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Abstract 
In this paper, we discuss the assumptions, the balances, and the constitutive 
relationships in order to provide a set of tools for the mathematical modeling 
of a geothermal system. In particular, we present a model for pressure and 
saturation supposing that: 1) the geothermal fluid flows in a porous medium, 
2) it is composed of pure water, 3) the simultaneous presence of the gaseous 
(vapor) and liquid phases occurs, and 4) the effects of capillarity action can be 
introduced.  
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1. Introduction 

Geothermal energy is the energy in the form of heat contained within the Earth 
that can be extracted using manpower [1]. The geothermal energy exploitation is 
a topic of great interest and has potential for the future. It is estimated that the 
expected geothermal target for the year 2050 is 140 GWe, i.e., it would be possi-
ble to produce from geothermal up 8.3% of total world electricity production, 
serving 17% of world population [2]. Furthermore, “40 countries (located mostly 
in Africa, Central/South America, Pacific) can be 100% geothermal powered” 
and “the overall CO2 saving from geothermal electricity can be in around 1000 
million tons per year” [3]. 

A challenge with which we strive is trying to achieve this goal with description, 
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understanding, and prediction of geothermal system behavior. Such a system is 
been defined schematically as “convecting water in the upper crust of the Earth, 
which, in a confined space, transfers heat from a heat source to a heat sink, 
usually the free surface” [4]. The processes involved in a geothermal reservoir 
are complex. Since the 1970s developments of mathematical models of these dy-
namics have been used for simulation purposes [5] [6] [7]. During the years, a 
lot of knowledge was produced on this topic [8] [9] [10], and the continuous 
publication of recent developments is a demonstration not only of the impor-
tance of this field of study but also of its unchanged interest [11] [12]. 

Nevertheless, this amount of information and concepts presented in literature 
may leave, especially at first glance, the researcher with an unclear perception of 
the main underlying and characterizing elements. The purpose of this work is to 
provide a short presentation of a general mathematical model that allows in a 
simple (but not simplistic) way to identify which balances and assumptions can 
be considered to model a geothermal system. The aim is therefore to introduce, 
albeit under simplified hypotheses (fluid composed only of pure water and iso-
tropic system), a not trivial starter kit for modeling a geothermal field. To facili-
tate the reading of the work, we display in Table 1 the symbols of the physical 
quantities and the notations used in the text. We discuss all the elements con-
cerning the problem, the assumption of a porous medium, that schematizes the 
fractured permeable rocks of the reservoir, as well as the consequences of the 
presence of more fluid phases. We develop and describe the mass and moment 
conservation equations for each phase contained in the geothermal system. We 
argue for the constitutive relationships and assumptions, in absence and pres-
ence of capillarity, in order to finally reduce the balance equations to a nonlinear 
Partial Differential Equations (PDEs) problem with pressure and saturation un-
knowns and to achieve the closure of the model. 

2. Basics Ingredients and Methods 

The basic method for mathematical model development and physics modeling 
of a geothermal reservoir is represented by the following equation balance equ-
ations. An elementary balance equation for the generic quantity M can be writ-
ten in the following form [13]:  

d d d d .
d V V

M V q V
t Γ

= − ⋅ Γ +∫ ∫ ∫F n                   (1) 

The integration takes place on an arbitrary V sub-domain enclosed by a Γ  
surface. F  denotes the flow and q the source and absorption terms. Finally, is 
the normal versus outer to surface. The local form of Equation (1) is given by the 
arbitrary of the V volume, using the divergence theorem. The result can be ob-
tained as:  

.M q
t
∂

+∇ ⋅ =
∂

F                          (2) 
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Table 1. Symbols and notations. 

Symbol Physical quantity Physical dimension 

P Pressure [M∙L−1∙t−2] 

T Temperature [T] 

M Mass [M] 

ρ  Density [ML−3] 

V Volume [L3] 

Γ  Surface [L2] 

Λ  Latent heat [L2∙t−2] 

r Specific gas constant [L2∙T−1∙t−2] 

φ  Porosity [-] 

S Saturation [-] 

µ  Viscosity [M∙L−2∙t−1] 

u Fluid flow rate [L∙t−1] 

v Fluid velocity [L∙t−1] 

K  Absolute permeability [L2] 

rk β  Relative permeability of β  [-] 

