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Abstract 
Topological features in high dimensional time series are used to characterize 
changes in stock market dynamics over time. We explored the daily log re-
turns of four major US stock market indices and 10 ETF sectors between 
January 2010-June 2020. Topological data analysis and persistence homology 
were used on two sequences of point cloud data sets the stock indices and the 
ETF sectors, respectively. Using these sequences, the daily log returns, persis-
tence diagrams, persistence landscapes, and mean landscapes were used to 
quantify topological patterns in the multidimensional time series. For exam-
ple, norms of the persistence landscapes were generated to detect critical 
transitions in the daily log returns. To measure statistical significance, we im-
plemented three permutation tests with a significance level 0.05α =  to de-
termine if topological features change within a particular time frame by 
comparing sliding windows in the sequence of point cloud data sets. We 
found that between July 1, 2019 and July 1, 2020, there is evidence of chang-
ing structure in the US stock market. Critical transitions are identified by the 
statistical properties of the norms of the persistence landscape between con-
tiguous daily sliding windows of the stock indices and ETF sector series. 
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1. Introduction 

Topological data analysis (TDA) extracts topological features by examining the 
shape of the data through persistent homology to produce topological summa-
ries. Two topological summaries, the persistent barcode [1] [2], and the persis-
tent diagram [3], provide visual representation of persistent topological features. 
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However, these topological summaries lack geometric properties and do not 
have a unique (Fréchet) mean [4], which makes it difficult to conduct statistical 
analysis and machine learning. In fact, Bubenik [5] states effective algorithms do 
not exist for computing means for a wide variety of examples, but he notes that 
[6] and [7] have made noteworthy advancement in this direction. 

In Bubenik [5], the persistence landscape is provided as an alternative topo-
logical summary. The computation time is less for the persistence landscape 
than the persistence barcode and persistence diagram, because the persistence 
landscape is a sequence of piece-wise linear functions. Yet, the main advantage 
of using a persistence landscape is that they are situated in a separable Banach 
space, which means that we may use probability theory and random variables. 
After defining the persistence landscape and the norms of persistence landscapes, 
Bubenik [5] further develops his work by introducing the mean or average per-
sistence landscape, which may be used for statistical analysis and again is some-
thing the persistence diagram and persistence barcode do not have. Furthermore, 
he proves many statistical properties for using persistence landscapes, such as 
convergence, stability, the Central Limit Theorem, and the Strong Law of Large 
Numbers (SLLN), which is important, so that one may conduct statistical infe-
rence. In particular, Bubenik [5] conducts a permutation test using multiple per-
sistence landscapes to obtain a p-value (see Section 2.5, Section 2.6, Section 3.4), 
which is something that also cannot be done with persistence diagrams and per-
sistence barcodes. This permutation test and the persistence landscape can be 
found in [8]. Other notable topological data analysis applications include the 
discovery of a subgroup of breast cancers [9], an understanding of the topology 
of the space of natural images [10], brain signals [11], and pre-clinical spinal 
cord injury [12]. 

With this alternative topological summary and the ability to conduct statistical 
inference, we bring our focus to critical transitions in complex dynamical sys-
tems, in particular, the financial market. Scheffer et al. [13] asserted that pre-
dicting critical transitions in a complex dynamical system prior to occurring is 
unreliable and very challenging, because the state of the complex system may not 
fluctuate substantially before reaching a critical threshold. However, in their 
work, they found for vast classes of systems, early warning signals may exist to 
indicate when a critical transition is imminent. Even though Scheffer et al. [13] 
presented examples of early warning signals in ecosystems, time series, climate 
dynamics, and epileptic seizures, there is not an example of an early warning 
signal for a financial crash. While Scheffer et al. [13] clarified that some predic-
tability may be employed by experts, in general financial markets are compli-
cated to predict. Although Scheffer et al. [13] referenced excellent works with fi-
nancial early warning indicators, such as the VIX (volatility based index), syste-
matic relationships in the variance and first order auto-correlation, and correla-
tion increases across returns in falling markets, it was not relevant to our study, 
which leads us to research more about financial market dynamics. 
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Ensor and Koev [14] focused on the multivariate GARCH (MGARCH) and 
the hierarchical regime switching dynamic covariance (HRSDC) models, in 
which both models examined the co-variance structure within and between mar-
ket sectors for the time period January 2, 1998 to December 2001. The HRSDC 
model provided early detection of several anomalous behaviors, such as the de-
cline of Enron, the unusual returns for Silicon Graphics, and the fall of Lehmann 
Brothers. The detection of these anomalous behaviors is based on price move-
ment of individual securities when viewed as a system of securities with the cor-
relation within and between sectors. Therefore, Ensor and Koev [14] demon-
strated a nested model is useful for understanding the correlation structure be-
tween different market sectors and how these sectors interacted as the market 
changes between regimes. 

While Ensor and Koev [14] study prompted us to use ETF sectors in our study 
and is effective in identifying anomalous behaviors, such as the decline of Enron 
and the fall of Lehnman Brothers, our interest is to use TDA to detect early 
warning signals for financial crashes and examine topological features changing 
within time with statistical significance. A number of recent studies have ex-
plored the use of TDA on financial time series data to detect early warning sig-
nals of financial crashes. Gidea [2] analyzed the cross correlation network of the 
daily returns (adjusted closing prices) of the Dow Jones Industrial Average 
(DJIA) stocks listed as February 19, 2008 from January 2004 to September 2008. 
They tracked the topological changes when approaching a critical transition and 
showed some presence of early signs of a critical transition. On the other hand, 
Gidea et al. [15] analyzed four major cryptocurrencies (Bitcoin, Ethereum, Lite-
coin, and Ripple) before the beginning of 2018 and showed these cryptocur-
riences exhibiting highly erratic behavior. The paper introduced a method that 
combines TDA with machine learning to understand what happens before a 
critical transition. Moreover, they use Takens’ theorem, the time delay embed-
ding theorem, and C1-norms of persistence landscapes. While the paper has va-
lid analysis, our interest is in stocks and ETF sectors rather than cyprtocurren-
cies. 

Alternatively, Gidea and Katz [16] investigated the daily log-returns of four 
stock indices (DJIA, S&P500, NASDAQ, and Russell 2000) from December 23, 
1987 and December 08, 2016, where the topological properties of these stock in-
dices were examined. This paper uses a sequence of a point cloud data set with a 
sliding window. Gidea and Katz [16] provided an excellent framework using 
persistence diagrams, persistence landscapes, and norms for persistence land-
scapes and we were able to replicate all of their results for 2000 and 2008 crashes. 
They demonstrated that the variance as defined in [17] shows rising trends, we 
are not convinced about the average spectral densities and auto-correlation 
function (ACF) with their associated Kendall-Mau tests demonstrated trends. 

While these papers provide insightful groundwork for TDA in financial mar-
kets and cryptocurrencies, such as showing how to use cross correlation net-
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works to track topological changes, using TDA with machine learning to under-
stand what happens before a critical transition, and using the norms of persis-
tence landscapes to indicate an approaching critical transition, these financial 
papers lack statistical inference. We are motivated to explore how the topological 
features change within a given time period for stocks and ETF sectors and find 
any statistical significant using a permutation test [5] [8], which we discuss in 
detail in Section 2.5, Section 2.6, and Section 3.4. 

While we acknowledge the previous cited authors, we deem our contributions 
as an empirical framework that adapts their analytical models to new data sets 
and expand by conducting statistical inference. Similar to Gidea and Katz [16], 
we investigate the same four major indices (DJIA, S&P500, NASDAQ, and Rus-
sell 2000), but we extend our data set to include 10 ETF sectors (Consumer Dis-
cretionary, Consumer Staples, Energy, Financials, Health Care, Industrials, Ma-
terials, Information Technology, Utilities, and Index) for January 4, 2010-July 1, 
2020 to examine their topological features to detect a critical transition or transi-
tions. Moreover, we generate several topological summaries, norms for persis-
tence landscapes 1p =  and 2p = , and conduct statistical inference on how 
these topological features change over time. In particular, we want to compare 
only sliding windows within a sliding step of one day from each other, which 
will be done separately for all the stock indices and for all the ETF sectors. We 
also compare all the stock indices against ETF sectors within the same sliding 
window. Our hypotheses tests will distinguish for two groups at a time if the 
means of topological features are the same either within a sliding step of one day 
in their respective sliding windows or within the same sliding window. The sta-
tistical tests of interest have not been seen before in any financial papers and will 
be our main contribution. The remainder of this paper is organized as follows. 

