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Abstract 
In quantitative decision analysis, an analyst applies mathematical models to 
make decisions. Frequently these models involve an optimization problem to 
determine the values of the decision variables, a system S of possibly non- 
linear inequalities and equalities to restrict these variables, or both. In this note, 
we relate a general nonlinear programming problem to such a system S in such 
a way as to provide a solution of either by solving the other—with certain 
limitations. We first start with S and generalize phase 1 of the two-phase 
simplex method to either solve S or establish that a solution does not exist. A 
conclusion is reached by trying to solve S by minimizing a sum of artificial 
variables subject to the system S as constraints. Using examples, we illustrate 
how this approach can give the core of a cooperative game and an equilibrium 
for a noncooperative game, as well as solve both linear and nonlinear goal 
programming problems. Similarly, we start with a general nonlinear pro-
gramming problem and present an algorithm to solve it as a series of systems 
S by generalizing the “sliding objective function method” for two-dimensional 
linear programming. An example is presented to illustrate the geometrical 
nature of this approach. 
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1. Introduction 

Quantitative decision analysis involves notions of comparison and optimality. 
The result is that the mathematical models used to make decisions frequently 
involve an optimization problem to determine the values of the decision variables, 
a system S of possibly nonlinear inequalities and equalities to restrict these 
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variables, or both. The solution of such a system S and optimization problems is 
thus essential to decision analysis. In this note we relate a general nonlinear 
programming problem to a system S to provide a solution of either by solving 
the other—with certain limitations. In particular, we present a method for either 
obtaining a solution for S or else establishing that a solution does not exist by 
using existing computational techniques. Our method generalizes phase 1 of the 
two-phase linear programming simplex method to nonlinear programming. We 
also present an algorithm to solve a general nonlinear programming problem as 
a series of such systems S by generalizing the “sliding objective” method for geo-
metrically solving a two-dimensional linear programming problem. 

As background, we note that systems of linear equations have been considered 
for at least three millennia. By then the Chinese had organized linear systems of 
equations in a matrix-like form and solved them with a procedure equivalent to 
Gaussian Elimination [1]. In the third century BCE, Archimedes [2] formulated 
his well-known cattle problem as a system of linear equations that required an 
integer solution. In the seventeenth century Descartes introduced systems of 
linear equations in geometry, and later that century Leibniz developed a sys-
tematic method of finding solution using determinants [3]. In the nineteenth 
century Cramer used Leibniz’s work to establish a way of getting explicit solu-
tions via his eponymous Cramer’s rule, and Grassman began to synthesize these 
developments into what is now called linear algebra [4]. 

The history of the theory of linear inequalities is more recent and developed 
through the interactions between mathematics and other disciplines [5]. In the 
nineteenth century Fourier proposed the idea of constructing a mathematical 
theory for systems of linear inequalities. Shortly thereafter, Farkas developed a 
theory of systems of linear inequalities with respect to analytical mechanics that 
led to Farkas Lemma. At the end of the nineteenth century, Minkowski—inde- 
pendent of Farkas—derived a theory of linear inequalities with respect to con-
vexity [5]. In the twentieth century Lovitt introduced the preferential voting 
problem as a set of inequalities and sought a geometric solution. Later, Dines 
approached the voting problem in an algebraic way [5]. The ideas behind his 
solution method led to the development of a theory of systems of linear inequa-
lities [6]. He also examined the relation between the matrix of the coefficients of 
a system of linear inequalities, the existence of their solutions, and the characte-
ristics of solutions. Further studies by Kuhn and Tucker [7] [8], for example, re-
fined these results but did not relate optimization problems to linear systems as 
done here in the general case. 

An efficient computational method to solve a system of linear inequalities and 
equalities did not exist until Dantzig [9] suggested a phase 1 involving artificial 
variables to start the simplex method. Subsequent work involving optimization 
has focused on the solvability of convex inequality constraints in a convex pro-
gramming problem [11], solving systems of linear interval inequalities [12] [13], 
or considering variational inequalities [14] [15], for example. 
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Here we generalize Dantzig’s approach to systems of nonlinear inequalities 
and equalities S by considering an associated nonlinear programming problem. 
We then extend the geometric “sliding objective function method” [9] for solv-
ing a two-variable linear programming problem to solving a general nonlinear 
programming problem. Our approach requires determining the solvability of a 
nonlinear systems S at each iteration. 

The paper is organized as follows. In Section 2, a correspondence is estab-
lished between the solvability of a nonlinear system S and an associated non- 
linear programming minimization problem. We then present an algorithm for 
solving a general nonlinear programming minimization problem, to any degree 
of accuracy, as a series of systems S. In Section 3, examples are given. Conclu-
sions are stated in Section 4. 