T  Stress tensor [M∙L−1∙t−2] 

g  Acceleration of gravity [L∙t−2] 

γ  Surface tension [M∙t−2] 

κ  Mean curvature [-] 

Notation   

β  Phase  

v Vapor  

l Liquid  

H2O Pure water  

* Clapeyron  

mol Molar  

r Relative  

c Capillary  

w Wetting  

nw Non-wetting  

 
However, the fluid is not free in our case, but it is under dynamics conditions 

within the rock fractures that form the reservoir of the geothermal system. 
Therefore, in the following system, a non-deformable porous medium is intro-
duced. Let us introduce how we can describe the balances in a porous medium 
which are filled with pure water in gaseous and liquid state. 
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A porous medium is defined as any material in which a solid matrix and an 
empty space are present; or rather, a part where the fluid can penetrate [14] [15]. 
Therefore, the empty space can be occupied by both liquid and vapor H2O. The 
solid matrix is distributed throughout the porous medium (see Figure 1). This 
fact implies that for sufficiently large volumes of domain, arbitrarily taken with-
in the porous medium, we will always find the presence of solid matter. We refer 
to such a volume as an Arbitrary Elementary Volume (AEV). 

In the porous medium, the H2O flows through a complex network of pores 
structure which constitutes the space of the material. This flow is therefore deli-
mited by the microscopic interface between solid and fluid. This configuration 
can be essentially analyzed in two different ways:  
 Microscopic Level: Conceptually, the H2O flowing in a porous medium 

could be studied at a microscopic level, that is by focusing attention on what 
happens in the single pore. In this case, the fluid is modeled as a continuous 
means subjected to specific boundary conditions. These conditions are de-
fined on the interface that delimits the domain under consideration. Howev-
er, this type of approach is generally theoretical because of the complex geo-
metry of the interface. Besides, the mathematical model solutions from mea-
surements at these levels can hardly be checked. 

 

 
Figure 1. Example of an arbitrary domain V. The presence of rock is labelled with the 
letter r while vapor and liquid water are labelled with the letters v and l, respectively. The 
Figure is modified from [16]. 
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 Macroscopic Level: To overcome the difficulties mentioned above, another 
level of description is needed, namely the macroscopic one. On this scale, the 
quantities involved can be easily measured. To obtain a description of the 
flow at this level, the so-called continuous approach is adopted. According to 
this approach, the real porous medium is replaced by a fictitious model in 
which each phase (liquid and gaseous) is seen as a continuous medium that 
fills the entire AEV. Let us proceed with the concept of macroscopic quantity 
in the porous medium. Suppose, for instance, we aim to define ρ  quantity 
(the quantity may be the volume fraction occupied by grains, the mass of liq-
uid water, etc.) of the medium at the point 3∈x   (if the domain is consi-
dered three-dimensional). The procedure is given as follows: We consider an 
ideal spherical ball centered in the point x  and we measure the average 
value of ρ  on such a sphere varying the radius length. It is expected to ob-
tain an oscillating behavior of the measurement values; precisely, due to the 
random nature of the medium (being that as more or less solid parts can be 
included in the sphere). Nevertheless, by observing the graph of the mea-
surements (a diagram of which is shown in Figure 2), we can notice an in-
terval of the radius of the ball for which the ρ  value stabilizes. We therefore 
proceed in choosing the volume with such radius as the Representative 
Elementary Volume (REV). This means that, the phenomenon is studied 
within such a REV, and each quantity of the medium in a point x  must be 
considered as average quantity in the REV centered in x  [17].  

The theory exposed in this paper refers to the macroscopic level, and the fol-
lowing quantities are considered as average quantities. In Section 3, we describe 
the balance equations which are used in continuum mechanics for these average 
quantities of the medium. 
 

 

Figure 2. Example of a graph of the measures of the quantity ρ  performed on a small 
spherical ball of variable radius, i.e., for an increasing volume V. 
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3. Balance Equations 

Let us first consider the mass and momentum balance equations for a system 
in which the geothermal fluid is composed of pure liquid and gaseous H2O. The 
mass of H2O presented in the volume unit of the porous medium is given by:  

2H O ,M Sβ β
β

ρ φ= ∑                          (3) 

where 
 β  is the index representing the phase ( vβ =  for vapour and lβ =  for 

liquid water);  
 φ  is the porosity of the medium, that is, the fraction of volume not occu-

pied by the solid matrix;  
 Sβ  is the saturation of phase β , that is the volume fraction occupied in-

side the pores by the water of the corresponding state. The saturation va-
riables comply with the constraint  

1;v lS S+ =  

 βρ  is the density of phase β , that is the mass of β  phase per volume 
unit occupied by the β  phase. For example, 31 gr cmlρ = .  