In Section 2, we provide background information on algebraic topology, ho-
mology, constructing the Vietoris-Rips complex, persistent homology, topologi-
cal summaries, norms of persistent landscapes, and statistical inference. In Sec-
tion 3, we outline our methods for obtaining the data, constructing a sequence of 
a point cloud data, using persistent homology on a sequence of a point cloud 
data set, generating topological summaries, and performing statistical inference. 
In Section 4, we present our findings from our data. In Section 5, we discuss and 
provide an interpretation of our results. In Section 6, we conclude the paper. 

2. Background 

This study presents a topological data analysis of financial time series data. Here 
we provide background material about four relevant areas: algebraic topology, 
homology, topological summaries, and norms for persistent landscapes. We ap-
ply topological data analysis to a sequence of point cloud data sets to examine 
their topological properties within a point cloud matrix of d 1-dimensional time 
series. For our analysis, a sequence of point cloud data sets denoted nX  is shown 
below: 
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where each point in the sequence is expressed as ( ) ( )1 2, , , d d
n q q qx t x x x= ∈  , d 

is the column number from a 1-dimensional time series, w is the sliding window 
size for a certain number of trading days ( tdn ) with a sliding step of one day, and 

1,2, ,n q=  . To obtain q, the difference is taken between the total number of 
days of the daily log returns ( dlrn ) and one less than the sliding window size 

1w− , so that q becomes ( )1dlrq n w= − −  or 1dlrq n w= − + . The total number 
of days of the daily log returns ( dlrn ) is the total number of trading days ( tdn ) 
minus 1 or 1dlr tdn n= − . To approximate the daily log returns, the formula is 
discussed in Section 3.1. So, every point cloud is compromised of a d w×  ma-
trix, where w d>  [16]. Note our method uses a sliding window w as seen in 
[16] and it does not apply the sliding window embedding theorem or Takens’ 
theorem. In the next two subsections, we provide background information on 
algebraic topology and persistent homology, so that for every point cloud, we 
generate topological summaries and compute their pL  norms based on their 
corresponding persistence landscapes to conduct statistical inference. For a more 
in depth background, we refer readers to [3] [5] [18] [19] [20] [21]. 

2.1. Algebraic Topology 

To produce topological summaries, we must first construct a Vietoris-Rips fil-
tration for each point cloud in a sequence of point cloud data sets, which re-
quires understanding simplices and simplicial complexes and are defined below 
[19]: 

Definition 2.1 Let { }0 , , na a  be a geometrically independent set in N . 
We define the n-simplex σ  spanned by 0 , , na a  to be the set of all points x 
of N  such that: 

0 0
, where 1,

n n

i i i
i i

x t a t t
= =

= = =∑ ∑                 (2) 

and 0it ≥  for all i.  
Definition 2.2 A simplicial complex K in N  in a collection of simplices in 
N  such that:  

• Every face of a simplex of K is in K.  
• The intersection of any two simplexes of K is a face.  
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2.2. Homology 

In homology, we are interested in a vector space ( )iH X  to a space X for each 
natural number { }0,1,2,i∈  , because ( )iH X  counts the number of k-dim- 
ensional holes in X. For example, ( )0H X  counts the number of 0-dimensional 
holes or the number of connected components in X, while ( )1H X  counts 
number of 1-dimensional holes or the number of loops in X. Furthermore, the 
algebraic structures must be homotopy invariant, meaning they must not change 
through deformations. Yet, it is very challenging to determine the homology of 
arbitrary topological spaces, because it is computationally inefficient, so instead 
we approximate using simplicial complexes. 

Now that simplicial complexes have been defined, we are introducing the pth 
homology of a simplicial complex K. First, we denote the field with two elements 
as 2 . Second, for a given simplicial complex K, we let ( )pC K  denote the 2
-vector space with basis given by the p-simplices of K. Third, for any { }1,2,p∈  , 
we define the linear map: 

( ) ( )
1

1
,

: : ,
p

p p p
K

C K C K
τ σ τ

σ τ
−

−
⊂ ∈

∂ → ∑                (3) 

The kernel of ( ) ( )1:p p pC K C K−∂ →  is the subgroup ( )1 0p
−∂  of ( )pC K  

and is called the group of p-cycles. The image of ( ) ( )1 1:p p pC K C K+ +∂ →  is 
the image 1+∂ p  is the subgroup of ( )( )1 1p pC K+ +∂  of ( )pC K  and is called 
the group of p-boundaries [19].  

Definition 2.3 For any { }0,1,2,p∈  , the pth homology of a simplicial 
complex K is the quotient vector space is defined as:  

( ) ( ) ( )1kernel image .p p pH K += ∂ ∂                  (4) 

Its dimension is defined by: 

( ) ( ) ( ) ( )1: dim dim kernel dim image ,p p p pK H Kβ += = ∂ − ∂       (5) 

which is called the pth Betti number of K [22]. 
The p-cycles that are not boundaries represent p-dimensional holes, which the 

pth Betti number counts. For the pth homology of a filtered simplicial complex K, 
we apply definition 2.3 and define as: 

Definition 2.4 Let K be a finite simplicial complex, and let  
KKKKK l =321 ⊂⊂⊂   be a finite sequence of nested subcomplexes of K. 

The simplicial complex K with such a sequence of subcomplexes is called a fil-
tered simplicial complex. The pth persistent homology of K is the pair  

( ){ } { }( ),
1 1

, ,i j
p i pi l i j l

H K f
≤ ≤ ≤ ≤ ≤

 

where { }, 1, ,i j l∈   for all i j≤ , ( ) ( ), :i j
p p i p jf H K H K→  are the linear 

maps induced by the inclusion maps i jK K→  [22].  
The pth persistent homology of a filtered simplicial complex provides more 

information about the maps between each subcomplex than the homologies of 
single subcomplexes, which is explained further in Section 2.2.2. While there are 
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several filtered simplicial complexes, such as the Cech, Alpha, and Delaunay, we 
chose the Vietoris-Rips complex, because it is computationally efficient [22]. 

2.2.1. Vietoris-Rips Construction 
Definition 2.5 Let { }1, , nX x x=   be a collection of points in d . Given a 

distance 0> , ( ),X   denotes the simplicial complex on n vertices 1, , nx x , 
where an edge between the vertices ix  and jx  with i j≠  is included if and 
only if ( ),i jd x x ≤   or generally the k-simplex are included with vertices 

0
, ,

ki ix x  if and only if all of the pairwise distances are at most  . This type of 
simplicial complex is called a Vietoris-Rips complex [8] [16].  

When ′<  , the Vietoris-Rips complex forms a filtration, ( ) ( ), ,X X ′⊆    , 
which by definition 2.4 is a filtered simplicial complex. While there is no clear 
criteria for select ′ , [23] used 0.05′ =  in their study. In this study, the Vie-
toris-Rips complex of nX  is denoted as ( ),nX   and follows definition 2.5, 
where nX  is a sequence of point cloud data sets as given by Equation (1). 
Moreover, the filtration of ( ) ( ), ,nX X ′⊆     is shown below: 

( ) ( )

( ) ( )

1 1, ,

, , ,q q

X X

X X

′⊆

′⊆



   

   

                    (6) 

where q is the difference between the number of the daily log returns and the 
sliding window ( )1w+  or 1dlrq n w= − + . By definition 2.4, ( ),nX   is a 
filtered simplicial complex. 

2.2.2. Persistent Homology 
Using definition 2.4 and definition 2.5, it is possible to find the p-dimensional 
homology of the Vietoris-Rips complex of nX  labelled as ( )( ),p nH X   with 
coefficients in field / 2   for small values of p and for different values of   
[8]. Recall from section 2.2, ( )p iH K  is a vector space and ( )p iKβ  counts the 
number of p-dimensional holes. When ′<  , we apply definition 2.4 to the fil-
tration ( ) ( ), ,n nX X ′⊆    , which induces linear maps  

( )( ) ( )( ), : , ,i j
p p n p nf H X H X ′→     as seen below: 

( )( ) ( )( )

( )( ) ( )( )

1 1, ,

, , ,

p p

p q p q

H X H X

H X H X

′→

′→



   

   

              (7) 

where 1dlrq n w= − + . Each ( )( ),p nH X   is a vector space whose generators 
correspond to holes in ( ),nX  , and the linear maps ,i j

pf  allow us to track 
the generators from ( )( ) ( )( ), ,p n p nH X H X ′→    . A suitable basis is se-
lected by applying the Fundamental Theorem of Persistence Homology. 

