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Abstract 
This article proposes a new algebraic structure that goes beyond the vector 
space, named sector space. We show that this new space is associated with 
projective spaces as vector space is associated with affine spaces. Parallelly, we 
suggest two other algebraic structures which extend the notions of group and 
field. Notions of element not reducible to a point (extended object), of 
ternary structure (extension of the binary notion of the linear group) and of 
complementary association (bifocal construction and mixture) seem to be the 
keystone of this building. These structures are associated with invariance 
properties by translation, rotation and zoom. 
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1. Introduction 

In this article, we define a new geometrical space which extends the notion of 
vector to geometrical objects which we will name sector (portion of surface in 
the form of parallelogram). We will extract from it 3 propositions of algebraic 
structures which extend the notions of group, field and vector space. These 
structures will be associated with invariance properties by translation, rotation 
and zoom. They will make it possible to go beyond the binary limitations of 
linear structures, which is why we will qualify them as non-linear. It will result 
from it, notions of element not reducible to a point (extended object), of 
ternary structure (extension of the binary notion of the linear group) and of 
complementary association which will be the keystone of this building. We will 
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see how this sectoral space is associated with projective spaces (in a similar way 
that vector space with affine spaces [1]). 

2. Sectoral Geometric Space 
2.1. Basic Geometric Objects, Sectors 

We limit ourselves to a “minimal” 2-dimensional space (plane). We consider the 
set of parallelograms that we can define in this space. These plane portions are 
defined by 2 segments (blue and orange segment in the following figures) which 
orient the parallelogram. The orange side will be named the base/reference of the 
sector: 

These objects will be named free sectors. Any orange side element of zero 
length will be excluded. These elements will therefore not be considered as 
sectors. The “flat” sectors for which the orange and blue side will be collinear 
will be elements of our space and the blue side can be zero. Figure 1 shows the 
examples of different sectors. 

2.2. Equivalence Classes on Sectors 

We are going to define object classes according to the following equivalence 
relation. 2 free sectors will be considered as 2 representatives of the same class if 
they can overlap exactly (with the same reference) by the combination of the 
operations of translation (not to depend on an absolute position), rotation (not 
to depend on an absolute direction), zoom, i.e. homothety of any center and of 
nonzero factor (not to depend on an absolute size). 

In Figure 2, all these free sectors represent the same sector. (0) and (1) are 
deduced from each other by a translation. (0) and (2) are deduced from each 
other by a rotation (and a translation). (2) and (3) is deduced from each other by 
a homothety (zoom) (and a translation). 

In Figure 3, the 2 free sectors (4) and (5) are different (they represent 2 
different equivalence classes) because they cannot be superimposed by the 3  

 

 
Figure 1. Examples of different sectors. 

 

 
Figure 2. Four representations of a same sector. 

https://doi.org/10.4236/oalib.1106726


S. Le Corre 
 

 

DOI: 10.4236/oalib.1106726 3 Open Access Library Journal 
 

 
Figure 3. Two different classes of sector. 

 
transformations of the equivalence class (translation, rotation, zoom). We see 
the result of these attempts when we try to either superimpose the orange sides 
(6) or the blue sides (7). 

Note: The equivalence classes must be disjoined from each other (i.e. have no 
common elements), which is why zero factor homothecy is not allowed, otherwise 
the application of such a transformation would give each class a common element, 
the parallelogram reduced to one point. We remind in passing that such a 
parallelogram is not a sector because its orange side is zero. 

2.3. Definition of 2 Internal Composition  
Lawson the Sectoral Space 

2.3.1. Addition of sectors 
The addition of 2 sectors consists of making the orange side (the reference) of 
the 2nd sector coincide with the parallel of the orange side of the 1st sector using 
transformations leaving the classes invariant (zoom, translation and rotation). For 
example, we can first make their orange side coincide by zooming, translating, 
rotating and secondly translate the 2nd sector along the blue side of the 1st sector so 
as to make the orange side of the 2nd sector coincide on the side parallel to the 
orange side of the 1st. The resulting sector is then to redefine the blue side by 
connecting the blue ends (like adding vectors): 

In Figure 4, (11) is obtained by positioning (9) on (8) and (12) is obtained by 
positioning (8) on (9). By the equivalence relation seen previously, (11) and (12) 
are equivalent. We show below that the addition is indeed commutative. 

2.3.2. Multiplication of Sectors 
The multiplication of 2 sectors consists in making the orange side of the 2nd sec-
tor coincide with the blue side of the 1st sector: 

In Figure 5, (16) is obtained by positioning (14) on the blue side of (13) and 
(17) is obtained by positioning (13) on the blue side of (14). By the equivalence 
relation seen previously, (16) and (17) are equivalent. We show below that 
multiplication is indeed commutative. 

3. Algebraic Set of Pairs of Complex Vectors  
Equivalent to Sectors 

3.1. Basic Algebraic Elements, Pairs of Complex Vectors 

All of these sectors can be noted very simply from the vector representation of 
complex numbers. As the previous representation suggests, these sectors are  
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Figure 4. Addition of sectors. 

 

 
Figure 5. Multiplication of sectors. 

 
characterized by their orange and blue sides. We can represent these 2 segments by 
vectors of complex space (in other words by 2 complex numbers). So if we denote 

1z  and 2z , 2 complex numbers, any sector is defined as a 2-tuple ( )1 2,z z . We 
can conventionally say that the 1st member of the 2-tuple represents the orange 
side and the 2nd the blue side(Figure 6). 

In the geometric representation, we previously posed that the orange side 
should not be zero. We will make the same assumption by posing 1 0z ≠ . 

3.2. Equivalence Classes on Pairs of Complex Vectors 

The equivalence class that we previously defined on the sectors corresponds to  
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Figure 6. Sector and pair of complex vectors. 

 
the following equivalence relation on the pairs of complexes: 

( ) ( )1 2 3 4 2 3 1 4 1, ~ , with 0z z z z z z z z z⋅=⋅⇔ ≠  
Let’s check the equivalence of the classes of the sectors with the classes of 

these pairs of complexes. For sectors, the geometric transformations of the same 
equivalence class allow the 2 orange sides and the 2 blue sides of 2 sectors to 
correspond. In this new representation, we must therefore find the algebraic 
transformations to be able to transform one of the two 2-tuples so as to obtain 
both 1 3z z=  and 2 4z z= . 

Because of the characteristics of the vector space of complex numbers, the 
transformations that apply to sectors (rotation and zoom) find their equivalence, 
for 2-tuples of complexes, in the simple multiplication by the same complex 
number of each of the components of the 2-tuple (so that the whole of the latter 
undergoes transformations without deformation). The complex number module 
acts as a zoom and the phase acts as a rotation. The translation is naturally en-
sured by the fact that the complexes are vectors. We thus define all these trans-
formations (rotation and zoom) by the single relation (non-zero multiplication 
by 3z  of each component of the 2-tuple): 

( ) ( )1 2 1 3 2 3 3, ~ , avec 0z z z z z z z ≠  
We verify that this transformation is consistent with the equivalence relation: 

( ) ( )1 2 1 3 2 3 2 1 3 1 2 3, ~ ,z z z z z z z z z z z z⇔ =  
This transformation does not modify the equivalence class, it represents the 

invariance of this space by translation, rotation and zoom. 
Note: For the same reasons as for the geometric sectors, the multiplicative 

factor 3z  must not be zero otherwise the equivalence classes would no longer 
be disjoint (and would have the 2-tuple (0,0) as common representative and 
which is not an element of our space). 

We note that if we match all the free sectors on the same origin (the origin of 
the complex plane in which we define the complex 2-tuples), we then have a 
bijection between these 2-tuples ( )1 2,z z  and the sectors linked to this origin. 
Given that in the 2 representations, algebraic and geometric, the equivalence 
classes identify elements in the same way, i.e. by a rotation and a zoom, the 
bijection is preserved between the sector classes and the complex 2-tuple classes. 
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3.3. Definition of 2 Internal Composition Laws  
for the Set of Pairs of Complexes 

We are going to define 2 internal composition laws (addition and multiplication) 
on the classes of pairs of complex vectors equivalent to the internal composition 
laws of sectors. 

3.3.1. Addition of Complex 2-Tuples 
We can translate the addition of sectors in algebraic form as follows (Figure 7): 

( ) ( ) ( )1 2 3 4 1 3 2 3 1 4, , ,z z z z z z z z z z+ = +  

3.3.2. Multiplication of Complex 2-Tuples 
We can translate the multiplication of sectors in algebraic form as follows (Figure 8) 

( ) ( ) ( )1 2 3 4 1 3 4 2, , ,z z z z z z z z⋅ =  
Note: The previous definitions of the classes and the 2 internal laws of these 

2-tuples make it possible to see (via the algebraic representation) the sectors in 
the form of a fraction of complex numbers and thus to provide a possible 
notation for these sectors: “ ( )1 2 2 1, ~z z z z ”. This point of view allows us to find 
the previous results: 

2 3 1 42 4 2 4 2 4

1 3 1 3 1 3 1 3

;
z z z zz z z z z z

z z z z z z z z
+

+ = ⋅ =
 

4. Definition of External Composition Laws on These  
Geometric and Algebraic Objects 

This algebraic representation by pair of complex numbers will allow us to  
 

 
Figure 7. Addition of pairs of complexes. 

 

 
Figure 8. Multiplication of pairs of complexes. 
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define 2 external composition laws (multiplication and exponentiation by a 
number) on these classes of objects. We will first geometrically introduce these 
external laws from the internal laws (addition and multiplication). We will then 
“naturally” extend these laws thanks to the algebraic representation of complex 
2-tuples. In our study, the set of numbers, associated with our space, for these 
external composition laws will be the set of complex numbers. 

4.1. Multiplication of Sectors by a Number 

For the geometric representation: From the internal composition law (addition), 
we notice that adding N times the same sector consists in stacking the sectors on 
top of each other which ultimately corresponds to multiplying by N the blue side 
only(Figure 9). 