The mass flow F  is the sum of all the phases  

,β
β

= ∑F F                           (4) 

whereas each βF  flow of the phase β  is given by  

,Sβ β β βρ=F u                         (5) 

by the product between the density and the volumetric flux βu  of the fluid in 
the β  phase. 

The fluids move in response to forces in which the pressure forces, gravity 
force, and resistance forces are most important due to the viscosity and friction 
within the grains of the porous medium. The fundamental law of the cause of 
fluid fluxes in porous media was established by Henri Darcy yet in 1856 [18] 
based on a series of water flow experiments in a horizontal sand-filled tube. He 
realized that the specific flow rate of the tube depended on the pressure variation 
of the tube length unit which is called a pressure gradient. By generalizing Dar-
cy’s experiments, the specific volumetric flow rate is obtained as u  proportion-
al to the pressure gradient according to the law  

,P
µ

= − ∇
Ku                        (6) 

being P the pressure of H2O. The sign minus is needed because the fluid flows 
from more high-pressure areas to low-pressure areas. In Equation (6), K  is 
called permeability tensor and measures the ease of the fluid to move inside the 
porous medium (depending on the porosity and the microscopic geometric 
structure). Finally, µ  denotes the viscosity, i.e., the resistance of a fluid to a 
change in shape. We can also consider the contribution of gravitational force 
[10]; the full expression becomes: 
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( ).P gρ
µ

= − ∇ −
Ku                         (7) 

We remark that u  represents the volume of fluid that crosses a unit area sec-
tion per unit time. The volumetric flow u  is also called Darcy’s velocity; but, 
the volumetric flow is not the average velocity with which fluid particles are 
moving. This quantity is known as pore velocity v  and is defined according to 
the following equation:  

.φ=u v                              (8) 

This definition implies that in a medium with low porosity, the velocity v  
may be greater as compared to the volumetric flow u . 

Let us now proceed to specify the meaning of pressures of the H2O and its 
phases. As specified, P denotes the pressure of H2O while with vP  and lP  the 
pressures of H2O in vaporous state and liquid phase, respectively. By way of de-
finition it follows that  

1 , and 0,
0 0, and .

l l v

l l v

S P P P
S P P P
= ⇔ = =
= ⇔ = =

 

If 0 1lS< <  holds, lP  and vP  have to be specified in a constitutive man-
ner. In that case, the liquid and vapor are considered as a two-component 
mixture with P representing mixture pressure in its totality. In particular, the 
partial stresses of the components in the fluid mixture (see [13]) are given by  

and ,l l l v v vS P S P= =T I T I   

while the total stress T  exerted by the mixture fluid is  

,l v l l v vS P S P= + = +T T T I I                      (9) 

where P=T I . 
If, as in a geothermal reservoir occurs, the H2O is present in several phases 

then it is proved that each phase flows moved by its own pressure gradient and 
by its own weight [10]. The effective permeability of the medium relative to the 
single-phase is reduced with the comparison where the phase occupies all availa-
ble space. This effect is taken into account by introducing the reduction permea-
bility factors or the relative permeabilities rk β  ( ,v lβ = ). 

The Darcy’s expression for the single β  phase becomes  

( ),rk
P gβ

β β β
β

ρ
µ

= − ∇ −u K                      (10) 

with, resuming:  
 K  the absolute permeability tensor of the medium ( [ ] 2 2mK L = =  );  
 rk β  the effective permeability of the single phase β , [ ],0 1r rk kβ β  = − ≤ ≤  . 