Theorem 2.1 (Fundamental Theorem of Persistent Homology) The Fun-
damental Theorem of Persistent Homology states there is a choice of basis vec-
tors ( )p iH K  for each { }1, ,i l∈   such that each map is determined by a bi-
partite matching of basis vectors [22].  
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Given Theorem 2.1, there is a choice of basis vectors of ( )( ),p nH X  , such 
that one may construct a well-defined and unique collection of disjoint half-open 
intervals, where a generator ( )( ),p nx H X∈    corresponds to a half-open in-
terval [ ),i ib d , which represents the lifetime of x. The endpoints ib  and id  refer 
to x first appearing and finally disappearing respectively in ( ),nX  . Specifically, 
if 0x ≠  is not in the image of 1 ,i ib b

pf − , then x is born in ( )( ),p nH X  . Con-
versely, if i id b>  is the smallest index for which ( ), 0i ib d

pf x = , then x dies in 
( )( ),p nH X  . Persistence is determined by a generator’s lifetime in the half-open 

interval, where a generator is considered more persistent the longer it appears in 
the half-open interval. If ( ), 0i ib d

pf x =  for all i ib d>  in jI , then x lives for-
ever, and its lifetime is represented by the interval [ ),ib ∞  [22]. Then, the set of 
vector spaces ( )( ),p nH X   together with the corresponding linear maps is 
referred to as a persistence module, which is the foundation for constructing to-
pological summaries. 

2.3. Topological Summaries 

To visualize, construct, and produce topological summaries, Theorem 2.1 is used 
to select the choice of basis vectors from ( )( ),p nH X   and the corresponding 
linear maps ,i ib d

pf , in which all topological summaries are derived from the per-
sistent modules. 

2.3.1. Persistence Module, Persistence Barcode, Persistence Diagram 
Definition 2.6 A persistence module is defined as a vector space Mα  for all 

a∈  and linear maps ( ) : a bM a b M M≤ →  for all a b≤  such that: 
1) ( )M a a≤  is the identity map; 
2) For all ( ) ( ) ( ),a b c M b c M a b M a c≤ ≤ ≤ ≤ = ≤ . 
For additional information about the construction of a persistence module, 

see [5]. There are three main types of topological summaries associated with a 
persistence module. The first type of topological summary is a called a barcode. 
It represents a finite collection of disjoint half-open intervals jI , in which each 
interval’s endpoints are a birth-death pairs, (b) and (d) respectively. In particular, 
an interval starts with the time of birth (b) and ends with the time of death (d) of 
a topological feature. The pth barcode is denoted by { }p jB I= . A topological 
feature’s survival or persistence is represented by the interval’s length. The 
second type of topological summary is the pth persistence diagram, which is 
denoted as ( ){ },

j
p i i i I

D b d
∈

= , where ib  and id  are the bar codes intervals’ 
end points and i ib d−∞ < < < ∞ . 

Unfortunately, the geometric properties of the barcodes and persistence dia-
grams present a difficult challenge for the calculation of means and variances, 
since two barcodes or two persistence diagrams may not have the same unique 
Friechet mean, which means statistical inference cannot be done. While the 
barcode and the persistence diagram are conventional topological summaries, 
Bubenik [5] showed how the persistence landscape is a better alternative. 
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2.3.2. Persistence Landscapes and Mean Landscape 
Bubenik and Dlotko [18] proved numerous statistical properties of persistence 
landscapes that we may use for statistical inference, such as stability, conver-
gence, central limit theorem, and strong law of large numbers. The persistent land-
scape and mean landscape are also used as topological summaries to indicate how 
persistence changes by examining the number of peaks. First, given a pair of num-
bers ( ),b d  with b d< , the piecewise linear (PL) function ( ) [ ], : 0,b df → ∞  is 
defined by [18]: 

( )

( )

,

0 if ,

if ,
2

if ,
2

b d

x b d
b dx b x b

f
b dx d x d

∉


+  − ∈  =   
 + − + ∈   

                 (8) 

Second, given a persistence module, M, the persistence landscape may be de-
fined as the function : Rλ × →   given by: 

( ) ( )( ), sup 0 | rank .k t h M t h t h kλ = > − ≤ + >             (9) 

Third, given a persistence diagram ( ){ },p i i i I
D b d

∈
=  for b d< ,  

( )( ) ( )( ), max 0,min ,f b d t b t d t= + − , and the persistence landscape is defined 
as follows: 

( ) ( ) ( ) ( ){ },, kmax | , ,i ib d
p i i p i I

k t f t b d D tλ
∈

= ∈            (10) 

where kmax denotes the kth largest element. Using Equation (10) for nX , the 
persistence landscape of nX  denoted by ( )nXλ  is the following: 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

,
1 1 1

,

k-max | ,

k-max | , ,

i i

i i

b d
p i i p i I

b d
q p q i i p q i I

X f X b d D X

X f X b d D X

λ

λ

∈

∈

= ∈

= ∈

         (11) 

where 1dlrq n w= − + . This results in the following lemma from [5]: 
Lemma 2.2  
The persistence landscape has the following properties: 
1) ( ) 0k tλ ≥ , 
2) ( ) ( )1k kt tλ λ +≥ , and 
3) ( )0k tλ  is 1-Lipschitz. 
From Equation (10), the persistence landscape is obtained and used to calcu-

late the mean landscape, which is defined below: 
Definition 2.7 Let 1, , nY Y  be independent and identically distributed cop-

ies of Y, and let 1, , nΛ Λ  be corresponding persistence landscapes. The mean 
landscape nΛ  is given by the point wise mean, in particular, ( )n nωΛ = Λ , 
where 

( ) ( )
1

1, , .
n

n i

i
k t k t

n
λ λ

=

= ∑                  (12) 

Using Equation (12) for nX , we have the following: 
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( ) ( )

( ) ( )

1 1
1

1

1

1 ,

n
n i

i

n
n i

q q
i

X X
n

X X
n

λ λ

λ λ

=

=

=

=

∑

∑

                      (13) 

where 1dlrq n w= − + . The mean landscape is used in section 2.5 and section 
2.6. 

2.4. Norms for Persistence Landscapes 

Gidea and Katz [16] applied pL  norms of the persistence landscapes to identify 
the signs of a financial crash, which usually occurs within a time of high variance 
and cross-correlations among stocks or ETFs, and demonstrated that 1L  and 

2L  norms of the persistence landscapes of four stock indices exhibited signifi-
cant rising trends before the financial crashes. We adopt their approach in our 
study. 

Therefore, for real valued functions on ×  , for 1 p≤ < ∞ , p-norms of 
persistence landscapes are defined as:  

( )
1

1
d ,p p

kp
i

t tλ λ
∞ ∞

−∞
=

 =   ∑ ∫                   (14) 

and for p = ∞ , 

( )
,

sup .k
k t

tλ λ
∞
=                        (15) 

Applying Equation (14) to our sequence of point cloud data sets nX  results 
in: 

( ) ( )

( ) ( )

1

1 1
1

1

1

d

d ,

p p
p

i

p p
q qp i

X X t

X X t

λ λ

λ λ

∞ ∞

−∞
=

∞ ∞

−∞
=

 =   

 =   

∑ ∫

∑ ∫

              (16) 

where 1dlrq n w= − + . 

2.5. Statistical Inference: Part I 

To compare the topological features between two groups, the persistence land-
scape is used to conduct a hypothesis test and statistical inference, which require 
several assumptions provided by [5]. First, the persistence landscapes lie in a se-
parable Banach space ( )p   for 1 p≤ ≤ ∞ , where = ×  . Second, Y is to 
be a random variable on some underlying probability space ( ), , PΩ   with a 
corresponding landscape Λ . Third, if we have ω∈Ω , then ( )Y ω  is the ran-
dom variable and ( ) ( )( ) :Yω λ ω λΛ = =  is the corresponding topological 
summary statistic. To avoid confusion, we use Y instead of X as a random varia-
ble, because our sequence of point cloud data sets uses the variable nX . In addi-
tion, Bubenik [5] proved the convergence of persistence landscapes using the 
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Strong Law of Large Numbers and the Central Limit Theorem, which is ex-
tremely important for setting up our random variables and hypothesis test. Our 
random variable Y is defined as: 

( )( ) ( ), d ,k
k

Y f k t t tλ λ= = ∑∫                 (17) 

where ( )bf ∈   is a continuous linear functional, 1 1 1
a b
+ = , and Y satisfies 

the (SLLN) and (CLT) as seen in [5], which implies Y has an adequate sample 
size and follows an approximately normal distribution. 