For the algebraic representation: Using the “internal” addition of 2-tuples, we 
have: 

( ) ( ) ( )1 2 3 4 1 3 2 3 1 4, , ,z z z z z z z z z z+ = +  
Either with 1 3z z=  et 2 4z z=  

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 1 2 1 1 2 1 2, , 2 , , , 2z z z z z z z z z z z z z z+ = = + =  
We find the same result as for the geometric representation. Consequently, for the 

geometrical representation, the multiplication by a complex number 3z  will consist 
of multiplying the vector “blue side” by 3z . For the algebraic representation, the 
multiplication by a complex number 3z  will consist of multiplying the 2nd member 
of the 2-tuple: 

( ) ( )3 1 2 1 3 2, ,z z z z z z=  
Note: We will note the consistency with the writing “ 2 1z z ” for which 

“ ( )2 1 2 1 2 12z z z z z z+ = ” or even “ ( ) ( )2 1 2 1k z z kz z= ”. 

4.2. Exponentiation of Sectors by a Number 

For the geometric representation: From the law of internal composition (multip-
lication), we notice that the fact of multiplying N times the same object consists 
in putting the sectors next to each other (by applying the orange reference on the 
blue side in a construction in spiral) which ultimately corresponds to raise to the  

 

 
Figure 9. From sectoral addition to multiplication of sectors by a number. 
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power of N both the orange side and the blue side (using the invariance by 
zoom), as shown in Figure 10. 

For the algebraic representation: By taking up the multiplication of 2-tuples, 
we have 

( ) ( ) ( )1 2 3 4 1 3 4 2, , ,z z z z z z z z⋅ =  

Either with 1 3z z=  et 2 4z z=  

( ) ( ) ( ) ( ) ( )2 2 2
1 2 1 2 1 2 1 1 2 2 1 2, , , , ,z z z z z z z z z z z z⋅ = = =  

We find the same result as for the geometric representation. Consequently, for 
the geometric representation, the exponentiation by a complex number 3z  will 
consist in raising to the power of 3z  both the complex number representing the 
“blue side” and the complex number representing the “orange side”. For the 
algebraic representation, the exponentiation by a complex number 3z  will consist 
in raising to the power of 3z  both the 2 members of the 2-tuple: 

( ) ( )3 3 3
21 2 1, ,z z zz z z z=

 
Note: We will note the consistency with the writing “ 2 1z z ” for which 

“ ( )( ) 2 2
2 1 2 1 2 1z z z z z z= ” or even “ ( ) 12 1 2

k kkz z z z= ”. 

5. Properties of a Sector Structure 

At this stage, we have therefore developed a sectoral space in which we have de-
fined each constituent element, the free sectors, in a geometric manner (paralle-
logram seen as bivectors of the complex plane) and in an algebraic manner 
(2-tuple of complex number like “x/y”). In these 2 representations we have de-
fined 2 internal composition laws (addition and multiplication) and 2 external 
composition laws (multiplication and exponentiation). We will now study the 
structuring properties of these laws of composition. In order to simplify this 
study for the geometric representation, we will introduce the notion of linked 
sector. 
 

 
Figure 10. From sectoral multiplication to exponentiation of sectors by a number. 
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5.1. Sector Structure 

Linked sectors (on the same origin and the same reference side): 
To effectively compare 2 sectors, it is interesting to make them share common 

elements (origin, orientation and size). And even more generally, it is interesting 
that all the sectors are comparable in relation to these same common elements. 
Concretely, a procedure must be found to find the unique representatives of 
each class who share these common elements (origin, orientation and size). Like 
the transition from free vectors to vectors linked to the same reference origin 
(fixing a basic position common to all) [1], we are going to pass from free sectors 
to sectors linked to the same reference origin (fixing a basic position common 
to all) and on the same reference side (setting a basic orientation and size 
common to all). According to the equivalence relation of the sectors, two 
sectors which are only differentiated by a translation represent the same class. 
So, let’s take the point at the intersection of the orange side and the blue side 
as a reference and translate all the sectors on the same arbitrary point. The sectors 
that were differentiated by only a translation, no longer form a single sector (each 
overlapping this representative). Let’s do the same procedure for the 2 other 
transformations leaving the sectors of the same class invariant (rotation and 
zoom). According to the equivalence relation of the sectors, two sectors which 
differ only by rotation represent the same class. So, let’s take the orange side as 
the reference direction and rotate all the sectors so that their orange side is all 
oriented in the same way. The sectors that were differentiated by only a rotation, 
no longer form a single sector (each overlapping this representative). Finally, 
according to the equivalence relation of the sectors, two sectors which differ only 
by a homothety (of non-zero factor) represent the same class. Then let’s take an 
orange side of unit length as a reference and apply an homothety to all the 
sectors so that their orange side exactly overlaps. The sectors which were 
differentiated by only an homothety, no longer form a single sector (each 
overlapping this representative). Thus, by this procedure (choice of an origin 
and a reference side) we define unique representatives of each equivalence class. 
We will henceforth place ourselves in this space of “sectors linked” to an origin 
and to a unit side (which will be the orange side). This step will simplify the 
study of the geometric operations of the sectoral space because now we can place 
ourselves in a 2-dimensional vector space in which we choose an orthonormal 
base. We will place all previous unique representatives on the origin with the 
orange side on the vector of the 1st component of the base. All sectors will be 
distinguished by their blue side only (which will be a vector of this vector space). 
Conversely, any vector V of the vector space will correspond to a single sector, 
for which the vector V is on the blue side and the 1st vector of the base of the 
vector space on the orange side. We thus have a bijection between the vector 
space of complex numbers and the elements of sector space. It is this space 
which will henceforth be named sectoral space. In 2-tuple representation, this 
would lead to defining the 2-tuple ( )1, z  as the representative of each class with 
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z a complex number. But the algebraic manipulation of 2-tuples being as easy 
with the single representative as with a generic representative ( )1 2,z z  that we 
will continue to use the generic 2-tuple in the algebraic representation of the 
sectors. 

5.2. Properties of the Internal Composition Laws of Sectors 

We will now establish the properties of the different composition laws defined 
previously. We will demonstrate them in the 2 representations, sectors of 
sectoral space and pairs of complex numbers. We will denote “S1”, “S2” … the 
sectors and “ ( )1 2,z z ” the pairs of complexes. 

5.2.1. Sectoral Addition 
Commutativity 
For the sector space: Addition involves translating one of the sectors from the 

origin to match the orange side on the end of the other. With the definition of 
the previous linked sectors (same origin and same reference orange coast), this 
operation is reduced to the vector addition on the blue sides of the sectors. As 
vector addition is commutative [1], sector addition is also commutative (Figure 
11) 

1 2 2 1S S S S+ = +  

For the algebraic representation of 2-tuples of complex numbers (with the 
properties of complex numbers [2]) 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 1 3 2 3 1 4 3 1 4 1 3 2 3 4 1 2, , , , , ,z z z z z z z z z z z z z z z z z z z z+ = + = + = +  
Associativity 
For the sector space: Since the addition of the linked sectors is reduced to the 

vector addition on the blue sides of the sectors, the vector addition being 
associative, the sector addition is also 

( ) ( )1 2 3 1 2 3S S S S S S+ + = + +  
 

 
Figure 11. Commutativity of sectoral addition. 
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For the algebraic representation of 2-tuples of complex numbers 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( )

1 2 3 4 5 6 1 3 2 3 1 4 5 6

1 3 5 2 3 1 4 5 1 3 6

, , , , ,

,

z z z z z z z z z z z z z z

z z z z z z z z z z z

+ + = + +

= + +
 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( )

1 2 3 4 5 6 1 2 3 5 4 5 3 6

1 3 5 2 3 5 1 4 5 3 6

, , , , ,

,

z z z z z z z z z z z z z z

z z z z z z z z z z z

+ + = + +

= + +
 

The associativity and distributivity of complex numbers (which makes up 
each component of the 2-tuple) gives us 

( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 3 4 5 6 1 2 3 4 5 6, , , , , ,z z z z z z z z z z z z+ + = + +
 

Neutral element 
For the sector space: Let’s take the zero blue side sector that we will name the 

zero sector (Figure 12). 
Note on representation: Theoretically only the orange side should be seen, but 

to make the operations more explicit, we slightly shift the opposite side (black) 
in this representation (lines on vertical sides are reduced to points but we have 
shown only the blue side, necessary for operations). 

It represents the neutral element of the sector addition (Figure 13) because 
this operation is reduced to the vector addition on the blue side and the latter is 
zero in the case of the zero sector. 

As usual, it will be noted 0: 0 1 1 0 1S S S+ = + =  
For the algebraic representation of pairs of complex numbers, this element is 

noted ( ) ( ),0 ~ 1,0z  and we verify 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 1 2, ,0 , 0 , ~ ,z z z z z z z z z z z z z z+ = + =  
( ) ( ) ( ) ( ) ( )1 2 1 1 2 1 2 1 2,0 , ,0 , ~ ,z z z zz z zz zz zz z z+ = + =  

Opposite 
For the sector space: The sectoral addition being reduced to a vector addition  

 

 
Figure 12. Zero sector. 

 

 
Figure 13. Neutral element of sectoral addition. 
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on the blue sides(Figure 14), we deduce that the opposite element is the sector 
defined by the opposite vector on the blue side (always with the orange side on 
the 1st vector base unit). As usual, it will be noted “ 1S− ”. 