2. Basic Results  

For real-valued functions f, g, h, consider the system S of inequalities and equali-
ties (1)-(3) and the minimization problem T below, where X is a set in which 
( )1, , mx x�  is required to satisfy further requirements. For example, if nonnega-
tivity restrictions 0, 1, , ,ix i m≥ = �  are automatically applied by the solver to 
be used, then X could be the set ( ){ }1, , : 0, 1, ,m ix x x i m≥ =� � . X could also be 
the set ( ){ }1, , : , 1, ,m iX x x x W i m= ∈ =� � , where { }0,1,2,3,W = �  is the set 
of nonnegative integers. We note that each equality in (2) could be replaced by 
two inequalities in opposite directions so that S without (2) remains a general 
formulation.  

( ) ( )1, , , 1, ,i m iS g x x b i n≤ =� �                (1) 

( )1, , , 1, ,j m jh x x d j p= =� �                  (2) 

( )1, , mx x X∈�                        (3) 

(T) Minimize ( )1 1 1 1, , , , , , , , n p
m n n p kkf x x s s a a a+

+ =
= ∑� � �  

subject to  

( )1, , , 1, ,i m i i ig x x s a b i n+ + = =� �               (4) 

( )1, , , 1, ,j m n j jh x x a d j p++ = =� �               (5) 

0, 1, ,is i n≥ = �                       (6) 

0, 1, ,ka k n p≥ = +�                   (7) 

0, 1, ,lx l m≥ = �                      (8) 

The variables 1, , ns s�  in T but not in S are called slack variables as in linear 
programming. They represent the nonnegative difference between the left and 
right sides of (1). Similarly, the variables , 1, ,ka k n p= +� , are called artificial 
variables and should each have the value 0 if (1)-(2) are to hold. The main result 
relating S and T is now stated.  

Proposition 1. System S has a solution ( )1, , mx x�  if and only if problem T 
has a solution ( )1 1 1, , , , , , , ,m n n px x s s a a +� � �  for which 0, 1, ,ka k n p= = +� . 
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In particular, a solution ( )1 1 1, , , , , , , ,m n n px x s s a a +� � �  to T for which  
0, 1, ,ka k n p= = +� , determines the solution ( )1, , mx x�  to S.  

Proof. Suppose that system S has a solution ( )* *
1 , , mx x� . Then ( )* *

1 , , mx x�  
satisfies (1)-(3). In particular,  

( )* *
1 , , , 1, ,i m ig x x b i n≤ =� �                  (9) 

( )* *
1 , , , 1, ,j m jh x x d j p= =� �               (10) 

It follows from (9) that for all 1, ,i n= � , there exists 0is ≥  such that  
( )* *

1 , , , 1, ,i m i ig x x s b i n+ = =� � . Set 0, 1, ,ka k n p= = +� . Then  
( )* *

1 1 1, , , , , , , ,m n n px x s s a a +� � �  satisfies (4)-(8) and thus solves T since  

1 0n p
kk a+

=
=∑ , which is the minimum possible value of the objective function of T. 

Next suppose that ( )* *
1 1 1, , , , , , , ,m n n px x s s a a +� � �  solves T and  

0, 1, ,ka k n p= = +� . Then immediately ( )* *
1 , , mx x�  solves S, so the proof is 

complete. 
Proposition 1 has two immediate corollaries.  
Corollary 1. System S has no solution if and only if problem T has no solution 

for which 0, 1, ,ka k n p= = +� . 
Corollary 2. Proposition 1 remains true for any one or more of the following 

modifications to T: 
1) Any 1, ,r n p= +�  artificial variables have been added in (4)-(5) but not 

necessarily one for each equation, 
2) The coefficient of an added artificial variable in (4)-(5) is any nonzero sca-

lar, 
3) The objective function of T is the sum of the added artificial variables with 

any positive scalar coefficients.  
Corollary 1 is simply an equivalent restatement of Proposition 1 in terms of a 

necessary and sufficient condition for the nonexistence of a solution to S. Propo-
sition 1 and Corollary 1 together fully address the solvability of S. Corollary 2 
generalizes the problem T under which Proposition 1 is valid. Corollary 2 is es-
tablished with a proof similar to that of Proposition 1. 

Observe that the efficiency of solving the problem T in either Proposition 1 or 
Corollary 2 depends both on the nature of T and the computational method 
used to solve it. For example, Proposition 1 can be applied to a Diophantine 
equation—a polynomial equation with integral coefficients, usually in two or 
more variables, for which integer solutions are required. It is well known that 
there are undecidable Diophantine equations [10]; that is, there is no possible 
algorithm to determine in finite time if a solution exists. It follows that a prob-
lem T associated with a system S consisting of a single Diophantine equation 
may be undecideable. 

Now consider the following system S ′  of inequalities and equalities (11)-(14) 
and the minimization problem T ′ , where z is a variable representing the scalar 
( )1, , mf x x� .  