The statistical properties and definitions above are utilized to a conduct hy-
pothesis tests with corresponding p-value based on a permutation test. To com-
pare the topological features of two groups, 1Y  and 2Y , where 1k  and 2k  are 
samples taken from these groups respectively, and 1Λ  and 2Λ  are the corres-
ponding landscapes respectively. The associate sample values of 1Y  and 2Y  are 
denoted as 11

1 1, , ky y  and 21
2 2, , ky y  and the corresponding landscapes of 

these sample values are labelled as 11
1 1, , kλ λ  and 21

2 2, , kλ λ . We apply Equa-
tion (17) to 1Y  and 2Y , so the functional of 1Y  and 2Y  are as follows: 

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )

1
1 1

2
2 2

1 1
1 1 1 1 1 1

1

1 1
2 2 2 2 2 2

1

, , , , , , , d

, , , , , , , d .

k
k k i

i
k

k k i

i

Y f y f y f k t f k t k t t

Y f y f y f k t f k t k t t

λ λ λ

λ λ λ

=

=

= = =

= = =

∑∫

∑∫

 

 





 (18) 

Recall the sample mean is 
1

1 n
iiY Y

n =
= ∑ , so the sample means of the 1Y  and 

2Y  are the following: 

( ) ( )( )

( ) ( )( )

1 1

2 2

1 1 1
1 11 1

2 2 2
1 12 2

1 1 ,

1 1 , ,

k k
i i

i i

k k
i i

i i

Y f y f k t
k k

Y f y f k t
k k

λ

λ

= =

= =

= =

= =

∑ ∑

∑ ∑
             (19) 

where again 1k  and 2k  are the samples taken from 1Y  and 2Y . We assume 
that 1µ  and 2µ  are the expectations of 1Y  and 2Y . So, 1µ  and 2µ  are as-
sumed to be the population means of 1Y  and 2Y . Therefore, the statistical hy-
pothesis is: 

0 1 2 1 2: : .aH Hµ µ µ µ= ≠                   (20) 

To test the null-hypothesis, we use a two sample permutation test. Let 

( ) ( )
1 2

1 2

1 2

.
Y Y

t
Var Y Var Y

k k

−
=

+

                   (21) 

Using Equation (21), 1, , mt t  of the test statistic are calculated for permuta-
tions 1, ,s m=  . The observed value of the test statistic is expressed as observedt . 
The p-value is calculated by comparing observedt  with st  and averaging the 
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number of times observed st t≤ . Thus, Equation (21) becomes: 

{ } ( ) ( )

{ } ( ) ( )

1 2

1 2

1 2
1, ,

1 2

1 2

1 2
, ,

1 2

1 2

.

Y Y

m Y Y

Y Y
t

Var Y Var Y
k k

Y Y
t

Var Y Var Y
k k

−
=

+

−
=

+

                   (22) 

A general form of Equation (22) is: 

{ } ( ) ( )1 2

1 2
, ,

1 2

1 2

.s Y Y

Y Y
t

Var Y Var Y
k k

−
=

+

                  (23) 

Hence, using Equation (22) and every instance where observed st t≤ , the p-value 
is obtained as: 

{ } { }1 2 1 2, , ,
1

1-value .
m

Y Y i Y Y
i

p t
m =

= ∑                    (24) 

To measure the statistical significance, [8] used a significance level 0.05α =  
in their study, which we incorporate in our study. We may apply the above as-
sumptions, equations, and definitions to compare the topological features of 
more groups. 

2.6. Statistical Inference: Part II 

Instead of conducting one hypothesis test, multiple hypotheses tests are con-
ducted to determine how the topological features in our sequence of point cloud 
data sets nX  change within a particular time frame. The hypotheses tests are 
done on all the sliding window matrices within nX . In particular, two adjacent 
sliding window matrices are compared, where adjacent means the sliding win-
dow matrices differ by a sliding step of one day. For example, the sliding window 
matrices 1X  and 2X  would be compared, while the sliding window matrices 

1X  and 3X  would not be compared. Therefore, the assumptions, equations, 
and definitions from section 2.5 are applied to nX . When hypotheses tests are 
performed, there are 1dlrq n w= − +  random variables (see Equation (1)), 
which is also the size of the sequence of the point cloud data set nX . 

So, we let 1 2, , , qY Y Y  be random variables, where 1 2, , , qk k k  are taken as 
samples from these groups respectively, and 1 2, , , qΛ Λ Λ  are the correspond-
ing landscapes respectively. The associate sample values of 1 2, , , qY Y Y  are de-
noted as 11

1 1, , ky y , 21
2 2, , ky y ,  , 1 , , qk

q qy y , and the corresponding land-
scapes of these sample values are labelled as 11

1 1, , kλ λ , 21
2 2, , kλ λ ,  , 

1 , , qk
q qλ λ . The functional in Equation (17) is used to define the following for 

1 2, , , qY Y Y : 
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( )

( )

1

1 1 1
1

1

d

d ,
q

k
i

i

k
i

q j q
i

Y X t

Y X t

λ

λ

=

=

=

=

∑∫

∑∫







                    (25) 

where 1dlrq n w= − + . Recall the sample mean is 
1

1 n
iiY Y

n =
= ∑ , so the sample 

means of the 1 2, , , qY Y Y  as follows: 

( )( )

( )( )

1

1 1
11

1

1

1 ,
q

k
i

i

k
i

q q
iq

Y f X
k

Y f X
k

λ

λ

=

=

=

=

∑

∑
                   (26) 

where 1dlrq n w= − + . We assume that 1 2, , , qµ µ µ  are the expectations of 

1 2, , , qY Y Y . So, 1 2, , , qµ µ µ  are assumed to be population means of  

1 2, , , qY Y Y , and the statistical hypotheses are: 

0 1 2 1 2

0 1 1

: :

: : ,

a

q q a q q

H H

H H

µ µ µ µ

µ µ µ µ− −

= ≠

= ≠


                  (27) 

where 1dlrq n w= − + . To test the null-hypothesis, we use a two sample permu-
tation test with statistics, 

{ } ( ) ( )

{ } ( ) ( )

1 2

1

1 2
,

1 2

1 2

1

,
1

1

.
q q

Y Y

q q

Y Y
q q

q q

Y Y
t

Var Y Var Y
k k

Y Y
t

Var Y Var Y
k k

−

−

−

−

−
=

+

−
=

+

                   (28) 

where 1dlrq n w= − + . Using Equation (28), 1, , mt t  of the test statistic are 
calculated for permutations 1, ,s m=  . The observed value of the test statistic 
is expressed as observedt . The p-value is calculated by comparing observedt  with st  
and averaging the number of times observed st t≤ . Using Equation (23), Equation 
(28) becomes: 

{ } ( ) ( )

{ } ( ) ( )

1 2

1

1 2
, ,

1 2

1 2

1

, ,
1

1

,
q q

s Y Y

q q

s Y Y
q q

q q

Y Y
t

Var Y Var Y
k k

Y Y
t

Var Y Var Y
k k

−

−

−

−

−
=

+

−
=

+

                   (29) 
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where 1dlrq n w= − + . Hence, using Equation (29) and every instance where 

observed st t≤ , the p-value is obtained as: 

{ } { }

{ } { }

1 2 1 2

1 1

, , ,
1

, , ,
1

1-value

1-value ,
q q q q

m

Y Y i Y Y
i

m

Y Y i Y Y
i

p t
m

p t
m− −

=

=

=

=

∑

∑
                (30) 

where 1dlrq n w= − + . In our study, we also conduct hypotheses tests between 
two sequences of point cloud data sets, 1

nX  and 2
nX , within the same sliding 

window, so using the same assumptions, definitions, and results from this sec-
tion. The only difference is a change in subscripts and superscripts. This case is 
presented in Section 3.4. 