For the algebraic representation of 2-tuples of complex numbers, the opposite 
of ( )1 2,z z  is the element ( )1 2,z z−  and we verify 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 1 1 2 1 2 2 1, , , ~ , ,0 ~ 1,0z z z z z z z z z z z z z z+ − = − − =  
And vice versa. According to the multiplication by a number, this element can 

also be written 

( ) ( )1 2 1 2, ,z z z z− = −  

5.2.2. Sectoral Multiplication 
Commutativity 
For the sector space: Multiplication consists of joining the orange side of one 

sector to the blue side of the other sector. This is achieved by turning it and then 
making it undergo a homothety so that its orange side exactly matches the blue 
side of the other. The resulting sector (S3 in Figure 15) is then formed on the 
initial orange unit side of the sector which has not been transformed and on the 
new blue side (turned and zoomed) of the other transformed sector. 

Note that the sector is generally identified by 2 components: the angle 
(between the orange side and the blue side) and the length of the blue side. In 
our 2D space, these 2 components are reals. The multiplication is then broken 
down into 2 “sub-operations” on the sector components, an addition of the 
angle (orange side-blue side) of each sector and a multiplication of the length of 
the blue side of each sector (because the side orange being of unit length, its 
transfer on the blue side implies a zoom of a factor equal to the length of the 
blue side of the other sector). These remarks allow us to show the commutativity 
of sectoral multiplication. Indeed, the addition of the angles (of the reals) being  

 

 
Figure 14. Opposite sector of sectoral addition. 

 

 
Figure 15. Sectoral multiplication as angles’ addition and lengths’ multiplication. 
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commutative, it will therefore be identical by interchanging the 2 sectors. This 
also means that in the 2 cases ( 1 2S S⋅  or 2 1S S⋅ ) the blue side will have the 
same direction and same orientation. It then remains to verify that, in both 
cases, their length remains the same. This length will be 1 2L L⋅  in one case and 

2 1L L⋅  in the other. However, the multiplication of these 2 (real) lengths is 
commutative, 1 2 2 1L L L L⋅ = ⋅ , which demonstrates the equality of the lengths of 
the blue sides in the 2 cases of multiplication. We conclude that the multiplication 
of sectors is commutative. 

1 2 2 1S S S S⋅ = ⋅  
For the algebraic representation of 2-tuples of complex numbers 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 1 3 4 2 3 1 2 4 3 4 1 2, , , , , ,z z z z z z z z z z z z z z z z⋅ = = = ⋅  
Associativity 
For the sector space: As with commutativity, multiplication resulting in the 

addition of angles and multiplication of lengths, associativity is ensured by the 
associativity of addition (angles) and the associativity of multiplication (lengths). 

( ) ( )1 2 3 1 2 3S S S S S S⋅ ⋅ = ⋅ ⋅  
For the algebraic representation of 2-tuples of complex numbers 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4 5 6 1 3 4 2 5 6 1 3 5 6 4 2, , , , , ,z z z z z z z z z z z z z z z z z z⋅ ⋅ = ⋅ =
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 3 4 5 6 1 2 3 5 6 4 1 3 5 6 4 2, , , , , ,z z z z z z z z z z z z z z z z z z⋅ ⋅ = ⋅ =
 

The associativity of complex numbers (which makes up each component of 
the 2-tuple) gives us 

( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 3 4 5 6 1 2 3 4 5 6, , , , , ,z z z z z z z z z z z z⋅ ⋅ = ⋅ ⋅
 

Neutral element 
For the sector space: Let’s take the blue side sector equal to the orange side 

that we will name the flat unit sector or more simply the unit sector(Figure 16). 
Note on the representation: Theoretically, the orange and blue sides overlap 

but for reasons of clarity, we slightly shift the 2 sides in this visual representation 
(we have not put a line on the vertical sides because they do not exist). 

It represents the neutral element of sectoral multiplication (Figure 17) because 
this operation then results in identically overlapping one or the other of the sides 
(depending on the direction of the multiplication). 

As usual, we note it 1: 1 1 1 1 1S S S⋅ = ⋅ =  
For the algebraic representation of 2-tuples of complex numbers, this element 

is noted ( ) ( ), ~ 1,1z z  and we verify 

( ) ( ) ( ) ( )1 2 1 2 1 2, , , ~ ,z z z z z z zz z z⋅ =  
 

 
Figure 16. Flat unit sector. 
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( ) ( ) ( ) ( )1 2 1 2 1 2, , , ~ ,z z z z zz z z z z⋅ =  
Inverse 
For the sector space: The multiplication resulting to the addition of angles 

and the multiplication of lengths, the inverse sector is defined by the opposite 
of the angle and the inverse of the length (Figure 18). As is usual, it will be 
noted “ 11S − ”. 

For the algebraic representation of 2-tuples of complex numbers, the inverse 
of ( )1 2,z z  is the 2-tuple ( )1 1

1 2,z z− −  and we verify 

( ) ( ) ( ) ( )1 1 1 1
1 2 1 2 1 1 2 2, , , 1,1z z z z z z z z− − − −⋅ = =

 
And vice versa. According to the exponentiation by a number, this element 

can also be written 

( ) ( ) 11 1
1 2 1 2, ,z z z z −− − =  

Notes: As usual for multiplicative groups, the inverse element of the null ele-
ment ( )1,0z  does not exist. Let’s remind that by definition, we always have 

1 0z ≠  in our set. But just let’s look at the special case of multiplication by this 
null element. In the case of algebraic 2-tuples we have no problem, it is even an 
absorbing element: 

( ) ( ) ( )1 3 4 1 3,0 , ,0 0z z z z z⋅ = =  
( ) ( ) ( )3 4 1 3 1, ,0 ,0 0z z z z z⋅ = =  

In the geometrical case, the multiplication on the right by the null sector 
(Figure 19) does not pose either problem, it is also an absorbing element 

 

 
Figure 17. Neutral element of sectoral multiplication. 

 

 
Figure 18. Inverse sector of sectoral multiplication. 
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Figure 19. Multiplication on the right by the null sector. 

 

 
Figure 20. Multiplication on the left by the null sector. 

 
On the other hand, the multiplication on the left by the null sector (Figure 

20), in the geometrical case, cannot be expressed explicitly because one should 
transiently reduce the second member by a homothety of null factor what one 
excluded in the definition of the classes of equivalence. But we can give at least 5 
ways to justify/extend the result of this operation: 

1) As a limit case (by giving for the null sector a length ε <1 on the blue side 
and a length L/(1 − ε) on the orange side, L being the length of the reference 
when the blue side is zero, then in causing ε to tend towards 0), this operation 
remains consistent: 

2) Extension of the commutativity: In order to maintain the commutativity of 
the sectoral multiplication, one can assume without contradiction that the mul-
tiplication on the left by the null sector gives the null sector. 

3) The bijection of the sectors with the algebraic 2-tuples also makes it possi-
ble to justify the result of the multiplication on the left by the null sector without 
contradiction. 

4) Extension of the absorbing element: The fact that this sector is an absorbing 
element for all the other cases of multiplication makes it possible to extend this 
result to the multiplication on the left by the null sector without contradiction. 

5) From the distributivity of the multiplication over the addition (which we jus-
tify immediately after), we have on the one hand ( )1 2 1 2 1 1 2S S S S S S S⋅ − ⋅ = − ⋅  
and on the other hand 1 2 1 2 0S S S S⋅ − ⋅ =  from which we deduce that ( 1S −

)1 2 0S S⋅ =  which gives us 0 2 0S⋅ = . Caution, “0” here represents the null 
sector and not the null complex number (relation then concerning the external 
multiplication which will be demonstrated below). 

5.2.3. Distributivity of Sectoral Multiplication over Sectoral Addition 
Exceptionally, we will start with the algebraic representation of pairs of complex 
numbers. Distributivity gives 

( ) ( ) ( )( ) ( ) ( )
( )( )

1 2 3 4 5 6 1 2 3 5 4 5 3 6

1 3 5 4 5 3 6 2

, , , , ,

,

z z z z z z z z z z z z z z

z z z z z z z z

⋅ + = ⋅ +

= +
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( ) ( )( ) ( ) ( ) ( )
( )( )

3 4 5 6 1 2 3 5 4 5 3 6 1 2

3 5 1 2 4 5 3 6

, , , , ,

,

z z z z z z z z z z z z z z

z z z z z z z z

+ ⋅ = + ⋅

= +
 

( ) ( ) ( ) ( ) ( ) ( )
( )

1 2 3 4 1 2 5 6 1 3 4 2 1 5 6 2

1 3 1 5 4 2 1 5 1 3 6 2

, , , , , ,

,

z z z z z z z z z z z z z z z z

z z z z z z z z z z z z

⋅ + ⋅ = +

= +  
In this last relation, by dividing each component by non-zero 1z , and for the 

2 other relations thanks to the distributivity of the complex numbers (which 
composes each component of the 2-tuples), one verifies that 

( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

1 2 3 4 5 6 3 4 5 6 1 2

1 2 3 4 1 2 5 6

, , , , , ,

, , , ,

z z z z z z z z z z z z

z z z z z z z z

⋅ + = + ⋅

= ⋅ + ⋅  
For the sector space: Previously, we easily showed the properties of sectoral 

addition and sectoral multiplication independently by two different procedures. 
For the sectoral addition, it was the vector addition of the blue sides. For sectoral 
multiplication, it was both the addition of angles and the multiplication of 
lengths. For distributivity, the combination of these operations makes it more 
difficult to explain by these 2 methods. This difficulty allows us to set up a 3rd 
“analytical” representation of the sectors which, in a way, makes the link 
between the geometric and algebraic representations of the sectors. Indeed, on 
the one hand the sectors of the sectoral space are explicitly defined and differen-
tiated by the blue side only (and implicitly by the origin and the orange side unit 
but which are the same for all the sectors) which forms, as we have already seen, 
a bijection between the vector space of complex numbers and the sector space. 
This blue side being represented by a complex vector, a sector can therefore be 
represented by this complex number, of the kind “ eir α ”. On the other hand, as 
we saw previously, the sectors of the sectoral space (linked to the origin and to 
the reference side) are, in the form of a 2-tuple, the elements ( )1, z . These 
2-tuples being equivalent to the rational notation “ 1z z= ”, again, we deduce 
the expression of the sector in its exponential form of kind “ eir α ”. The structure 
we are studying is associated with the set of complex numbers. But we can cer-
tainly associate such a sectoral space with other sets of numbers, on the only 
condition that these numbers satisfy the rules of the laws of composition of this 
space. For example, it is likely that the quaternions could be a set associated with 
a sectoral space. In this case, the generic term would then be rather “ esr α ” with s 
a pure imaginary unitary quaternion. For this, we will not note the sectors expli-
citly in the form “ eir α ”, but in a more general form: 