( ) ( )1, , 0mS f x x z′ − ≤�                     (11) 
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( )1, , 0, 1, ,i mg x x i n≤ =� �                    (12) 

( )1, , 0, 1, ,j mh x x j p= =� �                   (13) 

( )1, , mx x X∈�                         (14) 

( )T ′  Minimize ( )1, , mf x x�  

subject to  

( )1, , 0, 1, ,i mg x x i n≤ =� �                   (15) 

( )1, , 0, 1, ,j mh x x j p= =� �                  (16) 

( )1, , mx x X∈�                         (17) 

Assume that ( )* *
1 , , mx x�  solves T' with ( )* * *

1 , , mf x x z=� . Then ( )* * *
1 , , ,mx x z�  

is obviously a solution to system S ′ . On the other hand, a solution  
( )** ** **

1 , , ,mx x z�  to S ′  is not necessarily a solution to T ′  since it is possible 
that ** *z z> . However, the minimum value *z  of the objective function  
( )1, , mf x x�  for T ′  can be obtained to any degree of accuracy with the fol-

lowing algorithm by solving a sequence of systems S ′ , each with a different 
value for z. 

 
Algorithm 1 

Step 1. Determine some ( )1̂ ˆ, , mx x�  satisfying (12)-(14) by using Proposition 1 or Corol-

lary 2. Such a point exists by assumption. Let ( )1 1̂ ˆ, , mz f x x= � . Fix 0δ >  as the maximum 

acceptable error in finding the minimum value of the objective function in T ′ . Set 1i = . 

Step 2. Set 1i iz z δ+ = − . Apply Proposition 1 or Corollary 2 to S′  with 1iz z += . If a solu-

tion exists, go to Step 3. Otherwise go to Step 4. 

Step 3. Set 1i i= +  and go to Step 2. 
Step 4. The optimal objective function value for T ′  lies in the interval [ ]1,i iz z+ , where 

1i iz z δ+− < . A solution ( )* *
1 , , mx x�  to S′  for iz z=  in Step 2 is either an exact or ap-

proximate solution to T ′ . The objective function value ( )* *
1 , , mf x x�  for T ′  is at most δ  

larger than the minimum value. 

 
Algorithm 1 is an extension of the “sliding objective function method” for 

solving a two-variable linear programming problem [9]. More generally, it is a 
level-set method since ( ) ( ){ }1 1, , : , ,m mx x f x x z≤� �  is a sublevel set [16] of f, 
a concept used extensively in quasiconvex minimization [17]. The difficulty in 
solving T ′  by Algorithm 1 is that one must solve a series of systems S ′  via 
Proposition 1 or Corollary 2. But advancing computer techniques [18] may al-
low a computer to “visualize” the m-dimensional sublevel sets of Algorithm 1 
and thus determine at least an approximate solution to T ′  geometrically in a 
manner analogous to finding the zeros of a real-valued function with graphing 
software. 

Algorithm 1 may also be construed as an inverse approach for nonlinear 
problems to the linear active-set constraint selection method in m-dimensions 
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described in [19] [20] [21] [22]. There, for a minimization problem, z increases 
at each iteration upon adding more active constraints until all constraints are ac-
tive. In contrast, z decreases in Algorithm 1 until there are no solutions to S ′ . 
In the former case, the additional constraints and resulting smaller feasible re-
gion cause z to increase. In the latter case, a smaller z gives a smaller feasible re-
gion for S ′ . The significance of this comparison is that an approach related to 
Algorithm 1 has been efficiently implemented for large-scale linear program-
ming problems T ′ . 

3. Applications 
3.1. Example of Solving Nonlinear Inequalities and Equalities  

Consider the following system S of inequalities and equalities:  
2

1 2 1 32 3 2 3x x x x+ + ≤                      (18) 

1 1 2 1 34 2 1x x x x x+ − ≤                      (19) 
2 2
1 2 3 33 4 6x x x x+ + =                      (20) 
2 2
1 2 2 32 2.x x x x− + − =                     (21) 

To find a solution for S or else determine that a solution does not exist for 
(18)-(21), we apply Proposition 1. The associated problem problem T ′  is 

(P1) Minimize ( ) 4
1 2 3 1 2 1 2 3 4 1, , , , , , , , kkf x x x s s a a a a a

=
= ∑  

subject to  
2

1 2 1 3 1 12 3 2 3x x x x s a+ + + + =  

1 1 2 1 3 2 34 2 1x x x x x s a+ − + + =  
2 2
1 2 3 3 23 4 6x x x x a+ + + =  
2 2
1 2 2 3 42 2x x x x a− + − + =  

0, 1,2is i≥ =  

 0, 1,2,3,4.ja j≥ =  

Problem P1 is then solved by the nonlinear programming solver BARON in 
the General Algebraic Modeling System (GAMS) [23], which gives to two decimal 
places 1 0.14x = − , 2 0.73x = − , 3 1.31x = , 1 0.11s = , 2 1.17s = ,  

1 2 3 4 0a a a a= = = =  with an objective function value of 0. It follows from 
Proposition 1 that ( )0.14, 0.73,1.31− −  solves (18)-(21). 

We note that applying the same approach to the system  

2 2 1x y− + ≥                          (22) 

2 7x y y x− − + ≤ −                        (23) 

3 2 2 24 2x xy y x y− − − + ≤ −                    (24) 

3 24 3x xy y− − =                        (25) 
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gives a nonzero optimal objective function value after putting (22) in the stan-
dard inequality direction (1). Hence no solution exists for system (22)-(25). 