It is a reduction factor of the permeability because only a part of the space 
available in the pores is occupied by the β  phase. It is indeed true that  

( ) ( )1 1 and 0 0,r rk S k Sβ β β β= = = =  

while, for intermediate saturation values, these functions are defined experi-
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mentally. It also applies  

1;rk β
β

=∑  

 βµ  the viscosity of the β  phase, usually Pa sβµ  = ⋅  .  
From Equation (4) and Equation (5) the total mass flow is obtained as F  of 

H2O, given by  

( ).rk
P gβ

β β β
β β

ρ ρ
µ

= − ∇ −∑F K                  (11) 

It can be stated that the local mass conservation equation [17] [19] leads to the 
following form: 

( ){ } ( )1 0,l l l v l l l v v vS S S S
t
φ ρ ρ ρ ρ∂
 + − +∇ ⋅ + = ∂

u u          (12) 

or as an alternative 

( ){ } ( )1 0,l l l v l l l v v vS S S S
t
φ ρ ρ ρ φ ρ φ∂
 + − +∇ ⋅ + = ∂

v v         (13) 

where any type of wells or sources is not considered. There are three unknown 
variables in this equation, which are lS , lP  and vP . Note that the vapor den-
sity vρ , albeit is variable, does not introduce an unknown variable because it 
depends on the vapor pressure vP . We can assume to apply the ideal gas law  

,v

v

P
rT

ρ
=                           (14) 

where T is temperature in Kelvin degrees (K) and r is the specific gas constant, 
in H2O case equal to 24.6 10 J kg Kr = × ⋅ . 

We provide three remarks concerning Equation (12), according to three dif-
ferent cases that can occur. 

Remark 1. First, if the whole water is in the liquid state ( 1lS =  and 0gS = ), 
then the Equation (12) is reduced to  

( )0, 0,l l l
l

Pφ ρ
µ

 
∇ ⋅ = ⇒ ∇⋅ ∇ − = 

 

Ku g  

that is an elliptic equation in the unknown lP : the classic equation of porous 
media. Resolving it and specifying appropriate boundary conditions, the equa-
tion provides the pressure field in the domain, and using this Equation (10) we 
can evaluate the water flow. 

Remark 2. Let us suppose now, in this second case, that 0lS =  while 1vS = . 
We consider a system in which all the water is in the gaseous state. We obtain  

( ) ( ) ( ) ( )0, 0,v v v v v v v
v

P
t t
φρ ρ φρ ρ φ ρ

µ
 ∂ ∂

+∇ ⋅ = ⇒ −∇⋅ ∇ − = ∂ ∂  

Ku g  

with vρ  and vP  linked by Equation (14). A not-uniform parabolic equation 
in the unknown vP  is formulated here. If it is assumed that ( )T x  is known, 
the solution of this equation provides the vapor pressure field in the domain. 
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Remark 3. The third case occurs when the water is present in both the ga-
seous and liquid phase. According to this configuration, we must reduce the 
number of unknowns, which for now are: lS  (or vS ), lP , and vP . Through 
constitutive equations, we can introduce a mutual relationship between the two 
pressures and a second relationship that binds one of them to the saturation de-
gree. 

In Sections 4 and 5, we present therefore a constitutive model depending on 
whether the capillarity effects are or are not neglected, respectively. 

4. Constitutive Model in the Absence of Capillarity 

The state of the H2O is determined via the Clapeyron diagram [20]. The Cla-
peyron equation describes the variation of pressure with temperature along the 
equilibrium curve between two phases (α  and β )  

( )
d ,
d mol mol

P
T T β α

Λ
=

− 
                      (15) 

being Λ  the latent heat (per unit of mass) of transition from one phase to 
another, and mol  is the molar volume of the two phases. An approximate so-
lution of this equation in the case of the liquid-vapor transition of pure H2O is 
given after fitting of the experimental data [21]. We obtain a function of the sa-
turated vapor pressure *P  which is entitled as Clapeyron pressure, given by 
the expression  

( )* 273961.7exp 17.35 Pa.TP T
T
− =  

 
              (16) 

If, at a fixed temperature, the pressure P is such that *P P> , then the H2O is 
in the liquid phase and we have lP P= . Conversely, if *P P<  then the H2O is 
in the gaseous phase (vapor), and the result is vP P= . Unlike again, if *P P=  
then there is the coexistence of the liquid and gaseous phase. In such a situation, 
the pressure of water (now viewed as a mixture of two phases) exactly corres-
ponds to *P . Under this condition, lP  and vP  must be specified. By treating 
the fluid as a liquid-vapour mixture, from Equation (9) we have  

( ) *1 .l v l lS P S P P− + =                      (17) 

Therefore, if we neglect the capillary effects, the simplest constitutive assump-
tion, encountered in literature [17], is  

* ,vP P=                            (18) 

*.lP P=                            (19) 

In this case, the variable that describes the system behavior is therefore the 
saturation of one of these phases. For instance, we can choose lS ; the density of 
the phases follows accordingly. The liquid phase is calculated with constant den-
sity while the vapor density is given by the following Equation (14) in this way,  
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( ) ( ) ( )*
* *with .v v v

P T
T T

rT
ρ ρ ρ= =  

Therefore, the only state variable is precisely the saturation of one of the 
phases. 