11 ~ 1 AS R X  
This writing maintains the definitions and properties of the composition laws 

already observed before and they will follow the rules expected by the sectors. 
We also retrieve by this notation, that the sectoral multiplication is equivalent to 
the addition of angles and the multiplication of lengths, since 

1 2 1 21 2 ~ 1 2 1 2A A A AS S R X R X R R X +⋅ ⋅ =  
Thus, the algebra of sectors turns out to be equivalent to that of complex 
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numbers (for the complex case we have ~ eiX ). The distributivity is then en-
sured by the distributivity of the complexes 

( ) ( )1 2 3 1 2 1 3 2 1 3 1 2 3 1S S S S S S S S S S S S S S⋅ + = ⋅ + ⋅ = ⋅ + ⋅ = + ⋅  
But more generally (if we don’t limit ourselves to the algebra of complexes) 

( ) ( )1 2 3

1 2 1 3

1 2 3 ~ 1 2 3

1 2 1 3 ~ 1 2 1 3

A A A

A A A A

S S S R X R X R X

R R X R R X S S S S+ +

⋅ + ⋅ +

= + ⋅ + ⋅  
In the end, the 2 internal composition laws of the sectoral space form a field. 

5.3. Properties of the External Composition Laws of Sectors 

We can see the integration of external laws into these structures as “powerful” 
tools allowing us to extend the manipulation of objects in space by an internal 
operation which is not defined. Thus, in vector spaces, the rules put in place 
make it possible to integrate a form of multiplication which is not defined be-
tween the vectors but which can be applied between these vectors by an 
addressing consistent with a set of numbers handling this operation. In the sec-
tor space we started the same procedure, with the external multiplication con-
sistent with the internal addition, but especially with the external exponentiation 
consistent with the internal multiplication that is quite new. But in order to fi-
nalize the consistency of this structure, we must therefore set up coherent ad-
dressing rules between these sectors and this set of numbers associated with this 
space (compatibility of internal and external operations). In the following, we 
will abundantly use the particularity of complex numbers which, on the one 
hand, are vectors (and therefore follow the properties of a vector space) but, on 
the other hand, are objects with richer properties such as “ 1 2 1 2z z z zz z z+ = ” or else 
“ ( ) 21 12

z z zz z z z= ”. In particular, following what we have just seen (bijection of the 
sectors with complex vectors via the blue side of the sector), the blue side will be 
explicitly seen as a complex vector. 

5.3.1. Multiplication of Sectors by a Number 
Let’s show that we have: 0 1 0S⋅ =  

Reminder: In this expression, this is external multiplication, unlike the similar 
writing mentioned above and which concerned sectoral multiplication (internal 
composition law). 

For the sector space: Our definition of multiplication by a number consists in 
multiplying the “blue side” vector by this same number. In our case, it consists 
in multiplying by zero the blue side, which gives a sector of blue side of zero 
length, that is to say the zero-sector noted 0. The relation is thus verified. We 
will note the consistency with the exponential notation “ 10 1 0AR X⋅ = ”. 

For the algebraic representation of 2-tuples of complex numbers, the defini-
tion of multiplication by a number gives 

( ) ( ) ( )1 2 1 2 10 , ,0 ,0 0z z z z z= = =  
Which verifies the relationship. 
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Let’s show that we have: 1 1 1S S⋅ =  
For the sector space: Our definition of multiplication by a number consists in 

multiplying the “blue side” vector by this same number. In our case, it consists 
in multiplying by 1 the blue side, which gives an identical blue side sector, that is 
to say that the sector is unchanged. The relationship is therefore verified. We’ll 
note the consistency with the exponential notation “ 1 11 1 1A AR X R X⋅ = ”. 

For the algebraic representation of 2-tuples of complex numbers, the defini-
tion of multiplication by a number gives: 

( ) ( ) ( )1 2 1 2 1 21 , ,1 ,z z z z z z= =  

Which verifies the relationship. 
Let’s show that we have: ( ) ( )1 2 1 21 1z z S z z S=  
For the sector space: Our definition of multiplication by a number consists in 

multiplying the “blue side” vector by this same number, in this case “ 2z ”. Once 
this multiplication has been carried out, it consists in multiplying this new “blue 
side” vector by the second number, “ 1z ”, which finally consists in directly mul-
tiplying the initial “blue side” vector by the number “ 1 2z z ”. It actually results 
from the multiplication of a vector (our blue side) by a number which is a prop-
erty verified by any vector. We will note the consistency with the exponential 
notation “ ( ) ( ) ( )1 1 1

1 2 1 2 1 21 1 1A A Az z R X z z R X z z R X= = ”. 
For the algebraic representation of 2-tuples of complex numbers, the defini-

tion of multiplication by a number gives: 

( )( ) ( ) ( )( ) ( )( ) ( )( )4 3 1 2 4 1 3 2 1 4 3 2 1 4 3 2 4 3 1 2, , , , ,z z z z z z z z z z z z z z z z z z z z= = = =  

Which verifies the relationship. 
Let’s show that we have: ( )1 2 1 21 1 1z z S z S z S+ = +  
For the sector space: Our definition of multiplication by a number consists in 

multiplying the “blue side” vector by this same number, in this case “ 1 2z z+ ”. 
Once this multiplication has been carried out, it comes from the properties of 
the multiplication of a vector (our blue side) by a number, that our blue side is 
the sum of 2 “blue side” vectors. According to the definition of multiplication 
seen above, we can in turn translate this sum of “blue side” vector into the sum 
of 2 sectors of blue side, one “ 1 1z S ” and the other “ 2 1z S ”. The desired relation-
ship is thus obtained. We will note the consistency with the exponential notation 
“ ( )( ) ( ) ( )1 1 1

1 2 1 21 1 1A A Az z R X z R X z R X+ = + ”. 
For the algebraic representation of 2-tuples of complex numbers, the defini-

tion of multiplication by a number gives 

( )( ) ( )( ) ( ) ( )4 3 1 2 1 4 3 2 1 4 2 3 2 1 1 4 2 1 3 2 1, , , ~ ,z z z z z z z z z z z z z z z z z z z z z+ = + = + +
 

( ) ( ) ( ) ( ) ( ) ( )( )4 1 2 3 1 2 1 4 2 1 3 2 1 1 4 2 1 1 3 2, , , , ,z z z z z z z z z z z z z z z z z z z z+ = + = +
 

Which verifies the relationship. 

5.3.2. Exponentiation of Sectors by a Number 
Let’s show that we have: 11 1S S= . 
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For the sector space: Our definition of exponentiation by a number consists in 
raising to the power of this same number both the complex number representing 
the “blue side” and the complex number representing the “orange side”. The 
“orange side” being henceforth unitary, its raising in power will not modify it. In 
our case, it consists in raising the blue side to power 1, which gives an identical 
blue side sector. The relationship is therefore verified. We will note the consis-
tency with the exponential notation “ ( )11 1 1. 1 11 1 1A A AR X R X R X= = ”. 

For the algebraic representation of 2-tuples of complex numbers, the defini-
tion of exponentiation by a number gives 

( ) ( ) ( )1 2 1
1 2 1 2 1 2, , ,z z z z z z= =  

Which verifies the relationship. 
Let’s show that we have: 

01 1S = . 
For the sector space: Our definition of exponentiation by a number consists 

in raising to the power of this same number both the complex number 
representing the “blue side” and the complex number representing the “orange 
side”. The “orange side” being henceforth unitary, its raising in power will not 
modify it. In our case, it consists in raising the blue side to power zero, which 
gives a sector of blue side of unit length, that is to say the sector unit noted 1. 
The relation is thus verified. We will note the consistency with the exponential 
notation “ ( )01 0 0. 11 1 1A AR X R X= = ”. 

For the algebraic representation of 2-tuples of complex numbers, the defini-
tion of exponentiation by a number gives: 

( ) ( ) ( )0 0 0
1 2 1 2, , 1,1z z z z= =  

Which verifies the relationship. 
Let’s show that we have: ( ) 21 1 21 1

zz z zS S=  
For the sector space: Our definition of exponentiation by a number consists in 

raising to the power of this same number both the complex number representing 
the “blue side” and the complex number representing the “orange side”. The 
“orange side” being henceforth unitary, its raising in power will not modify it. In 
our case, it consists in raising, for the 1st time, the blue side to the power 1z , 
then, for a 2nd time, this new “blue side” to the power 2z  which in the end con-
sists in directly raising the initial blue side to the power of 1 2z z . This result is 
actually due to the property of complex numbers (what is the blue side) 
“ ( ) ( )2 1 21

z z zzz z= ”. The relationship is therefore verified. We will note the consis-
tency with the exponential notation  

“ ( )( ) ( ) ( )
2 21 1 21 1 1 2 1 21. 1.1 11 1 1 1

z zz z zz A z z z A z zA AR X R X R X R X= = = ” 

Note: It should be noted that if the sides of the sector had been real vectors 
(and not complex) this relationship would not be verified since the exponentia-
tion of a real number does not always make sense. In other words, the set of 
numbers associated with our sector space cannot simply be a vector space. We 
will study further the consequences of this fact and the chain reaction it implies. 
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For the algebraic representation of 2-tuples of complex numbers, the defini-
tion of exponentiation by a number gives 

( )( ) ( ) ( ) ( )4 43 3 43 3 3 4 3 4
1 2 11 2 1 2 2, , , ,

z zz z zz z z z z zz z z z z z z z= = =
 

Which verifies the relationship. 
Let’s show that we have: 1 2 1 21 1 1z z z zS S S+ = ⋅  
For the sector space: As before this comes from a property of complex 

numbers, namely “ 1 2 1 2z z z zz z z+ = ” applied to our “blue side”, which then veri-
fies the relationship. We will note the consistency with the exponential notation 
“ ( ) ( ) ( )1 2 1 21 1 11 1 1

z z z zA A AR X R X R X
+

= ”. 
IMPORTANT: Again, it should be noted that if the sides of the sector had 

been real vectors (and not complex) this relationship would not be verified since 
the exponentiation of a real number does not always make sense. 