3. Methods 

In this section, we describe the methods to obtain the data and analyze the fi-
nancial time series using topological data analysis, statistical inference, and 
RStudio [23]. The data, which were obtained from Yahoo Finance, consisted of 
daily adjusted closing prices (amended for corporate actions such as stocks and 
dividends) for four major US stock indices: S&P 500, DJIA, NASDAQ, and Rus-
sell 2000 and 10 ETF sectors between January 4, 2010 and July 1, 2020 (2641 
trading days). During this time period, a decline in the daily log returns hap-
pened on March 16, 2020. In order to examine this date of interest, we limited 
our data sets to 1001 trading days ( tdn ) before March 16, 2020 to observe any 
patterns in the pL  norms and determine any critical thresholds. To analyze the 
data, we first approximated the daily log returns of the adjusted closing prices. A  

return is defined as 1

1

t t
t

t

x x
r

x
−

−

 −
=  
 

, where tx  is the actual value (adjusted 

closing price) of the desired stock index or ETF sector. The daily log returns are 
defined as: 

( ) ( )10 10 10 1
1

log log log ,t
t t t

t

x
x x r

x −
−

 
= − ≈ 

 
 

which is an approximation of a return [24]. Since the daily log returns are for-
ward daily changes, then the time frame of the daily log returns is from January 
5, 2010 to June 30, 2020. 

3.1. Point Cloud Data 

After approximating the daily log returns, we designed two sequences of point 
cloud data sets, each with a sliding window of 50w =  and a sliding step of one 
day, which is based on the same method found in [16]. The first sequence of 
point cloud data set denoted by SI

nX  examined the four major US stock indices 
( 4d = ), which resulted in a 4 × 50 matrix for each individual point cloud for a 
total of ( ) ( )1 1001 1 50 1 951dlrq n w= − + = − − − =  point clouds as seen below 
from using Equation (1): 
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( )
( )

( )

( )
( )

( )

1 4
1 1 1

1 4
2 2 2

1

1 4
50 50 50

1 4
951 951 951

1 4
952 952 952

951

1 4
1000 1000 1000

.

SI

SI

x t x x
x t x x

X

x t x x

x t x x
x t x x

X

x t x x

   
   
   = =   
   

     

   
   
   = =   
   

     







  










  



              (31) 

The second sequence of point cloud data set denoted by ETF
nX  examined the 

10 ETF sectors ( 10d = ), which yielded a 10 × 50 matrix for each single point 
cloud for a total of 1 951dlrq n w= − + =  point clouds as seen below from using 
Equation (1): 

( )
( )

( )

( )
( )

( )

1 10
1 1 1

1 10
2 2 2

1

1 10
50 50 50

1 10
951 951 951

1 10
952 952 952

951

1 10
1000 1000 1000

.

ETF

ETF

x t x x
x t x x

X

x t x x

x t x x
x t x x

X

x t x x

   
   
   = =   
   

     

   
   
   = =   
   

     







  










  



             (32) 

3.2. Vietoris-Rips Complex and Persistent Homology 

Next, we constructed Vietoris-Rips complexes and filtration for each point cloud 
in SI

nX  and ETF
nX  from definition 2.4, definition 2.5, and Equation (6) and 

R-package “TDA” [25]. The Rips filtration for all the stock indices and all the 
ETFs are denoted by ( ),SI

nR X   and ( ),ETF
nR X   respectively for 0> . For 

the maximum filtration, we used 0.055SI′ =  and 0.08ETF′ = , which are 
based on similar methods found in [16]. Therefore, we obtained the following 
Rips filtration: 

( ) ( ) ( ), ,0 ,0.055 ,SI SI SI
n n nR X R X R X= ⊂ ⊂           (33) 

( ) ( ) ( ), ,0 ,0.08 ,ETF ETF ETF
n n nR X R X R X= ⊂ ⊂         (34) 

where 1, ,951n =  . Based on the Equations (6), (33), and (34), we computed 
only the 1p =  dimensional homology ( )( )1 ,nH R X   with coefficients in the 
field / 2   from Equation (7) as follows: 

( )( ) ( )( )1 1,0 ,0.055 ,SI SI
n nH R X H R X→             (35) 

( )( ) ( )( )1 1,0 ,0.08 ,ETF ETF
n nH R X H R X→            (36) 

where 1, ,951n =  . Also, we are only interested in the persistence of loops in as 
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they appear in each point cloud during the transition states of the market, which 
is why we did the first dimensional homology. From definition 2.4, the filtration 
from Equations (33) and (34) induced a sequence of linear maps  

( )( ) ( )( ), ,
1 1 1: ,0 ,0.055i ib d SI SI SI

n nf H R X H R X→  and  

( )( ) ( )( ), ,
1 1 1: ,0 ,0.08i ib d ETF SI SI

n nf H R X H R X→ . The images of these maps are 

the persistent homology groups. The collection of vector spaces ( )( )1
SI
nH R X  

and ( )( )1
ETF
nH R X  along with the corresponding linear maps is a persistent 

module, which leads us to the topological summaries. 

3.3. Topological Summaries 

By modifying the R script in [5], the first dimensional persistence diagrams de-
noted by ( ) { }1 ,SI

n i i i I
D X b d

∈
=  and ( ) { }1 ,ETF

n i i i I
D X b d

∈
=  for each point cloud 

data set were used along with Equations (10) and (11) to produce the analogous 
first dimensional persistent landscapes ( )SI

nXλ  and ( )ETF
nXλ  as seen below: 

( ) ( ) ( ) ( ){ }, ,
1 1k-max | , ,i ib d SISI SI SI

n n i i nX f X b d D Xλ = ∈         (37) 

( ) ( ) ( ) ( ){ }, ,
1 1k-max | , ,i ib d ETFETF ETF ETF

n n i i nX f X b d D Xλ = ∈       (38) 

where 1, ,951n =  . Next, the norms of the persistence landscapes ( )SI
n p

Xλ  

and ( )ETF
n p

Xλ  were computed for 1p =  and 2p =  using Equations  

(14)-(16). The norms of the persistence landscapes and the daily log returns 
were plotted in juxtaposition, where it is important to remember that a point in 
the norms of persistence landscapes refers to a sliding window of 50 trading days 
in the daily log returns. After generating the topological summaries, the mean 
landscape is constructed using definition 2.7 and Equations (12)-(13) for the 
time period between July 1, 2019 and July 1, 2020 (253 trading days) or the time 
frame between July 2, 2019 to June 30, 2019 (252 days for the daily log returns). 
For this reason, the sequences of point cloud data sets will go from 951q =  to 

203q = . Also, recall that the daily log returns are forward daily changes, so the 
time frame of the daily log returns are from July 2, 2019 to June 30, 2020. We as-
signed 11 1

1 1, , , , , ,
SISISI SI qkk

q qλ λ λ λ    and 11 1
1 1, , , , , ,

ETFETFETF ETF qkk
q qλ λ λ λ    to 

be the corresponding landscapes for all the point clouds in SI
nX  and ETF

nX  to 
obtain the mean landscapes as seen below: 

( ) ( )
1

1 ,
SIk

SI i SI
n nSI

i
X X

k
λ λ

=

= ∑                   (39) 

( ) ( )
1

1 ,
ETFk

ETF i ETF
n nETF

i
X X

k
λ λ

=

= ∑                 (40) 

where 1, , 203n =   for 1, , SIk  and 1, , ETFk  samples [5]. We are inter-
ested in time period between July 1, 2019 and July 1, 2020, which has 253 trading 
days, because we wanted to observe market conditions prior to our market de-
cline of interest and see if we are able to detect any critical transitions. Therefore, 
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we provide summary statistics for this time period for all the stock indices and 
all the ETF sectors. The daily log returns, persistent diagrams, persistent land-
scapes, and the mean landscapes for sliding windows of 50 trading days were 
generated and plotted together for July 2, 2019 and June 30, 2020, but we only 
highlighted specific date ranges near our market fall of interest and peaks in the 
norms in the persistence landscape for all the stock indices and ETF sectors, 
which is discussed in Section 4. 

3.4. Statistical Inference 

While the topological summaries were useful for examining topological features, 
we were also interested in finding statistical significant for any changes of these 
topological features within time. The time period of interest is July 1, 2019 to 
July 1, 2020, which has 253tdn =  trading days. 