3.2. Example of Finding the Core of a Cooperative Game  

In cooperative game theory, the solution concept called the core of a game [24] 
reduces to the solution of a system of linear inequalities and equalities. A coop-
erative game is one in which players form coalitions, coordinate their strategies, 
and share the payoffs. Given a cooperative n-person game, let { }1, ,N n= �  
denote the set of players. For each subset S of N, the characteristic function ν  
of the game gives the amount ( )Sν  that the members of S can be certain of 
receiving if they form a coalition. A reward vector ( )1, , nx x=x �  stipulates the 
amount ix  that player i receives. If for 1, ,i n= � , a reward vector x  satisfies  

( ) ( )
1

group rationality
n

i
i

N xν
=

= ∑  

( ) ( )individual rationalityix iν≥  

then x  is called an imputation. The core of an n-person game is the set of all 
undominated imputations. An imputation x  is in the core of an n-person game 
if and only if for each subset S of N the sum of its players’ rewards is at least 
( )Sν . 
The following example is adapted from [24]. Let 1G  be a 3-player game with 

characteristic function ( ) ( ) ( ) ( ) ( )1 2 3 2,3 0ν ν ν ν ν= = = = =  and  
( ) ( ) ( )1,2 1,3 1,2,3 $1000000ν ν ν= = = . Then a reward vector ( )1 2 3, ,x x x  is an 

imputation if and only if  

1 0x ≥                            (26) 

2 0x ≥                            (27) 

3 0x ≥                            (28) 

1 2 3 1,000,000x x x+ + =                     (29) 

An imputation ( )1 2 3, ,x x x  will be in the core if and only if ( )1 2 3, ,x x x  also 
satisfies  

1 2 1,000,000x x+ ≥                       (30) 

1 3 1,000,000x x+ ≥                       (31) 

2 3 0x x+ ≥                          (32) 

1 2 3 1,000,000x x x+ + ≥                     (33) 

To find the core defined by (26)-(33), we remove the redundant constraint 
(33). In addition, let ( ){ }1 2 3, , : 0, 1, 2,3iX x x x x i= ≥ =  to avoid adding slack 
and artificial variables to the nonnegativity restrictions. We then find the solu-
tions of the system  

1 2 1,000,000x x− − ≤ −                      (34) 

1 3 1,000,000x x− − ≤ −                      (35) 

2 3 0x x− − ≤                          (36) 
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1 2 3 1,000,000x x x+ + =                      (37) 

( )1 2 3, ,x x x X∈                         (38) 

in the standard form (1)-(3) for S. 
The associated minimization problem T for (34)-(38) is  

(P2) Minimize ( ) 4
1 2 3 1 2 1 2 3 4 1, , , , , , , , kkf x x x s s a a a a a

=
= ∑  

subject to  

1 2 1 1 1,000,000x x s a− − + + = −  

1 3 2 2 1,000,000x x s a− − + + = −  

2 3 3 3 0x x s a− − + + =  

1 2 3 4 1,000,000x x x a+ + + =  

0, 1, 2,3ix i≥ =  

0, 1,2,3js j≥ =  

  0, 1,2,3,4ka k≥ =  

Solving P2 with the CPLEX solver in GAMS, we obtain the unique solution  

1 1000000x = , 2 0x = , 3 0x = , 1 2 3 1 2 3 4 0s s s a a a a= = = = = = = . Thus the sys- 
tem (34)-(38) has a solution ( )1000000,0,0  according to Proposition 1, and the 
core of G1 is ( ){ }1000000,0,0 . 

3.3. Example of Solving a Linear Goal Program 

Consider the following goal programming advertising model adapted from [25]. 
There are four resource constraints and two goals, where 1x  and 2x  are the 
nonnegative number of minutes for radio and television ads, respectively, to be 
bought for advertising some product. The resource constraints impose limita-
tions on developing the ads. The first goal is that the ads should reach at least 45 
million people, while the second goal is that the total cost spent on both ads should 
be no more than 100 thousand dollars. The explicit resource and goal constraints 
are given as the system 

( )1 22 10 resource constraintx x+ ≤               (39) 

( )1 6 resource constraintx ≤                 (40) 

( )1 0 resource constraintx ≥                 (41) 

( )2 0 resource constraintx ≥                 (42) 

( )1 24 8 45 goal constraintx x+ ≥               (43) 

( )1 28 24 100 goal constraintx x+ ≤             (44) 

We apply Corollary 2 to solve (39)-(44) for ( )1 2,x x  or else to determine that 
both goals cannot be satisfied. We include the nonnegativity constraints (41)-(42) 
in the set ( ){ }1 2, : 0, 1, 2iX x x x i= ≥ =  to avoid adding slack variables to them. 
We then change the direction of (43) to ≤ as in (1), add slack variables to all in-
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equalities, but only add artificial variables to the goal constraints. We do not dis-
tinguish between the relative importance of the goals. Problem T in Corollary 2 
thus becomes  