For the algebraic representation of 2-tuples of complex numbers, the defini-
tion of exponentiation by a number gives 

( ) ( ) ( )3 4 3 4 3 4 3 34 4
11 2 12 1 2 2, , ,z z z z z z z zz zz z z z z z z z+ + += =

 

( ) ( ) ( )( ) ( )3 4 3 3 3 34 4 4 4
1 2 1 2 1 2 1 2 1 1 2 2, , , , ,z z z z z zz z z zz z z z z z z z z z z z= =

 
Which verifies the relationship. 
Let’s show that we have: ( ) 2 2 2

1 11 1z z zz S z S=  
For the sector space: Multiplying by 1z  consists in multiplying the vector 

“blue side” by this number 1z  (property of vector space). On the other hand, 
the exponentiation by 2z  of the blue side again requires, no longer the vector 
side of complex numbers, but one of their specific properties, namely 
“ ( ) 21 12

z z zz z z z= ”. Then the definition of 21zS  allows to find the right-hand side 
of the expression, which then verifies the relation. We will note the consistency 
with the exponential notation “ ( )( ) ( ) ( )2 2 221 1 1

1 1 11 1 1
z z zzA A Az R X z R X z R X= = ”. 

Note: Again, a set of numbers which is only a vector space cannot be asso-
ciated with a sector space. 

For the algebraic representation of 2-tuples of complex numbers, the defini-
tion of multiplication by a number gives 

( )( ) ( ) ( )( ) ( )
( ) ( )

4 4 44 4 4 4

44 4 4 4

1 1 33 1 2 1 3 2 3 2

23 1

2

1 2 3

, , , ,

, ,

z z zz z z z

zz z z z

z z z z z z z z z z z z

z z z z z z

= = =

= =
 

Which verifies the relationship. 

5.3.3. Distributivity of External Multiplication and Exponentiation over 
Sector Addition and Sector Multiplication 

Let’s show that we have: ( ) ( ) ( )1 1 11 2 1 2 1 2z S S z S S S z S⋅ = ⋅ = ⋅  
For the sector space: As for the demonstration of the distributivity of internal 

composition laws, we will again use the fact that the set of sectors can be bijec-
tively associated with a single complex vector, via the blue side of the sector 
which firstly identifies univocally any sector and on the other hand which 
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represents a vector of the complex vector space which can traverse all the com-
plex space. In this way, by our notation (in which we can take “ ~ eiX ”): 

( ) ( ) ( )
( ) ( ) ( )

1 2 1 2
1 1 1

1 2
1 1 1

1 2 ~ 1 2 1 2

~ 1 2 1 2 ~ 1 2

A A A A

A A

z S S z R X R X z R X R X

z S S R X z R X S z S

⋅ ⋅ = ⋅

⋅ = ⋅ ⋅
 

For the algebraic representation of pairs of complex numbers, the definition 
of sectoral multiplication gives 

( ) ( )( ) ( ) ( )5 1 2 3 4 5 1 3 4 2 1 3 5 4 2, , , ,z z z z z z z z z z z z z z z⋅ = =
 

( )( ) ( ) ( ) ( ) ( )5 1 2 3 4 1 5 2 3 4 1 3 4 5 2, , , , ,z z z z z z z z z z z z z z z⋅ = ⋅ =
 

( ) ( )( ) ( ) ( ) ( )1 2 5 3 4 1 2 3 5 4 1 3 5 4 2, , , , ,z z z z z z z z z z z z z z z⋅ = ⋅ =
 

Which verifies the relationship. 
Let’s show that we have: ( ) 1 1 11 2 1 2z z zS S S S⋅ = ⋅ . 
For the sector space: Let’s proceed in the same way as before, with our nota-

tion (in which we can take “ ~ eiX ”): 

( ) ( ) ( ) ( )1 1 11 1 11 2 1 21 2 ~ 1 2 1 2 ~ 1 2
z z zz z zA A A AS S R X R X R X R X S S⋅ ⋅ = ⋅ ⋅

 

Note: It will be noted that in general the negative exponentiation reverses the 
order of the elements in the right-hand side ( ) 1 1 11 2 2 1S S S S− − −⋅ = ⋅ . Conse-
quently, this relationship implies the commutativity of sectoral multiplication. 

For the algebraic representation of pairs of complex numbers, the definition 
of sectoral multiplication gives 

( ) ( )( ) ( ) ( ) ( ) ( )5 5 555 5 5 5
1 31 2 3 4 1 3 4 42 1 2 3 42, , , , , ,

z z zzz z z zz z z z z z z z z z z z z z z z⋅ = = =
 

Which verifies the relationship. 
Let’s show that we have: ( )1 1 11 2 1 2z S S z S z S+ = + . 
For the sector space: The sectoral addition results in a vector addition of the 

blue sides. Therefore, this relation comes directly from this same relation veri-
fied by the vectors. 

For the algebraic representation of 2-tuples of complex numbers, the defini-
tion of sectoral addition gives 

( ) ( )( ) ( ) ( )5 1 2 3 4 5 1 3 2 3 1 4 1 3 5 2 3 5 1 4, , , ,z z z z z z z z z z z z z z z z z z z z+ = + = +
 

( ) ( ) ( ) ( ) ( )5 1 2 5 3 4 1 5 2 3 5 4 1 3 5 2 3 1 5 4, , , , ,z z z z z z z z z z z z z z z z z z z z+ = + = +  

Which verifies the relationship. 
To be systematic in the combinations of the different operations, there are 2 

more cases to study ( )
211

zzS  and ( ) 11 2 zS S+ . 

For the 1st expression, there is a priori no relation associating it with an equiv-
alent expression. 

For the 2nd expression, we can notice that by the previous rules, ( ) 11 2 zS S+ =

( ) ( ) ( ) ( )1 1 11 1 11 2 1 2 1 1 2 2 1 2z z zS S S S S S S S S S− − −+ ⋅ + = ⋅ + + ⋅ +  and ( ) 11 2 zS S+ =

( ) 111 1 2 1 zzS S S⋅ + . We can therefore restrict this formulation to ( ) 11 1 zS+  with 
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] [1 0;1z ∈ . As for the 1st expression, there does not exist a priori a relation asso-
ciating it with an equivalent expression (except to consider the infinite limited 
developments). We will also see that the terms “1 1S+ ” could play a structuring 
role in the structures that we are going to define. Consequently, it is not imposs-
ible to think that there is no rule of distributivity of the exponentiation over the 
addition, thus characterizing a form of irreducibility of this expression. There-
fore, in our proposal for nonlinear structures, we will assume that there are no 
rules associated with these 2 expressions. 

5.3.4. Consequences of Internal and External Laws on the Set  
of Numbers Associated with the Sector Space 

So far, we have focused our study on the sectoral space itself. We will now study 
the set of numbers associated with our sector space (in this case the set of com-
plex numbers). Implicitly, the 4 laws of composition, internal and external, imp-
ly that the associated set has 3 laws of internal composition (addition, multipli-
cation and exponentiation). We see this when we write for example the follow-
ing relationships: 

( ) ( ) ( ) ( ) 2 2 2
1 2 1 2 1 2 1 2 1 11 1 1; 1 1 ; 1 1z z zz z S z S z S z z S z z S z S z S+ = + = =  

Then, for reasons of compatibility between the laws of space and the laws of 
the associated set, the properties of our space explicitly lead to similar properties 
in the set which is associated with it. Thus, the internal addition on the asso-
ciated set must form a group because the sectoral addition forms a group and we 
have the following relationships: 

( )1 2 1 21 1 1; 0 1 0z z S z S z S S+ = + ⋅ = ; The existence of an opposite “ 1S− ”. 
In the same way, the internal multiplication on the associated set must form a 

group because the sectoral multiplication forms a group and we have the fol-
lowing relationships: 

( ) ( )1 2 1 21 1 ; 1 1 1z z S z z S S S= ⋅ = ; The existence of an inverse “ 11S − ”. 
In addition, we used the vector space properties on a field of complex num-

bers to demonstrate certain properties of the sector addition (which corres-
ponded to a vector addition on the “blue side” vector). Consequently, the inter-
nal composition law “+” (addition in the associated set) and the internal compo-
sition law “. “(Multiplication in the associated set) must form a field. We can al-
so convince ourselves with these relationships: 

( )3 3 31 2 1 2z S S z S z S+ = +  with 11 0S z S=  et 22 0S z S=  

For the 3rd law of internal composition “^” (exponentiation), we had to expli-
citly use the 2 following properties: 

( ) 1 2 1 2
1 2 1 2 ;z z z z zz zz z z z z z z+= =  

To be complete, we must also add the following relationships: 0
1 1z = . 