We aim to generalize these results, by introducing the following constitutive 
relationship for lS  in terms of P. We describe lS  with the graph ( )ˆ

lS P  on 
the pressure, i.e.  

( )ˆ ,l lS S P∈                          (20) 

being  

( ) ( )

*

*

*

1 if ,
ˆ 0,1 if ,

0 if ,
l

P P
S P P P

P P

 >


= =
 >

                  (21) 

as shown in Figure 3. Concerning the pressures lP  and vP , we obtain  

( )( )*1 ,vP P P P= − −                    (22) 

( )* ,lP P P P= −                      (23) 

where   is the Heaviside function  

( )
1 if 0,
0 if 0.

x
x

x
≥

=  <
                     (24) 

Summing up, if capillary effects are neglected, the H2O flow in the porous 
medium is described by the Equation (12), read as an equation in P, with lS  
given by Equation (21), and with vP  and lP  given by Equations (22) and (23), 
respectively. 

5. Constitutive Model in the Presence of Capillarity 

When the liquid and gaseous phases coexist and phenomena of capillarity are 
unable to neglect, a notion of capillary pressure [22] [23] can be introduced as;  

,w nw
cP P P= −                      (25) 

 

 

Figure 3. Graph of ( )ˆ
lS P . 
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where wP  is the wetting fluid pressure which tends to adhere with the pour 
walls while nwP  is the fluid pressure which tends to minimize the surface con-
tacting the porous medium. In the case of the H2O in the form of vapor and liq-
uid in the soil, the wetting phase is the liquid phase. Therefore  

,c l vP P P= −                            (26) 

with cP  described by the following so-called Laplace formula  

cos ,cP γ κ α=                          (27) 

with 
 ( )Tγ γ=  the surface tension;  
 κ  the average curvature of the liquid-vapour interface throughout the 

REV;  
 cosα  the contact angle between the liquid and the pore wall.  

Let us now consider an isotherm line in the Clapeyron plane, according to 
Equation (15). At the phase transition (assuming as always, the equilibrium be-
tween the phases), we observe that  

d d ,mol mol
v v l lP P=                         (28) 

being mol
β , ,l vβ =  the molar H2O volume of the respective phases. By dif-

ferentiating Equation (26) we have  

d d d 1 d 1 d .
mol mol mol

v v l
c l v g vmol mol mol

l l v

P P P P P
   

= − = − = −   
   

  
  

 

Now, if we are “sufficiently” far from the critical point, it is legitimate to con-
sider mol mol

l v  , and then we can state that  

d d .
mol

v
c vmol

l

P P=



 

Let us now assume that vapor is an ideal gas; it can be considered the equation 
of state as,  

,mol
v gP T=                           (29) 

and we get accordingly  

d
d .v

c mol
vl

PTP
P

=



                         (30) 

Now we integrate Equation (30) remarking that 0cP =  corresponds to 
*

vP P= ,  

*0

d
d ,

c vP P
v

c mol
vl P

PTP
P

=
′∫ ∫




 

in order to arrive at  

* exp ,
mol

l
v cP P P

T
  =  
  




                     (31) 

that is well-known Kelvin equation. In particular, being  
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2H O ,mol mol
l lρ=   

the Equation (31) can be written as  

* exp .l
v cP P P

rT
ρ =  

 
                     (32) 

The model so defined has an additional variable: cP . It is necessary to intro-
duce a constitutive law that links capillary pressure to some other variable. Fol-
lowing classical literature [14], it can be assumed that cP  is expressible in terms 
of the liquid saturation lS . In this line, various functional forms can be deter-
mined (generally based on the best fit of experimental data) from the literature. 
In most cases (or rather, the most used in a hydro-geological context) Van Ge-
nuchten and Corey expressions [24] cab be adopted. For now, we just write  

( ) ( )
( )

0, se 0 1,
, con

0, se 1,
c l l

c c l
c l l

P S S
P P S

P S S
 < < <=  = =

         (33) 

recalling that it is required to specify ( )c lP S  for 0 1lS< < . 
An important estimation of capillary pressure is obtained from Equation (27). 