(P3) Minimize ( ) 2
1 2 1 2 3 4 1 2 1, , , , , , , kkf x x s s s s a a a

=
= ∑  

subject to  

1 2 12 10x x s+ + =  

1 2 6x s+ =  

1 2 3 14 8 45x x s a− − + + = −  

1 2 4 28 24 100x x s a+ + + =  

0, 1,2ix i≥ =  

0, 1,2ja j≥ =  

0, 1,2,3,4ks k≥ =  

The CPLEX solver in GAMS gives that P3 has no solution and hence that 
(39)-(44) cannot be jointly satisfied. However, a slight modification of P3 yields 
further information. We now subtract artificial variables instead of adding them 
in the goal constraints of P3, as allowed by Corollary 2. In this case, we get a so-
lution 1 5x = , 2 2.5x = , 2 1s = , 1 5a = , 1 3 4 20 0 0s s s a= = = = = = . The con-
clusion from Proposition 1 is again that (39)-(44) cannot be satisfied. But now 

1 5a =  is the amount by which (43) cannot be met for 1 25, 2.5x x= = . This point 
satisfies (44), however, since 2 0a = . Such information is available if artificial 
variables are used only in the goal constraints of (4) and are subtracted rather 
than added. In that case, the slack and artificial variables in a goal constraint act 
as a pair of deviational variables [26]. 

Reference [26] also discusses weighting the artificial variables differently in 
the objective function of T. Such a weighting can account for the relative impor-
tance of the different goals as well as normalize the goal constraints to a compa-
rable scale. T would then provide a more accurate model. 

3.4. Example of Solving a Nonlinear Goal Program  

A nonlinear goal programming problem has either a nonlinear goal or a nonlinear 
resource constraint. Consider the following nonlinear two-goal programming 
problem, where ( ){ }1 2 3, , : , 1, 2,3iX x x x x W i= ∈ =  where { }0,1,2,3,W = �  

( )2
1 3 5 resource constraintx x+ ≤                  (45) 

( )2 3 1 3 8 resource constraintx x x x− ≤               (46) 

( )2
1 1 3 22 3 3 goal constraintx x x x− + ≥              (47) 

( )2
1 3 24 3 12 goal constraintx x x− + ≤                (48) 

( )1 2 3, ,x x x X∈                          (49) 

After taking the negative of (47) to add a slack variable and put (47) into the 
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standard form (1), we use Proposition 1 to formulate (45)-(49) as a minimiza-
tion problem and obtain  

(P4) Minimize ( ) 4
1 2 3 1 2 3 4 1 2 3 4 1, , , , , , , , , , kkf x x x a a a a s s s s a

=
= ∑  

subject to  
2

1 3 1 1 5x x s a+ + + =  

2 3 1 3 2 2 8x x x x s a− + + =  
2
1 1 3 2 3 32 3 3x x x x s a− + − + + = −  

2
1 3 2 4 44 3 12x x x s a− + + + =  

0, 1,2,3,4js j≥ =  

0, 1,2,3,4ka k≥ =  

( )1 2 3, ,x x x X∈  

The Baron solver in GAMS gives the solution 1 0x = , 2 3x = , 3 1x = , 1 4s = , 

2 5s = , 4 4s =  and 1 2 3 4 3 0a a a a s= = = = =  with an objective function value 
of 0. The zero objective function value indicates that ( )0,3,1  satisfies (45)-(49). 
Weighting the artificial variables in the objective function of problem T is also 
possible for nonlinear goal programming. 

3.5. Example of Finding a Nash Equilibrium (NE)  

Let G2 be the two-person nonzero sum game with the payoff matrix of Table 1. 
According to [27], the following system (50)-(58) is both necessary and suffi-
cient for ( )1 2,x x  and ( )1 2,y y  to be a mixed NE for Players 1 and 2, respec-
tively. Let ( ){ }1 2 1 2, , , : 0, 0, 1, 2i iX x x y y x y i= ≥ ≥ = . The auxiliary variables α  
and β  are needed in these conditions but not required to express the NE of G2.  

1 22 0y y α− − ≤                         (50) 

1 2 0y y α− + − ≤                         (51) 

1 2 0x x β− − ≤                         (52) 

1 22 0x x β− + − ≤                        (53) 

1 1 2 1 1 2 2 22 0x y x y x y x y α− − + − =                  (54) 

1 1 2 1 1 2 2 22 0x y x y x y x y β− − + − =                   (55) 

1 2 1 0x x+ − =                          (56) 

 
Table 1. Payoff Matrix for G3. 