Because we need it when we associate the following 2 relationships: 

( ) 2 2 2 0 1
1 1 1 11 1 ; 1 1;z z zz S z S S z z= = =  
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Because we need it when we associate the following 2 relationships: 

( ) ( ) 32 2 32 2 21
1 1 1 11 1 ; 1 1;

zz z zz z zz S z S S S z z= = =
 

Because we need it when we associate the following 2 relationships: 

( ) ( ) 32 2 32 2 2
1 11 1 ; 1 1

zz z zz z zz S z S S S= =
 

As in the previous section, to be systematic in the combinations of the differ-
ent operations, we would need the last 2 relations which are associated with 
( )

2
11
zzS  and ( ) 11 2 zS S+  

( ) ( )
3

2 3
1 1 2et

zz zz z z+  
But for the same reasons as before, in our proposal for nonlinear structures, 

we will assume that there are no rules associated with these 2 expressions (im-
plying that they could be associated with a form of irreducibility that we treat a 
little further). 

6. Nonlinear Algebraic Structures 
6.1. On the Way to a Succession of Algebraic Structures Associated 

with the Sectoral Space 

Let us make a 1st synthesis of the properties of our sectoral space and its asso-
ciated set of numbers in order to extract from it abstract structures which will go 
beyond the “linear” structures of vector space and of field, reason for which we 
will name them non-linear. At this stage, 2 structures (beyond vector space and 
field which will therefore be named non-linear space and non-linear field) 
emerge from the above, but this 1st synthesis will lead us to consider a new 
structure of group. 

6.1.1. Sector Space or Non-Linear Space (ENL) 
The sectoral space forms a set A provided with two internal composition laws, 
the sectoral addition denoted “+” and the sectoral multiplication denoted “.”: 

The internal composition laws “+” and “.” form a commutative field on A. 
The sector space is associated with a set B provided with three internal com-

position laws “+”, “.” and “^” (exponentiation): 
The internal composition laws “+” and “.” form a commutative field on B. 
The internal composition law “^” (exponentiation) verifies: 

( ) ( )32 31 2 1 2 21
1 1 1 1

0
11 1 2 21; ; ; ;

z zz zz z z z z z zz z z z z z z z z z z z+= = = = =
 

We have provided this space with two external composition laws “.” and “^” 
(exponentiation) which verify: 

( ) ( ) ( )1 2 1 2 1 2 1 20 1 0; 1 1 1; 1 1 ; 1 1 1S S S z z S z z S z z S z S z S⋅ = ⋅ = = + = +  

( ) ( )2 21 2 1 1 2 1 2 2 21 0
1 11 1; 1 1; 1 1 ; 1 1 1 ; 1 1

z zz z z z z z z z zS S S S S S S S z S z S+= = = = ⋅ =
 

( ) ( ) ( ) ( )
( ) 1 1 1

1 1 1 1 1 11 2 1 2; 1 2 1 2 1 2 ;

1 2 1 2z z z

z S S z S z S z S S z S S S z S

S S S S

+ = + ⋅ = ⋅ = ⋅

⋅ = ⋅  
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6.1.2. Non-Linear Field (CNL) 
From the above, we can define a new structure (the non-linear equivalent of the 
notion of field): 

Consider a set B provided with three internal composition laws “+”, “.” and 
“^” (exponentiation): 

The internal composition laws “+” and “.” form a commutative field on B. 
The internal composition law “^” (exponentiation) verifies: 

( ) ( )32 31 2 1 2 21
1 1 1

0
2 11 11 21; ; ; ;

z zz zz z z z z z zz z z z z z z z z z z z+= = = = =
 

6.1.3. Non-Linear Group (LNG) 
Different considerations lead us to consider the existence of a group type struc-
ture. The most fundamental reason is related to what we will see a little later, the 
sectoral space is to projective space what is vector space to affine space. The link 
between affine space and vector space is made through affine applications whose 
generic expression is “ x ax b′ = + ”, but the notion of group ensures the existence 
of such expressions. The connection between projective space and sectoral space 
will be carried out through projective applications or homographies (we will see 
that the sectors are a representation of it) whose generic expression is 
“ ( ) ( )x ax b cx d′ = + + ”. In order to ensure the existence of these expressions, we 
can expect the need of a new notion of group. In addition, this expression is asso-
ciated with the following form “ ( ) ( )x cx d ax b′ + = + ” or “ 0Axx Bx C′ ′+ + = ”. 
We can therefore even foresee that this new group will have to make sense of the 
2nd degree equations. A 2nd is that it is quite astonishing that the relation 
( ) 11 2 zS S+  has no explicit rewriting rules. However, from the rules already es-
tablished, we can modify this expression, which has the consequence of reducing 
this problem to ( ) 11 1 zS+  with ] [1 0;1z ∈  in which only one variable sector 
intervenes. Consequently, one way of explaining this absence of rewriting could 
be that the element of the form “1 1S+ ” could be a specific structuring element 
(by its irreducibility). The definition of such new specific elements necessarily 
implies a new group type structure. 

A third consideration comes from the fact that, even if this may not be re-
flected in this study, we put these structures in place by taking the “Vector 
Space-Field-Group” scheme and making them evolve systematically (N linear 
composition laws -> (N + 1) non-linear composition laws, minimum dimension 
1D in linear -> 2D minimum dimension in non-linear, segment/vector in linear 
-> parallelogram/sector in non-linear, 1 center and 2 diametrically opposed ele-
ments on a linear circle -> 2 focuses and 4 elements on a conic, …). So, from this 
point of view, we can define the vector space as follows. Consider a set A with an 
internal composition law “+”. The internal composition law on A forms a group. 
Consider a set B provided with two internal composition laws “+” and “.”. The 
two internal composition laws on B form a field. Consider an external composi-
tion law “.”. A on B forms a vector space (linear). Which would become for our 
sector space. Consider a set A provided with two internal composition laws “+” 
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and “.”. The two internal composition laws on A form a non-linear group. Con-
sider a set B provided with three internal composition laws “+” and “.” and “^” 
(exponentiation). The three internal composition laws on B form a non-linear 
field. Consider two external composition laws “.” and “^” (exponentiation). A 
on B forms a sectoral space (non-linear). And it emerges from the previous 
study that we have effectively defined a sectoral space and a nonlinear field. By 
this procedure of extension of the linear, it would then remain to formalize a 
nonlinear group. Finally, a fourth consideration comes from the fact that as we 
will see a little later, these structures have to do with domains that do not fall 
within the linear domain. Thus, we will see that the sectoral space is linked to the 
projective spaces, that in the sector there are elements of the modular group [3]. 
Characteristics of dynamical systems and arithmetic will also appear in this sec-
toral space structure. All these areas show the need to go beyond the linear no-
tions originating from the group (punctual elements, binary relationships, ... are 
notions incapable of accessing non-linear behaviors such as baker’s map, 
self-similarity, ...). Obtaining such fundamental elements requires the develop-
ment of a group type structure which, unlike the other kind of structures, allows 
explicitly revealing elements specific of a considered domain (linear or not). This 
is how the notion of group is the basis of all linear tools. In our opinion, a notion 
of group specific to the non-linear which extends the linear group is necessary. 

Non-linear group proposal 
As indicated previously, a possible way to propose a notion of non-linear 

group would be to start from the notion of group in order to extend it. The latter 
has the characteristic of being associated: 

- “Geometrically” to the concept of circle/line with 1 center (the neutral ele-
ment) and 2 diametrically opposite elements (an element and its opposite) on 
this circle. 

- “Algebraically” to the ability to give meaning to the writing “ 0z a+ = ” then 
to “ 0bz a+ = ”. 

Let’s look for an associated structure: 
“Geometrically” to the concept of conic (ellipse, parabola and hyperbola) with 

2 focuses and 4 elements arranged on this conic. 
“Algebraically” to the ability to give meaning to the writing “ 2 0z a+ = ”, 

“ 2 0z bz a+ + = ” then to “ 2 0cz bz a+ + = ”. 
These 2nd degree equations can be written more generally, on a commutative 

field, in the form ( )( ) ( ) ( )2
1 2 1 2 1 2 0Z z Z z Z z z Z z z− − = − + + =  with 1z  and 

2z  the elements which must be ensured to give meaning to this writing. We 
must therefore ensure that: 

( ) ( ) 1 2
1 2

1 2

, , tel que
b z z

a b z z
a z z
− = +

∀ ∃  =  
We have previously seen that our space formed a group for addition, so we 

will simplify the writing by replacing “−b” with “b”. The idea is now to restrict 
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this expression to only the structuring elements, that is to say not to consider all 
the 2-tuples ( ),a b . Structurally, we have only 2 known elements, the neutral 
element of the addition “0” and that of the multiplication “1”. We then have 4 
possible expressions (we noted the element a or b by z): 

( ) 1 2
1 2

1 2

1
, tel que

z z
z z z

z z z
= +

∀ ∃  =  

( ) 1 2
1 2

1 2

0
, tel que

z z
z z z

z z z
= +

∀ ∃  =  

( ) 1 2
1 2

1 2

, tel que
1
z z z

z z z
z z

= +
∀ ∃  =  

( ) 1 2
1 2

1 2

, tel que
0
z z z

z z z
z z

= +
∀ ∃  =  

The first 2 formulations make it possible to give meaning to all of the equa-
tions of degree 2. The 1st formulation is centered on the focus “1” while the 2nd 
formulation is centered on the focus “0”. And we will notice that the characteris-
tic elements that they highlight (i.e. complementary and square root) are linked. 

1st non-linear group formulation. 
Let us demonstrate that the 1st formulation makes it possible to ensure a 

meaning for all the equations of the 2nd degree: 
1) This relation directly implies that the following equations always have a 

meaning and more precisely that they have 2 solutions 1Z z=  et 2Z z= : 

( ) 1 2 2
1 2

1 2

1
, such as 0

z z
a z z Z Z a

a z z
= +

∀ ∃ ⇔ − + = =  
To get the solutions of 

2 0 with 0Z bZ a b+ + = ≠  
It is enough to know the solutions of 

2
2 0 with 0aZ Z b

b
− + = ≠

 
What is ensured by the expression of the non-linear group: 

( )
1 2

1 2
1 22

1
, such as

z z
A z z aA z z

b

= +
∀ ∃ 

= =  
And since the non-linear group is a group for addition and multiplication we 

can write any element A in the form 2

aA
b

= − . 