We make the same assumptions from Section 2.5 and Section 2.6. Our ran-
dom variables will derive from our two sequences of point cloud data sets, SI

nX  
and ETF

nX . Since our time period of interest has 253 trading days, our sequence 
of point cloud data sets are size 1 203dlrq n w= − + = . For this reason, we have 

1 203dlrq n w= − + =  random variables in each sequence of point cloud data 
sets. 

For all the stock indices and all the ETF sectors, we have SI
nY  and ETF

nY  be 
random variables respectively for 1, , SIk  and 1, , ETFk  samples for these 
groups respectively and SI

nΛ  and ETF
nΛ  are the corresponding landscapes respec-

tively for 1, , 203n =  . The associate sample values of SI
nY  and ETF

nY  are de-
noted as 1 , ,

SI SIk
n ny y  and 1 , ,

ETF ETFk
n ny y  respectively and the corresponding 

landscapes of these sample values are labelled as 1 , ,
SI SIk

n nλ λ  and 1 , ,
ETF ETFk

n nλ λ  
respectively. 

The functional in Equation (25) is used to define the random variables for all 
the stock indices and all the ETFs as follows: 

( )
1

d ,
SI

SIk
SI i SI

n n n
i

Y X tλ
=

= ∑∫                   (41) 

( )
1

d ,
ETF

ETFk
ETF i ETF

n n n
i

Y X tλ
=

= ∑ ∫                 (42) 

where 1, , 203n =   for 1, , SIk  and 1, , ETFk  samples. We recall the sam-
ple mean 

1

1 n
iiY Y

n =
= ∑ , so using Equation (26) for the sample means for the 

random variables of all the stock indices and ETF sectors, we have the following: 

( )( )
1

1 ,
SI

SIk
SI i SI

n n nSI
i

Y f X
k

λ
=

= ∑                 (43) 

( )( )
1

1 ,
ETF

ETFk
ETF i ETF

n n nETF
i

Y f X
k

λ
=

= ∑                 (44) 

where 1, , 203n =   for 1, , SIk  and 1, , ETFk  samples. We assume that 
SI
nµ  and ETF

nµ  are the expectations and population means of SI
nY  and ETF

nY  
respectively for 1, , 203n =  . We set up three sets of hypotheses test and an 
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analogous p-value based on a permutation test. For our first two sets of statistic-
al hypotheses, we desire separate hypotheses tests for all the stock indices and for 
all the ETF sectors within a one day lag in their respective sliding windows. Our 
statistical hypotheses will distinguish for two groups at a time if the means of 
topological features are the same within a one day lag in their respective sliding 
windows and point cloud data sets as seen below: 

0 1 1: . : .SI SI SI SI
n n a n nH vs Hµ µ µ µ− −= ≠               (45) 

0 1 1: . : .ETF ETF ETF ETF
n n a n nH vs Hµ µ µ µ− −= ≠              (46) 

For our third set of statistical hypotheses, we also wish to compare all the 
stock indices against all the ETF sectors within the same sliding windows. Our 
statistical hypotheses will determine for two groups at a time if the means of to-
pological features are the same within the same sliding window as shown below: 

,:.=:0
ETF
n

SI
na

ETF
n

SI
n HvsH µµµµ ≠             (47) 

where in Equations (45)-(47), 1, , 203n =  . To test the null hypotheses found 
in Equations (45) and (46), we used a two-sample permutation test from Equa-
tion (28) to obtain: 

( ) ( )
1

1

,
SI SI

n n

SI SI
n n

SI SI

Y Y
t

Var Y Var Y

k k

−

−

−
=

+

                  (48) 

( ) ( )
1

1

,
ETF ETF

n n

ETF SI
n n

ETF ETF

Y Y
t

Var Y Var Y

k k

−

−

−
=

+

                 (49) 

where 1, , 203n =   for 1, , SIk  and 1, , ETFk  samples. To test the null 
hypotheses found in Equation (47), we used a two-sample permutation test from 
Equations (28) to obtain: 

( ) ( )
,

SI ETF
n n

SI ETF
n n

SI ETF

Y Y
t

Var Y Var Y

k k

−
=

+

                  (50) 

where 1, , 203n =   for 1, , SIk  and 1, , ETFk  samples. Using Equations 
(48), (49), and (50), 1, , mt t  of the test statistic were calculated for permuta-
tions 1, ,s m=  . The observed value of the test statistic is expressed as observedt . 
The p-value is calculated by comparing observedt  with st  and averaging the 
number of times observed st t≤ . Using Equation (23), Equations (48) and (49) be-
come: 

{ } ( ) ( )1

1

, ,
1

,SI SI
n n

SI SI
n n

s Y Y SI SI
n n

SI SI

Y Y
t

Var Y Var Y

k k

−

−

−

−
=

+

              (51) 

{ } ( ) ( )1

1

, ,
1

.ETF ETF
n n

ETF ETF
n n

s Y Y ETF ETF
n n

ETF ETF

Y Y
t

Var Y Var Y

k k

−

−

−

−
=

+

             (52) 
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Similarly, Equation (50) becomes: 

{ } ( ) ( ), ,
,SI ETF

n n

SI ETF
n n

s Y Y SI ETF
n n

SI ETF

Y Y
t

Var Y Var Y

k k

−
=

+

             (53) 

where in Equations (51)-(53), where 1, , 203n =   for 1, , SIk  and 1, , ETFk  
samples. Hence, using Equations (48) and (52) and every instance where 

observed st t≤ , the p-values were obtained as: 

{ } { }1 1, , ,
1

1-value ,SI SI SI SI
n n n n

m

Y Y i Y Y
i

p t
m− −=

= ∑                (54) 

{ } { }1 1, , ,
1

1-value .ETF ETF ETF ETF
n n n n

m

Y Y i Y Y
i

p t
m− −=

= ∑               (55) 

Similarly, using Equation (53) and every instance where observed st t≤ , the 
p-value was obtained as: 

{ } { }, , ,
1

1-value ,SI ETF SI ETF
n n n n

m

Y Y i Y Y
i

p t
m =

= ∑                (56) 

where in Equations (54)-(56), 1, , 203n =  . To evaluate statistical significance, 
using Equations (41)-(56), a permutation is completed at a significance level of 

0.05α =  for homology in degree 1 for all our hypothesis tests. Since we are on-
ly interested in the number of loops, we will look at homology in degree 1. All 
these hypothesis testing methods were modified from the R script in [5]. After 
finding the p-values, we plotted the daily log returns with the p-values that were 
less than or greater than or equal to our significant level α  for either all the 
stock indices or all the ETF sectors along a sliding window of 50 trading days. 

4. Results 

The goal of this study is to detect a statistically relevant critical transition and 
characterize any changes in topological features over time. To assess the statis-
tical significance of observed differences in the topological features that change 
over time, we used a permutation test. For degree 1, we obtained ten sample 
values of the random variables SI

nY  and ETF
nY  as in Equation (41). Using Equ-

ations (43), (45), (48), (51), and (54), the permutation test is implemented with a 
significance level 0.05α =  when comparing all stock indices in different slid-
ing windows between July 1, 2019 and July 1, 2020. The permutation test yields 
164 p-values of 0.0000, 2 p-values of 0.001, and 36 p-values of 1 for homology in 
degree 1. 

Using Equations (44), (46), (49), (52), and (55), the permutation test is con-
ducted with a significance level 0.05α =  when comparing all the ETF sectors 
in different sliding windows between July 1, 2019 and July 1, 2020. The permuta-
tion test returns 164 p-values of 0.0000, 4 p-values of 0.001, and 33 p-values of 1 
for homology in degree 1. Using Equations (43), (44), (47), (50), (53), and (56), 
the permutation is performed with a significance level 0.05α =  when com-
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paring all the stock indices and all the ETF sectors in the same sliding windows 
between July 1, 2019 and July 1, 2020, which results in 199 p-values of 0.0000 
and 2 p-values of 0.001 for homology in degree 1. 