 Player 2 

  1y  2y  

Player 1 1x  ( )2,1  ( )1, 1− −  

 2x  ( )1, 1− −  ( )1,2  
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1 2 1 0y y+ − =                          (57) 

( )1 2 1 2, , ,x x y y X∈                        (58) 

Thus problem T of Proposition 1 is now 

(P5) Minimize ( ) 8
1 2 1 2 1 4 1 8 1, , , , , , , , , kkf x x y y s s a a a

=
= ∑� �   

subject to  

1 2 1 12 0y y s aα− − + + =  

1 2 2 2 0y y s aα− + − + + =  

1 2 3 3 0x x s aβ− − + + =  

1 2 4 42 0x x s aβ− + − + + =  

1 1 2 1 1 2 2 2 52 0x y x y x y x y aα− − + − + =  

1 1 2 1 1 2 2 2 62 0x y x y x y x y aβ− − + − + =  

1 2 71 0x x a+ − + =  

1 2 81 0y y a+ − + =  

0, 1,2ix i≥ =  

0, 1,2jy j≥ =  

0, 1, , 4ks k≥ = �  

0, 1, ,8.la l≥ = �  

The BARON solver in GAMS gives the solution 1 0.4y = , 2 0.6y = , 1 0.6x = , 

2 0.4x = , 0.2α = , 0.2β = , with all the js  and ka  equal to 0. It is well known 
that a mixed NE always exists [28] for a noncooperative game with a finite number 
of players having a finite number of strategies. This fact is confirmed here, and 
the mixed strategies of Players 1 and 2 for G2 are (0.6, 0.4) and (0.4, 0.6), respec-
tively. 

For 3n ≥ , necessary and sufficient conditions given in [29] can be similarly 
used to find an NE. Likewise, Berge [30] and more general equilibria can be found 
from the necessary and sufficient conditions stated in [31]. The reasoning be-
hind these sets of conditions is that any equilibrium in noncooperative game 
theory is implicitly defined by an optimization problem with inequality and equal-
ity constraints. This fact results from the properties associated with the general 
meaning of an equilibrium. The system (50)-(58), for example, is just a way to 
simplify this optimization problem by writing it as a system of inequalities and 
equalities with auxiliary variables. 

3.6. Example of Solving an Optimization Problem with  
Algorithm 1 

Consider the following problem with nonnegative integer variables. 

(P6) Minimize ( )1 2 1 2, 3f x x x x= − −  

subject to  
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( ) 2 2
1 2 1 2, 3 2 18g x x x x= + ≤  

( )1 2,x x X∈  

where ( ){ }1 2, : , 1, 2iX x x x W i= ∈ = . Associated with the problem 6T P′ =  of 
Algorithm 1 is the system S ′   

1 23x x z− − ≤                         (59) 
2 2
1 23 2 18x x+ ≤                        (60) 

( )1 2,x x X∈                         (61) 

We apply Algorithm 1 to (59)-(61) with the following steps.  
Step 1. We use Proposition 1 and the BARON solver in GAMS to find the 

point (1, 2) satisfying (60)-(61). Set ( )1 1, 2 5z f= = − , 1δ = , and 1i = . 
Step 2. Set 2 1 6z z δ= − = − . Using Proposition 1 for (59)-(61) with 6z = − , 

GAMS determines a solution. In general, Step 2 only requires information as to 
the existence or nonexistence of solutions to S ′  for the current value of z. 

Step 3. Set 2i = .  
Step 2. Set 3 2 7z z δ= − = − . Then GAMS determines a solution for (59)-(61) 

with 7z = − . 
Step 3. Set 3i = . 
Step 2. Set 4 3 8z z δ= − = − . Now GAMS cannot find a solution to (59)-(61). 
Step 4. The optimal objective function value of P6 lies in ( ]8, 7− − . Since the 

coefficients of the objective function ( )1 2 1 2, 3f x x x x= − −  are integers, its 
minimum value must be −7 occurring at (2, 1). 

Figure 1 illustrates the application of Algorithm 1 to P6. For each fixed z, the 
set of ( )1 2,x x  both satisfying (60)-(61) and lying to the right of the line  

1 23x x z− − =  are feasible points to P6 that give smaller values of 1 23x x− − . The 
solution to P6 is the point ( )2,1  as noted by the single dot with ( )2,1 7f = − . 
The solution to two decimal places without the integer restriction is ( )2.27,1.13  
with ( )2.27,1.13 7.94f = − . 
 

 
Figure 1. Graphical Illustration of Solving P6 by Algorithm 1. 
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In general, the sublevel sets of the objective function f of the problem (T') 
solved by Algorithm 1 are considerably more complicated in higher dimensions, 
with more constraints, and for a nonlinear objective function than the level sets 
of P6. As seen in Figure 1, the sublevel sets for P6 are simple half-spaces. The 
two-dimensional level (not sublevel) sets of [18] provide more interesting visual 
examples in a context not involving optimization. 

4. Conclusions  

In this paper, we have related a general nonlinear programming problem to a 
system S of nonlinear inequalities and equalities in two ways. In the first, we 
solved S or else determined that a solution did not exist by solving an associated 
nonlinear programming problem. In particular, we used artificial variables and 
generalize phase 1 of the two-phase simplex method for the purpose of examin-
ing the solvability of S. Examples were given for a system of nonlinear inequali-
ties and equalities, in cooperative and non-cooperative game theory, and in goal 
programming. 

