated blow the Planck-length and Pl  
becomes an absolute “edge” of space-time. Therefore the Planck-length can con-
sistently be thought of as a kind of minimum Schwarzschild radius 

min .S Pr l=                              (A3) 

Appendix B 

Let 2

1
SK

R
=  denote the Gaussian curvature of the 2-sphere 3S ⊂   of radius 

R. With a suitable constant α  we can rewrite Equation (26) in integral form 

2

4d .SS

GK A E
c

α π
=∫                         (B1) 

Let   denote a diffeomorphic surface without any additonal energy en-
closed. We then have 

2

4d .GK A E
c

α π
=∫ 

                       (B2) 

Since MGα =  we finally get with the Euler characterisitc ( ) 2χ =  

 

 

13The radius lies between 2

2
S

GMr
c

=  for non-rotating black holes and 2S

GMr
c

=  for maximally 

spinning ones. 
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( )d 4 2 .K A χ= π = π∫ 
                        (B3) 

Appendix C 

For the sake of completeness, we want to indicate how to derive the key relation 
(28). For this we follow the exposition in [17]. Let two nearby particles at relative 
rest to each other start to fall freely. If the initial velocity of particle one was v, 
then the one of the second particle follows from parallel transport along the 
connecting vector uε . If we compare the two velocities after some small time 
ε , then the first one moved along vε  and we have to again parallel transport it 
to 1v  in order to compare it to the corresponding 2v . Over the passage of time  

the avarage relative accelertion of the two particles aε  is 2 1v vaε ε
−

= . By the 

definition of the curvature tensor R there holds 

( )2 1
0 2lim , .

v v R u v vε ε→

−
=                       (C1) 

 

Hence, by the symmetries of the tensor R, 

( )0lim , ,
a

R v u vε
ε ε→ = −                        (C2) 

or in coordinate-components 

0lim .
j

j k l m
klm

a
R v u vε

ε ε→ = −                       (C3) 

A small ball RV  of test particles, starting at relative rest and moving geodesi-
cally, changes in second order to an ellipsoid whose axes initially don’t rotate. 
We can therefore chose local inertial coordinates in which (to second order) the 
center of the ball doesn’t move and the principal axes of the ellipsoid stay 
aligned with the coordinate axes. If the ball’s initial radius is ε , then  

( ) ( )2 31
2

j jr t a t O tε= + + . Hence 

0lim .
jj

t j

ar
r

ε

ε→ =


                          (C4) 

with u denoting the unit-vector in j-direction and v the one in time-direction we 
have by C3 withtout summation over j  

( )
( )0 0lim lim .

j
j

t tjtj

r t
R

r tε→ → = −


                     (C5) 

Since the volume of our ball is proportinate to the radii,  

( )
( )0 0lim lim

j

t t jj
t

r tV
V r t→ →

 
=  

 
∑





, so with summation over all four j (since 0t
tttR = )  

0 00
0

lim .j
V tjt

t

V R R
V→

=

= − = −


                    (C6) 
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We get the reverse sign in (28) because in (26) we are actually working with 

Rg− , and the factor 2c  in front of the Ricci-curvature stems from the line- 
element d dc tτ = . 
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