In order to understand these results, we will review the daily log returns, the 
norms of the persistence landscapes, and the topological summaries of all the 
stock indices and all the ETF sectors. When reviewing the daily log returns for 
DJIA, the S&P 500, NASDAQ, and Russell 2000 between January 5, 2010 and 
June 30, 2020 (see Figure 1), the stock indices range from −0.05 and 0.05 from 
2010 to mid 2011, with some positive and negative spikes that appear leading up 
to 2012. From 2012 to March 2020, the daily log returns once again fall between 
−0.05 and 0.05. However, from March 2020 to June 2020, the market is highly 
volatile. Similar patterns are observed for the ETF sectors, but there is a notable 
spike around 2017 and from March 2020 to June 2020, the ETF sectors are more 
volatile than the stock indices as shown in Figure 2. 

When we examine the daily log returns of all of the stock indices between 
January 5, 2010-June 1, 2020, the minimum daily log return occur on March 16, 
2020, where Russell 2000 had a return of −0.154, the S&P 500 had a return at 
−0.1277, and the other stock indices were in between these values. When re-
viewing the daily log returns for all of the ETFs sectors for the same time period, 
the minimum daily log return also occurs on March 16, 2020, where Information 
Technology (XLK) had a return of −0.1487, Consumer Staples (XLP) had a re-
turn of −0.0702, and the other ETF sectors were in between these values. While 
March 16, 2020 is not recognized as an official financial crash or meltdown, this  
 

 
Figure 1. The figures are the daily log returns for all the stock indices from January 5, 
2010 to June 30, 2020. The reporting period of this figure contains 2641 trading days from 
January 4, 2010 to July 1, 2020.  
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Figure 2. The figures are the daily log returns for all the ETF sectors from January 5, 2010 
to June 30, 2020. The reporting period of this figure contains 2641 trading days from 
January 4, 2010 to July 1, 2020.  
 
date is noteworthy, and warrants closer examination for potential critical transi-
tions prior to this date. Focusing on when the peaks occur, we include summary 
statistics for July 1, 2019 to July 1, 2020 for all the stock indices and all the ETF 
sectors in Table 1 and Table 2, respectively. 

The norms of the persistence landscapes in homology degree 1 presented in 
Figure 3 and Figure 4 display all of the stock indices and all of the ETFs respec-
tively for 1p =  and 2p =  for 1001 trading days prior to March 16, 2020. For 
the stock indices, the L1 distances are less than 0.01 between 2017 and 2018, less 
than 0.02 between 2018 and 2020, but the greatest L1 distance occurs in 2020 at 
approximately 0.08 as seen in Figure 3. The L1 distance for all of the ETFs, have 
more spikes than the L1 distances of the stock indices, especially between 2018 
and 2020, but the greatest L1 distance occurs in March 2020 at approximately 
0.14 as seen in Figure 3. While the L2 norms for all of the stock indices and all of 
the ETFs have similar distances, there is a noticeable spike in 2020. However, the 
distances in L2 are not as great as in L1, as shown in Figure 3 and Figure 4. 

Figure 3 and Figure 4 highlight the peak in more detail for the time period 
between January 3, 2020 to June 30, 2020. While critical points are discernible in 
the month of February 2020, the peaks occurred on February 21, 2020 and 
March 3, 2020 for all of the stock indices and for all of the ETF sectors respec-
tively as seen in Figure 4. Recall that a point on the norms of the persistence 
landscapes coincides with a sliding window of 50 trading days in the daily log 
returns, which means the peaks are from February 21, 2020 to May 1, 2020 and 
March 3, 2020 to May 12, 2020 for all of the stock indices and for all of the ETF  
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Table 1. Summary statistics for stock indices. 

Stock Name µ̂  2σ̂  σ̂  γ̂  κ̂  

Dow Jones −1e−04 5e−04 0.0228 −0.8479 13.1333 

S&P 500 2e−04 5e−04 0.0213 −0.8691 12.6087 

NASDAQ 9e−04 5e−04 0.0213 −1.0494 12.6029 

Russell 2000 −3e−04 7e−04 0.0263 −1.3226 11.2358 

 
Table 2. Summary statistics for ETF sectors. 

Stock Symbol µ̂  2σ̂  σ̂  γ̂  κ̂  

XLY 0.0003 0.0004 0.0210 −1.3141 14.1179 

XLP 0.0001 0.0003 0.0173 −0.2487 12.6118 

XLE −0.0017 0.0012 0.0348 −1.3392 13.4664 

XLF −0.0006 0.0008 0.0276 −0.6256 10.4510 

XLV 0.0004 0.0004 0.0187 −0.4299 10.1362 

XLI −0.0004 0.0006 0.0243 −0.5575 10.0397 

XLB −0.0001 0.0005 0.0232 −0.7113 10.0980 

XLK 0.0012 0.0006 0.0242 −0.6869 12.5942 

XLU −0.0001 0.0006 0.0235 −0.0751 11.9571 

SPY 0.0002 0.0004 0.0207 −0.8911 11.7189 

 

 

Figure 3. The figures are the norms of the persistence landscapes of all the stock indices, 
where 1p =  (solid line) and 2p =  (dashed line)) and each point in the figure 
represents a sliding window of 50 trading days. Panel A plots the time frame June 3, 2016 
to March 16, 2020, where the last sliding window is from March 16, 2020 to May 26, 2020 
and the reporting period of this figure contains 1001 trading days from June 2, 2016 to 
May 27, 2020. Panel B plots the time frame between January 3, 2020 to June 30, 2020, 
where the last sliding window is from April 21, 2020 to June 30, 2020 and the reporting 
period of this figure contains 76 trading days from January 2, 2020 to July 1, 2020.  
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Figure 4. The figures are the norms of the persistence landscapes of all the ETF sectors, 
where 1p =  (solid line) and 2p =  (dashed line)) and each point in the figure 
represents a sliding window of 50 trading days. Panel A plots the time frame between 
June 3, 2016 to March 16, 2020, where the last sliding window is from March 16, 2020 to 
May 26, 2020 and the reporting period of this figure contains 1001 trading days from June 
2, 2016 to May 27, 2020. Panel B plots the time frame between January 3, 2020 to June 30, 
2020, where the last sliding window is from April 21, 2020 to June 30, 2020 and the 
reporting period of this figure contains 76 trading days from January 2, 2020 to July 1, 
2020.  
 
sectors respectively. In particular, Figure 5 and Figure 6 emphasize this point, 
where the norms of the persistence landscapes and the daily log returns of either 
all of the stock indices or all of the ETF sectors are next to each other. The slid-
ing windows of 50 trading days of the daily log returns synchronize to the first 
point in the norms of the persistence landscape and to the maximum values of 
the norms of the persistence landscapes as indicated by Figure 5 and Figure 6. 

Aside from the norms of the persistence landscapes, we produce topological 
summaries to represent the persistence of topological features for all the stock 
indices and for all the ETF sectors between January 3, 2020 and June 30, 2020. 
Along with these topological summaries (the persistence diagram, the persis-
tence landscape, the mean landscape), we plotted the daily log returns for the 
corresponding sliding window of 50 trading days shown in Figures 7-12. 

Figure 7 and Figure 8 indicate that the daily log returns are centered around 
zero from January 3, 2020 to February 21, 2020 for all of the stock indices and 
from January 3, 2020 to February 26, 2020 for all of the ETF sectors. Not much 
persistence is evident in the persistence diagram and few spikes appear in per-
sistence landscape and mean landscape. Figure 9 and Figure 10 illustrate more 
variability in the daily log returns from March 1, 2020 to April 16, 2020 for all of  
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Figure 5. The figures are the norms of the persistence landscapes and the daily log returns of all the stock indices 
from for July 2, 2019-June 30, 2020. Panel A is the norms of the persistence landscape, where 1p =  (solid line) and 

2p =  (dashed line)), each point in the figure represents a sliding window of 50 trading days, and two dashed lines 
depicting the first and maximum points in this figure. Panel B plots the daily log returns with two sliding windows of 
50 trading days (depicted as rectangles) corresponding to the first and max points in the Panel A. The first sliding 
window is from July 2, 2019 to September 11, 2019, while the second sliding window is from February 21, 2020 to 
May 1, 2020. The reporting period of this figure contains 253 trading days from July 1, 2019 to July 1, 2020.  