In the second way, we developed an algorithm to solve an a general nonlinear 
programming problem to any degree of accuracy by determining if a solution 
exists for each of a series of systems S, i.e., for a series of subproblems. The fact 
that an optimization problem can solve a given system S, but not vice versa, simply 
indicates that an optimization problem must essentially solve S as part of the op-
timization process. In this second approach, we generalized to nonlinear pro-
gramming the “sliding objective function” method of linear programming, and 
an example was presented to illustrate its geometrical interpretation. We noted 
that in linear programming a sequential active-set method with an inverse inter-
pretation of Algorithm 1 uses the simplex algorithm for each subproblem and 
has proved efficient in solving large-scale linear programming problems. This 
observation also emphasizes that both of our approaches here rely on existing 
computational techniques and thus might be construed as meta-approaches. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Hart, R. (2011) The Chinese Roots of Linear Algebra. The Johns Hopkins University 

Press, Baltimore.  

[2] Archibald, R.C. (1918) Cattle Problem of Archimedes. The American Mathematical 
Monthly, 25, 411-414. https://doi.org/10.1080/00029890.1998.12004887 

[3] Miller, G.A. (1930) On the History of Determinants. The American Mathematical 
Monthly, 37, 216-219. https://doi.org/10.2307/2299112 

[4] Fearnley-Sander, D. (1979) Hermann Grassmann and the Creation of Linear Alge-
bra. The American Mathematical Monthly, 86, 809-817.  
https://doi.org/10.2307/2320145 

https://doi.org/10.4236/ajor.2020.106016
https://doi.org/10.1080/00029890.1998.12004887
https://doi.org/10.2307/2299112
https://doi.org/10.2307/2320145


H. W. Corley, E. O. Dwobeng 
 

 

DOI: 10.4236/ajor.2020.106016 297 American Journal of Operations Research 
 

[5] Kjeldsen, T.H. (2002) Different Motivations and Goals in the Historical Develop-
ment of the Theory of Systems of Linear Inequalities. In: Buchwald, J.Z. and Gray, 
J., Eds., Archive for History of Exact Sciences, Springer, Berlin, 469-538.  
https://doi.org/10.1007/s004070200057 

[6] Motzkin, T.S. (1933) Contributions to the Theory of Linear Inequalities. PhD. Dis-
sertation, University of Basel, Basel. (Translated by Fulkerson, D.R. (1983) In: Theo-
dore, S.M. Selected Papers, Cantor, D., Gordon, B. and Rothschild, B., Eds., Birk-
hauser, Basel.)  

[7] Kuhn, H.W. (1956) Solvability and Consistency for Linear Equalities and Inequali-
ties. The American Mathematical Monthly, 63, 217-232.  
https://doi.org/10.2307/2310345 

[8] Kuhn, H.W. and Tucker, A.W. (1956) Linear Inequalities and Related Systems. Prin-
ceton University Press, Princeton, NJ. https://doi.org/10.1515/9781400881987 

[9] Dantzig, G.B. (1963) Linear Programming and Extensions. Princeton University Press, 
Princeton. https://doi.org/10.7249/R366 

[10] Davis, M. (1973) Hilbert’s Tenth Problem Is Unsolvable. The American Mathemat-
ical Monthly, 80, 233-269. https://doi.org/10.1080/00029890.1973.11993265  

[11] Jeyakumar, V. and Gwinner, J. (1991) Inequality Systems and Optimization. Journal 
of Mathematical Analysis and Applications, 159, 51-71.  
https://doi.org/10.1016/0022-247X(91)90221-K 

[12] Rohn, J. (2003) Solvability of Systems of Linear Interval Equations. SIAM Journal 
on Matrix Analysis and Applications, 25, 237-245.  
https://doi.org/10.1137/S0895479801398955 

[13] Prokopyev, O.A., Butenko, S. and Trapp, A. (2009) Checking Solvability of Systems 
of Interval Linear Equalities and Inequalities via Mixed Integer Programming. Eu-
ropean Journal of Operational Research, 199, 117-121.  
https://doi.org/10.1016/j.ejor.2008.11.008 

[14] Fan, J., Liu, L. and Qin, X. (2020) A Subgradient Extragradient Algorithm with In-
ertial Effects for Solving Strongly Pseudomonotone Variational Inequalities , Opti-
mization. A Journal of Mathematical Programming and Operations Research, 68, 
2199-2215. https://doi.org/10.1080/02331934.2019.1625355 

[15] Stonyakin, F., Gasnikov, A., Tyurin, A., Pasechnyuk, D., Agafonov, A., Dvure-
chensky, P., Dvinskikh, D., Kroshnin, A. and Piskunova, V. (2020) Inexact Model: A 
Framework for Optimization and Variational Inequalities. Cornell University, New 
York.  