We can then write (by multiplying 1 time by “−b” the 1st relation and 2 times 
by “−b” the 2nd): 

( ) ( )
( ) ( )
( )( )

1 2
1 2

1 2

, , such as
b bz bz

a b z z
a bz bz

− = − + −∀ ∃ 
= − −  
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That to say: 

( )( )2
1 2 0 with 0Z bZ a Z bz Z bz b+ + = + + = ≠  

2) For the case: 
2 0 with 0cZ bZ a c+ + = ≠  

These solutions are simply obtained by dividing by c: 

2 0 with 0b aZ Z c
c c

+ + = ≠
 

With the above, we know that this relationship has a meaning (for 0b ≠ ). 
3) For the case: 

2 0Z a+ =  
We know that 

2
1 2and such as 0c z z Z Z c′ ′∀ ∃ − + =  

If we set Z Z d′ = + , we can then write 

( ) ( ) ( ) ( )2
1 2and such as 0c z d z d Z d Z d c∀ ∃ − − + − + + =  

That we can write 

( ) ( )2 2 1 1 0Z Z d d d c+ − + − + =  

Then just take 
1
2

d =  to cancel the term in Z and choose c a d= −

( )1 1 4d a− = + . 

The value of c makes it possible to define the equation in Z ′  and its solu-
tions 1z  and 2z . The solutions of 2 0Z a+ =  are then 1z d−  et 2z d− . 

2nd non-linear group formulation 
Let us demonstrate that the 2nd formulation also makes it possible to ensure a 

meaning for all the equations of the 2nd degree. 
1) This relation directly implies that the following equations always have a 

meaning and more precisely that they have 2 solutions 1Z z=  and 2Z z= : 

( ) 1 2 2
1 2

1 2

0
, such as 0

z z
a z z Z a

a z z
= +

∀ ∃ ⇔ + = =  
We can apply a similar approach to the previous one. 
We know that 

2
1 2and such as 0c z z Z c′∀ ∃ + =  

If we set Z Z d′ = + , we can then write 

( ) ( ) ( )2
1 2and such as 0c z d z d Z d c∀ ∃ − − + + =  

That we can write: 
2 22 0Z dZ d c+ + + =  

It is then enough to take 
1
2

d = −  to obtain the equation of the 1st formula-
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tion of the non-linear group with the term in Z equal to “−1” and to choose  
2 1 4c a d a= − = − . The value of 𝑐𝑐 makes it possible to define the equation in 

Z ′  and its solutions 1z  and 2z . The solutions of 2 0Z Z a− + =  are then 

1z d−  and 2z d− . The other cases are obtained in the same way as for those 
studied in the 1st formulation of the non-linear group. Thus, these 2 expressions 
are sufficiently structuring to provide a meaning to all the equations of the 2nd 
degree. This is not the case for the other 2 formulations. 

The 3rd expression provides a meaning for the equation “ 2 1 0Z bZ− + = ” with 
b different from 0 but it does not guarantee from the addition and multiplication 
a meaning for all the equations of the 2nd degree (without the addition of other 
characteristics). Indeed, the multiplication by b as we did for the 1st case occurs 
in “ 1 21 z z= ” which requires beforehand to pose the existence of 1 2b  to be able 
to write “ ( )( )1 2 1 2

1 21 b z b z= ”. It is the same from the addition when trying to use 
“ Z Z d′ = + ”. The 4th expression using the absorbing element of multiplication 
does not provide a meaning for most of the desired equations. We deduce from 
these last remarks that the first 2 expressions appear as strongly structuring. 
Note that these expressions can be expressed in a more compact way: 

For the 1st formulation: ( )1 1 1such a 1z z s z z z∀ ∃ = −  
For the 2nd formulation: ( )1 11

2
1 such as 0z z z z z z∀ ∃ = − = −  

We note in passing the similarity of the two expressions “ ( )1 1z z e z= − ” with 
the neutral element of one or the other of the composition laws. According to 
the 1st formulation, the existence of such a group corroborates what we imagined 
to explain the absence of the relation for ( ) 11 2 zS S+  which is associated with 
the writing ( ) 11 1 zS+ ”. And the 2nd formulation could also corroborate what we 
imagined to explain the absence of the relation for ( )

3
2

1

zzz . In this 2nd formula-
tion, it is the element of the type ( )

1
2

1
zz
−

 which would be associated with the 
writing “ ( )

3
2

1

zzz ”. 
Uniqueness of the decomposition into an element and its complementary 
Let us show the uniqueness of the decomposition into “ ( )1z z− ”. 
We have 

( )1 1 1such as 1z z z z z∀ ∃ = −  
Assume that there is another element that verifies the same relationship 

( )3 1 3 3such as 1z z z z z z∀ ∃ ≠ = −  
We then deduce that we have: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
3 3 1 1 3 3 1 1 3 1 3 11 1 ; ;z z z z z z z z z z z z− = − − = − − = −

 
And finally 

( ) ( )( )3 1 3 1 3 1z z z z z z− = − +  
We then have 2 cases: 

( )3 1 3 1 3 1if then 1 that is 1z z z z z z≠ + = = −  
3 1if not z z=  
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In the 2 cases we thus find the 2 elements 1z  and 11 z−  which proves the 
uniqueness of our expression. 

Let’s also show the uniqueness of the decomposition into “ 2z− ” for the 2nd 
formulation. 

We have: 
2

1 1such asz z z z∀ ∃ = −  
Assume that there is another element that verifies the same relationship: 

2
3 1 3such asz z z z z∀ ∃ ≠ = −  

We then deduce that we have: 

( )2 2 2
1 3 1

2
3 ; 0z z z z= − =

 
And finally 

( )( )3 1 3 1 0z z z z− + =  
We then have 2 cases: 

3 1 3 1orz z z z= = −  
In the 2 cases we thus find the 2 elements 1z  and 1z−  which proves the un-

iqueness of our expression. 
Remarkable elements 
We expected the non-linear group to make sense to the 2nd degree equations. 

This is what led us to the previous definitions. But we also hoped that 2 focuses 
and 4 elements on the conic would appear. We can see from this point of view 
that the 1st formulation seems closer to what we expected. The 2 focuses actually 
appear, both as the neutral elements of the 2 internal composition laws (in this 
case 0 for addition and 1 for multiplication) but also with their explicit link in 
the expression “ ( )1 11z z− ” for which these 2 focuses are 2 “poles” of this expres-
sion. This is one of the reasons why we would favor this formulation. We also 
hoped to obtain 4 elements which would characterize the conic. If we look at the 
notion of linear group associated with the vector element which is similar to a 
segment, we notice that this fundamental segment can be seen in one direction 
or the other depending on whether we take the origin on either side of the seg-
ment. This freedom of choice has the consequence of providing the 2 possible 
types of fundamental elements of the group, “z” and “−z”. Let us use the same 
principle on our parallelogram “sector” and look at all the sectors which it is 
possible to determine according to whether one takes as origin one of the four 
ends and according to whether one takes one side or the other of this origin to 
define the reference side: 

We thus obtain the elements of type “Z”, “−Z” and “Z−1” and their combina-
tion (Figure 21). But this sector can also define sectors whose blue side or 
orange side are on the diagonals. 

This gives us the 4th new element “1 − Z” (Figure 22), the other variants pro-
ducing sectors which are expressed by combination of these 4 elements. By this  
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Figure 21. Combinations for connecting the blue and orange sides at four points of a pa-
rallelogram. 

 

 
Figure 22. Combinations for connecting the blue and orange sides at three points of a 
parallelogram. 

 
procedure we find again the 4 expected elements which are those which we de-
fined in our non-linear group: the element “Z”, its opposite “−Z” by the addition 
group, its inverse “Z−1” by the group for multiplication, its complementary “1 − 
Z” by the non-linear group. With this principle, we could even find the specific 
elements (neutral and/or focuses). For the sector (A, B, C, D) which can be 
noted in bi-vectors ((A, B), (A, D)), these would be the following cases ((A, B), 
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(A, B)) = 1 and ((A, B), (A, A)) = 0. We can also notice that for the blue side 
sectors of unit length, the inverse corresponds to a form of conjugate (in the 
sense that in association with the set of complexes, this inverse is the conjugate 
complex). External multiplication then makes it possible to obtain the set of 
conjugates (in this case by multiplying by real numbers) from sectors whose 
ends on the blue side lie on the unit circle. Using this geometric representation, 
we can see how the notions of complement and square root are linked. Indeed, 
“1 − z” is an element that passes through the diagonal of the parallelogram, its 
existence is then intimately linked to the hypotenuse of the triangles that make 
up this sector and therefore to the existence of square roots. We can see it better 
if we take rectangular sectors. And the successive application of this term pro-
vides an infinity of them. 

6.2. Synthesis of Definitions of Nonlinear Structures 
6.2.1. Non-Linear Group (LNG) 
The non-linear group forms a set A provided with two internal composition 
laws, the addition denoted “+” and the multiplication “.” (the point may not be 
shown): 

The internal composition laws “+” and “.” form a commutative field on A. 
Every element has a complementary element: 

( ) 1 2
1 2

1 2

1
, such as

z z
z z z

z z z
= +

∀ ∃  =  
and more compactly: 

( )1 1 1such as 1z z z z z∀ ∃ = −  
Or in a dual way: 

( ) 1 2
1 2

1 2

0
, such as

z z
z z z

z z z
= +

∀ ∃  =  
and more compactly: 

( )1 1
2
11 such as 0z z z z z z∀ ∃ = − = −  

Despite these 2 possible facets of LNG, our preference goes to the 1st expres-
sion because it highlights this new element “1 z− ” and especially this mixture, 
this composition “ ( )1z z− ” which appears to us as the crucial element of these 
new structures. In our opinion, this is the main entrance to the non-linear do-
main (as we explain below with the notions of extended object and ternary 
structuring). 