 

 

Figure 6. The figures are the norms of the persistence landscapes and the daily log returns of all the ETF sectors 
from for July 2, 2019-June 30, 2020. Panel A is the norms of the persistence landscape, where 1p =  (solid line) and 

2p =  (dashed line)), each point in the figure represents a sliding window of 50 trading days, and two dashed lines 
depicting the first and maximum points in this figure. Panel B plots the daily log returns with two sliding windows of 
50 trading days (depicted as rectangles) corresponding to the first and max points in the Panel A. The first sliding 
window is from July 2, 2019 to September 11, 2019, while the second sliding window is from March 3, 2020 to May 
12, 2020. The reporting period of this figure contains 253 trading days from July 1, 2019 to July 1, 2020.  
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Figure 7. These figures are the daily log returns and topological summaries of all the stocks indices from January 
3, 2020-March 16, 2020. Panel A plots the daily log returns for all the stock indices with a sliding window of 50 
trading days. Panel B plots the first dimension of the Vietoris-Rips persistence diagram, where the solid black dots 
represent connected components and the red triangles represent loops. Panel C plots the first dimension of 
corresponding persistence landscape. Panel D plots the corresponding the mean landscape.  

 

 

Figure 8. These figures are the daily log returns and topological summaries of all the ETF sectors from January 3, 
2020-March 16, 2020. Panel A plots the daily log returns for all the ETF sectors with a sliding window of 50 
trading days. Panel B plots the first dimension of the Vietoris-Rips persistence diagram, where the solid black dots 
represent connected components and the red triangles represent loops. Panel C plots the first dimension of 
corresponding persistence landscape. Panel D plots the corresponding the mean landscape.  

https://doi.org/10.4236/jmf.2020.104038


A. Aguilar, K. Ensor 
 

 

DOI: 10.4236/jmf.2020.104038 673 Journal of Mathematical Finance 
 

 

Figure 9. These figures are the daily log returns and topological summaries of all the stocks indices from February 
21, 2020 to May 1, 2020. Panel A plots the daily log returns for all the stock indices with a sliding window of 50 
trading days. Panel B plots the first dimension of the Vietoris-Rips persistence diagram, where the solid black dots 
represent connected components and the red triangles represent loops. Panel C plots the first dimension of 
corresponding persistence landscape. Panel D plots the corresponding the mean landscape.  

 

 

Figure 10. These figures are the daily log returns and topological summaries of all the ETF sectors from March 3, 
2020-May 12, 2020. Panel A plots the daily log returns for all the ETF sectors with a sliding window of 50 trading 
days. Panel B plots the first dimension of the Vietoris-Rips persistence diagram, where the solid black dots 
represent connected components and the red triangles represent loops. Panel C plots the first dimension of 
corresponding persistence landscape. Panel D plots the corresponding the mean landscape.  
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Figure 11. These figures are the daily log returns and topological summaries of all the stocks indices from March 
16, 2020-May 26, 2020. Panel A plots the daily log returns for all the stock indices with a sliding window of 50 
trading days. Panel B plots the first dimension of the Vietoris-Rips persistence diagram, where the solid black dots 
represent connected components and the red triangles represent loops. Panel C plots the first dimension of 
corresponding persistence landscape. Panel D plots the corresponding the mean landscape.  

 

 

Figure 12. These figures are the daily log returns and topological summaries of all the ETF sectors from March 16, 
2020-May 26, 2020. Panel A plots the daily log returns for all the ETF sectors with a sliding window of 50 trading 
days. Panel B plots the first dimension of the Vietoris-Rips persistence diagram, where the solid black dots 
represent connected components and the red triangles represent loops. Panel C plots the first dimension of 
corresponding persistence landscape. Panel D plots the corresponding the mean landscape.  
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the stock indices and from March 1, 2020 to May 1, 2020 for all of the ETF sec-
tors. Significant persistence is apparent in the persistence diagram and more 
spikes appear in the persistence landscape and mean landscape. 

5. Discussion 

From reviewing the norms of the persistence landscape, the daily log returns, 
persistence diagrams, persistence landscapes, and mean landscapes for all of the 
selected dates, it is clear that the number of the loops in the relevant point clouds 
are more pronounced resulting in more persistence, which signifies that the 
stock market is transitioning from a stable state to a more unpredictable, volatile 
state. Moreover, the ETF sectors demonstrate more volatility than the stock in-
dices. These stock indices’ findings coincide with the 2000 and 2008 market 
crashes findings found in [16]. Similar to Gidea and Katz [16], we observe L1 
distances that confirm the critical thresholds prior to the 2020 peak and exhibit 
more than the L2 norm. In other words, the Lp-norms exhibit strong growth 
around the emergence of the primary peak. 

While the highest peak occurred on February 21, 2020 for all of the stock in-
dices and March 3, 2020 for all of the ETF sectors in the Lp norms, the Corona-
virus (COVID-19) broke out in 2019 in Wuhan, China, but on January 21, 2020, 
the first US case was confirmed. The most important dates are March 13, 2020 
when President Trump declares national emergency, March 15, 2020 when the 
Center of Disease Control and Prevention warns against large gatherings, and 
March 17, 2020 when COVID is present in all 50 states. The daily log returns for 
all of the stock indices and for all of the ETF sectors do not include negative val-
ues. Yet, there are other dates that could have lead to a market decline in March 
16, 2020. For example, on January 30, 2020 when World Health Organization 
(WHO) declares a global health emergency or between February 5, 2020 and 
February 29, 2020 when the outbreak becomes an epidemic. While we acknowl-
edge that it is quite difficult to predict a market crash, the norms of the persis-
tence landscape performed really well as indicator in detecting critical transi-
tions and the topological summaries authenticated volatility by of the number of 
loops increasing. 

Our hypotheses tests aimed to find how topological features change within 
time, notably between July 1, 2019 and July 1, 2020. Our hypotheses tests for all 
of the stock indices found evidence of difference in topological features when 
comparing adjacent sliding windows of a sliding step of one day. In particular, 
we found for the chosen time frame that the daily log returns of all the stock in-
dices significantly differ in the number of loops. Equivalently, our hypotheses 
tests for all of the ETF sectors found evidence of difference in topological fea-
tures when comparing adjacent sliding windows of a sliding step of one day. 
Specifically, we found for the selected time frame that the daily log returns of all 
the ETF sectors significantly differ in the number of loops. Our last hypotheses 
tests between all of the stock indices and all of the ETF sectors within the same 
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sliding window found inconclusive evidence of difference in topological features 
for the entire time frame. 

6. Conclusions 

In this paper, we investigated the topological features of four major indices and 
10 ETF sectors for January 4, 2010-July 1, 2020. We used two sequences of point 
cloud data sets, one for all the stock indices and the other for all the ETFs with a 
sliding window 50w = . Both sequences were used to perform TDA through 
algebraic topology and persistent homology. From there, topological summaries 
are generated to determine persistence and the norms for persistence landscapes 
are used to detect a critical transition by adapting methods found in [16]. Our 
goal is to determine how the statistical significance of topological features of 
stock indices and ETF sectors change for a specific time frame. We found that 
between July 1, 2019 and July 1, 2020, there is evidence of difference of topolog-
ical features for all the stock indices and all the ETFs. As a result, critical transi-
tions are determined using the norms of the persistence landscape and topologi-
cal features of stock indices and ETF sectors change within time when compar-
ing two sliding windows of a sliding step of one day. 

We conclude with possible future research goals. Further work could be done 
analyzing persistence landscapes for homology in degree two. It would be inter-
esting to study topological features based on higher degree persistence. Fur-
thermore, it would be fascinating to expand to commodities, futures, and other 
financial time series. Moreover, it would be more resourceful to expand topo-
logical data analysis to statistics beyond statistical inference and use for predic-
tive modeling with machine learning. 

This table presents summary statistics for all the stock indices. We estimated 
the mean ( µ̂ ), standard deviation ( 2σ̂ ), variance ( σ̂ ), skewness ( γ̂ ), and kur-
tosis ( κ̂ ) of the daily log returns from July 2, 2019 to June 30, 2020. The report-
ing period of this table contains 253 trading days from July 1, 2019 to July 1, 
2020.  

This table presents summary statistics for all the ETF sectors. We estimated 
the mean ( µ̂ ), standard deviation ( 2σ̂ ), variance ( σ̂ ), skewness ( γ̂ ), and kur-
tosis ( κ̂ ) of the daily log returns from July 2, 2019 to June 30, 2020. The report-
ing period of this table contains 253 trading days from July 1, 2019 to July 1, 
2020.  
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