Using the experimental tabulations which reproduce this relationship and the 
typical values of κ  and γ , it is estimated that the cP  inside a capillary and 
can be obtained as a comparison parameter which confutes or not the approxi-
mation of capillary absence. For example, the Young-Laplace formula [25] for 
one capillary can be used  

2 cos ,cP γ α
η

=                        (34) 

where η  is the radius of the capillary section, to evaluate some reference values. 
In Table 2, we estimate the capillary pressure, approximating cosα  to the unit, 
changing the temperature in the reservoirs, and increasing the capillary radius. 
The data on the surface tension of the H2O is taken from [26].  

Thus, in the case of capillary not negligible, the state of the system is described 
by only two variables: P and lS , with the liquid phase pressure lP  linked to P 
and to lS  from this relationship 
 
Table 2. Capillary pressure estimates (expressed in Pa) according to the Young-Laplace 
Equation (34) for some values of temperature and radius of the capillary and approx-
imating cos 1α ≈ . 

T 
(˚C) 

( )Tγ  
[ ]PacP  [ ]PacP  [ ]PacP  

0.1 mmη =  1 mmη =  10 mmη =  

250 0.026 5.2 × 103 5.2 × 102 5.2 × 101 

280 0.020 4.0 × 103 4.0 × 102 4.0 × 101 

310 0.014 2.8 × 103 2.8 × 102 2.8 × 101 

340 0.008 1.6 × 103 1.6 × 102 1.6 × 101 
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( ) ( ) ( )

*

* *

if ,

exp if ,l l
c l c l

P P P
P

P S P T P S P P
rT
ρ

 >
=   + = 

 

         (35) 

being ( )c lP S  given by Equation (33). 
Considering the capillarity action, the mass and momentum balance problem 

thus arrives at the following mathematical model: 
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or, expressed in function of the pore velocity  
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The model must be closed with the relative permeability curves specification  

( ) ,rl rl lk k S=  

( ) ( )1 ,rv rv v rv lk k S k S= = −  

while the permeability dependence of the structure is given by the definition of 
the permeability tensor K. 

6. Conclusions 

The main purpose of the paper was not limited to reach a generic model of a 
geothermal system that we presented as a result. The significance of this work is 
recognized in the approach used in building the model. We think the aim of this 
work lies in how we can obtain such model. The paper was written in disserta-
tion style. It treats how to work with physical quantities in porous media, how to 
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consider the consequences of the various hypotheses, and how to insert the con-
stitutive relationships. Inter alia, we gave attention to the clarity of the steps and 
the reproducibility of the deductions. 

The main result of our findings is to propose a generalised mathematical 
model for pressure and saturation of a two-component H2O mixture flow. This 
finding is consistent with the sub-problems in which the fluid consists only of a 
single phase. In the case of the presence of pure water in the liquid state only, the 
problem is reduced to the classic elliptic PDEs problem of a liquid fluid in a 
porous medium. When the fluid is completely gaseous, we obtain a parabolic 
PDEs problem that can be solved if the system temperature is known. Now, in 
the case of simultaneous coexistence of the two phases, the addition of a consti-
tutive model is necessary. Under the hypothesis of neglecting the effects due to 
capillarity, we adopted the application of the Clapeyron pressure and the law of 
perfect gases, to obtain a constitutive law for liquid saturation that depends on 
pressure, and using the Heaviside function. Finally, assuming to consider the ef-
fects of capillarity, we took advantage of the fact that capillary pressure can be 
expressed as a function of saturation. Therefore, we have expressed a relation-
ship between the pressure of the liquid phase and the saturation, with the intro-
duction of the measurement estimates of the capillary pressure, according to the 
Young-Laplace formula. 

The various equations and the described methods can be used as a set of tools, 
a not-trivial starter kit, to understand and operate with models for geothermal 
basins, even by a readership who does not have strictly physical and mathemati-
cal skills. For these reasons, we believe this work can contribute to potential fu-
ture directions [12], specifically to the topic of current interest, represented by 
the numerical simulation of the evolution of the geothermal system [27]. 
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