[16] https://en.wikipedia.org/wiki/Level_set/  

[17] Aravkin, A., Burke, J., Drusvyatskiy, D., Friedlander, M. and Roy, S. (2019) Lev-
el-Set Methods for Convex Optimization. In: Lee, J. and Leyffer, S., Eds., Mathe-
matical Programming, Springer, Berlin, 359-390.  
https://doi.org/10.1007/s10107-018-1351-8 

[18] Simionescu, P. (2011) Some Advancements to Visualizing Constrained Functions 
and Inequalities of Two Variables. Journal of Computing and Information Science 
in Engineering, 11, Article No. 014502. https://doi.org/10.1115/1.3570770 

[19] Saito, G., Corley, H.W. and Rosenberger, J. (2013) Constraint Optimal Selection 
Techniques (COSTs) for Linear Programming. American Journal of Operations Re-
search, 3, 53-64. https://doi.org/10.4236/ajor.2013.31004 

[20] Noroziroshan, A., Corley, H.W. and Rosenberger, J. (2015) A Dynamic Active-Set 
Method for Linear Programming. American Journal of Operations Research, 5, 526- 
535. https://doi.org/10.4236/ajor.2015.56041 

https://doi.org/10.4236/ajor.2020.106016
https://doi.org/10.1007/s004070200057
https://doi.org/10.2307/2310345
https://doi.org/10.1515/9781400881987
https://doi.org/10.7249/R366
https://doi.org/10.1080/00029890.1973.11993265
https://doi.org/10.1016/0022-247X(91)90221-K
https://doi.org/10.1137/S0895479801398955
https://doi.org/10.1016/j.ejor.2008.11.008
https://doi.org/10.1080/02331934.2019.1625355
https://en.wikipedia.org/wiki/Level_set/
https://doi.org/10.1007/s10107-018-1351-8
https://doi.org/10.1115/1.3570770
https://doi.org/10.4236/ajor.2013.31004
https://doi.org/10.4236/ajor.2015.56041


H. W. Corley, E. O. Dwobeng 
 

 

DOI: 10.4236/ajor.2020.106016 298 American Journal of Operations Research 
 

[21] Saito, G., Corley, H.W., Rosenberger, J., Sung, T.K. and Noroziroshan, A. (2015) 
Constraint Optimal Selection Techniques (COSTs) for Nonnegative Linear Program-
ming Problems. In: Simos, D., Ed., Applied Mathematics and Computation, Elsevi-
er, Amsterdam, 586-598. https://doi.org/10.1016/j.amc.2014.11.080 

[22] Noroziroshan, A., Corley, H.W. and Rosenberger, J. (2017) Posterior Constraint Se-
lection Techniques for Nonnegative Linear Programming. American Journal of Oper-
ations Research, 7, 26-40. https://doi.org/10.4236/ajor.2017.71002 

[23] https://www.gams.com/ 

[24] Chalkiadakis, G., Elkind, E. and Woolridge, M. (2011) Computational Aspects of 
Cooperative Game Theory (Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning). Morgan & Claypool, Princeton, NJ.  
https://doi.org/10.2200/S00355ED1V01Y201107AIM016 

[25] Taha, H. (2011) Operations Research: An Introduction. 9th Edition, Prentice Hall, 
Princeton, NJ. 

[26] Jones, D. and Tamiz, M. (2010) Practical Goal Programming. Springer, New York. 
https://doi.org/10.1007/978-1-4419-5771-9 

[27] Mangasarian, O.L. and Stone, H. (1964) Two-Person Nonzero-Sum Games and Qua-
dratic Programming. Journal of Mathematical Analysis and Applications, 9, 348-355.  
https://doi.org/10.1016/0022-247X(64)90021-6 

[28] Nash, J. (1950) Equilibrium Points in n-Person Games. Proceedings of the National 
Academy of Sciences of the United States of America, 36, 48-49.  
https://doi.org/10.1073/pnas.36.1.48 

[29] Batbileg, S. and Enkhbat, R. (2011) Global Optimization Approach to Nonzero Sum 
n-Person Game. Advanced Modeling and Optimization, 13, 59-66.  

[30] Corley, H.W. (2015) A Mixed Cooperative Dual to the Nash Equilibrium. Game 
Theory, 2015, Article ID: 647246. https://doi.org/10.1155/2015/647246 

[31] Nahhas, A. and Corley, H.W. (2017) A Nonlinear Programming Approach to De-
termine a Generalized Equilibrium for N-Person Normal Form Games. Interna-
tional Game Theory Review, 19, Article No. 1750011. 
https://doi.org/10.1142/S0219198917500116 

https://doi.org/10.4236/ajor.2020.106016
https://doi.org/10.1016/j.amc.2014.11.080
https://doi.org/10.4236/ajor.2017.71002
https://www.gams.com/
https://doi.org/10.2200/S00355ED1V01Y201107AIM016
https://doi.org/10.1007/978-1-4419-5771-9
https://doi.org/10.1016/0022-247X(64)90021-6
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1155/2015/647246
https://doi.org/10.1142/S0219198917500116

	Relating Optimization Problems to Systems of Inequalities and Equalities
	Abstract
	Keywords
	1. Introduction
	2. Basic Results 
	3. Applications
	3.1. Example of Solving Nonlinear Inequalities and Equalities 
	3.2. Example of Finding the Core of a Cooperative Game 
	3.3. Example of Solving a Linear Goal Program
	3.4. Example of Solving a Nonlinear Goal Program 
	3.5. Example of Finding a Nash Equilibrium (NE) 
	3.6. Example of Solving an Optimization Problem with Algorithm 1

	4. Conclusions 
	Conflicts of Interest
	References