6.2.2. Non-Linear Field (CNL) 
The non-linear field forms a set B provided with three internal composition laws 
“+”, “.” and “^” (exponentiation noted as ba ): 

The internal composition laws “+” and “.” form a non-linear group on B. 
The internal composition law “^” (exponentiation) verifies 
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( ) ( )32 31 2 1 2 21
1 1 1

0
2 11 11 21; ; ; ;

z zz zz z z z z z zz z z z z z z z z z z z+= = = = =
 

6.2.3. Sectoral Space (ENL) 
The sectoral space forms a set A provided with two internal composition laws, 
the sectoral addition denoted “+” and the sectoral multiplication denoted “.”: 

The internal composition laws “+” and “.” form a non-linear group on A. 
The sectoral space is associated with a set B provided with three internal 

composition laws “+”, “.” and “^” (exponentiation): 
The internal composition laws “+”, “.” and “^” (exponentiation) form a 

non-linear field on B. 
The sectoral space is provided with two external composition laws “.” and “^” 

(exponentiation) which verify: 

( ) ( ) ( )1 2 1 2 1 2 1 20 1 0; 1 1 1; 1 1 ; 1 1 1S S S z z S z z S z z S z S z S⋅ = ⋅ = = + = +  

( ) ( )2 21 2 1 1 2 1 2 2 21 0
1 11 1; 1 1; 1 1 ; 1 1 1 ; 1 1

z zz z z z z z z z zS S S S S S S S z S z S+= = = = ⋅ =
 

( ) ( ) ( ) ( )
( ) 1 1 1

1 1 1 1 1 11 2 1 2; 1 2 1 2 1 2 ;

1 2 1 2z z z

z S S z S z S z S S z S S S z S

S S S S

+ = + ⋅ = ⋅ = ⋅

⋅ = ⋅  

6.2.4. Base and Dimension 
One of the strengths of the concept of vector space is its ability to extend to 
spaces of dimension greater than 1 (its minimum dimension). We can therefore 
wonder about this characteristic for our sector space. A first element of response 
is that we can also develop our sectors in larger spaces. For example, in 3D, it 
suffices a priori to fix the origin and an axis which will correspond to the orange 
reference side. Then the blue side can move in 3D space (Figure 23), to form 
sectors (which always remain 2D parallelograms). 

A 2nd element of response is to look at the definition of a linear base for which  
 

 
Figure 23. Sector in 3D space. 
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it is a question of defining linear independence in this way 

0 0aX bY a b+ = ⇔ = =  
In our sectoral space, we can extend this definition to the arithmetic notion of 

primality [4] in the form: 

1 0a bX Y a b⋅ = ⇔ = =  
So, in this sectoral space, we have a priori 2 possible notations, in the form 

of a linear combination or else in the form of a prime factor decomposition. 
We also find this specificity in the space of complex numbers, with “ 1z x= ⋅

eii y r α+ ⋅ = ”. This new definition of the base thus generates a link between our 
non-linear structures and arithmetic (notion of prime factor and irreducibility). 
These 2 bases can be made up of the same sectors as seen immediately after (thus 
forming only one base). The formulation with multiplicative coefficients is to be 
associated with the sector addition. The formulation with the exponents is to be 
associated with the sectoral multiplication. The multiplicative coefficient “leng-
thens” the base sector in the direction of the “blue” side. The exponent “rotates” 
the base sector around the origin and in the plane of the base sector (except for 
the flat sector which carries the only multiplicative coefficient of this formula-
tion and of which the exponent has no effect when it is normalized because it 
represents the unit). 

Base according to the linear decomposition (additive decomposition): 
Let’s take a closer look at how we can define a basis in which a sector would 

have a unique determination. Like a 2-dimensional orthonormal vector base, for 
which 2 perpendicular lines passing through the origin and carried by norma-
lized vectors make it possible to provide a unique vector decomposition, we can 
define (for a sectoral base in 3D) 2 perpendicular planes passing through the 
orange side (such as the XZ and XY planes in Figure 24) carried by square sec-
tors with normalized sides, SbXY and SbXZ as in Figure 24. These 2 sectors of base 
allow to obtain any sector whose blue side is anywhere in the YZ plane. It is 
therefore still necessary to add a last sector which makes it possible to move (if 
necessary) this blue side outside the YZ plane. This is the flat sector SbXX colli-
near with the orange side: 

In Figure 25, one shows how these 3 sectors make it possible to define an or-
thonormal basis of our sectoral space in which any sector can be decomposed in 
a unique way (with ( ) 3, ,x y z ∈ ). Each multiplicative coefficient ( ), ,x y z  
Each multiplicative coefficient ( ), ,x y z  lengthens the base square sector into a 
rectangular sector: 

1 XX XY XZS xSb ySb zSb= + +  
Note: In a 2D space, one retrieves the decomposition in real and imaginary 

pure part, 1 XX XYS xSb ySb= +  (with ( ) 2,x y ∈ ) for which 1XXSb =  is the 
real unit vector (which becomes the flat sector in sectoral space) and XYSb i=  
the pure imaginary unit vector (which becomes the square sector of XY plane). 

Base according to the primality decomposition (multiplicative decomposition): 
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Figure 24. Two base sectors according to sectoral addition defining sectors with blue side 
in YZ plane. 

 

 
Figure 25. Base definition according to sectoral addition. 

 
The preceding decomposition is based on the definition of sector addition, by 

which we make the orange sides coincide. But we can get a primality decomposi-
tion with the same basic sectors by following the definition of sector multiplica-
tion, by which we make the orange and blue sides coincide. In Figure 26, we have 
taken the same sector S1 and the same basic square sectors. This time the sector is 
determined by exponents (plus a multiplicative coefficient associated with the flat 
unit sector). Each exponent “rotates” its base square sector, in its plane around the 
origin, transforming it into a rhombus. This has the consequence of positioning a 
blue “unit” side on the blue side of S1. The multiplicative coefficient then makes 
it possible to give the size of the desired sector. Thus, XYSb  turns in its XY 
plane giving 1t

XYSb  and XZSb  turns in its XZ plane giving 2t
XZSb : 
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Figure 26. Base definition according to sectoral multiplication. 

 
Note: In a 2D space, we retrieve the decomposition in its exponential form, 

11 t
XX XYS rSb Sb=  (with ( ) 2, 1r t ∈  and 1t  determined at a multiple close be-

cause related to the cyclicity of the rotation) for which 1XXSb =  is the real unit  

vector (which becomes the flat sector in the sector space) and 2e
i

XYSb i
π

= =  the 
pure imaginary unit vector (which becomes the square sector of the XY plane). 
In this writing, the angle of rotation of the blue side of the base sector XYSb  is 

( )1 1 1
2 2 2

t tπ π π
− = − . We subtract 

2
π

 from the angle because in the polar formu-

lation of complex numbers, this angle is measured from the orange side. 
Dimension: 
For each new dimension, a new square sector must be added which defines 

the new plane, the new planar dimension (of which a vector is the orange side). 
We also note that any sectoral subspace consists at least of the flat sector XXSb  
and a square sector of another plane. In other words, any sectoral subspace al-
ways breaks down at least into a real part and a pure imaginary part. One thus 
finds in each of the subspaces an elongation (multiplicative coefficient) and one 
or more rotations (exponentiation coefficient), the latter being determined with 
a multiple close because related to the cyclicity of the rotations). We therefore 
find the existence several determinations (monodromy). We thus notice that 
these expressions are certainly systematically associated with functions close to 
the functions of circular type (trigonometric functions, elliptic functions …). 

Note: With this reflection on the concept of base, we note that to be more 
general the set of numbers associated with the sector space should be less the 
space of complexes than a space of number 2T T T× =  which is a non-linear 
field. The components of the sectors then being numbers of Τ. In our article, we 
studied the case T =   whose 2  is related to complex numbers. 

6.2.5. Projective Space and Sectoral Space 
Our sectoral space is linked to projective spaces. Indeed, our sector can represent 
a projection between projective lines and conversely any projection between 
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projective lines can be defined by a sector. A projection is defined by a projec-
tion center and 2 lines which sends each point from the start line to the finish 
line. It is enough to know the application on 3 points to define it [5]. Let’s see 
concretely, how projection and sector are equivalent. In Figure 27, a projection 
has been shown from the red line d1 to the blue line d2 with its projection center 
“C”. By taking the points of intersection P1 and P2 of the lines coming from the 
center of projection (“C”) parallel to the two projective lines on which the pro-
jection is defined, we obtain 2 elements of definition for this projection which 
one will note”f”: 

( ) ( )1 22 et 1d df P f P∞ = = ∞  

And finally, the point of intersection allows to define in a unique way the pro-
jection: ( )0 0f = . 

Then, by the procedure already used to obtain the linked sectors, a translation 
which makes the point of intersection of the 2 projective lines coincide with the 
origin point of our sectoral space, then a zoom and a rotation to make both the 
projective start line coincide on the orange side (1st vector of our base) and at the 
same time the point P1 with the end of the orange unit vector, our projection 
thus defined represents a sector of our space. The elements which represent the 
sector thus take on a particular meaning: the orange side represents the projec-
tive line of departure, its end point P1 such that ( ) 21 df P = ∞ , the blue side 
represents the projective line of arrival, its end point P2 such that ( )1 2df P∞ = , 
the point of origin which makes this application a projection ( )0 0f =  and fi-
nally the last end of the sector which defines the centers of the projection. The 
special cases of flat sectors then correspond to the projections defined by two 
parallel lines ( 1 2d d ). The set of these particular cases in plane space is re-
duced by translation, rotation and zoom to the set of equivalence classes of blue 
vectors varying only on a line (in this case collinear with the orange vector). 
Thus, the projective space is to the sectoral space what the affine space is to the 
vector space. Indeed, an affine space can be seen as a vector space without a spe-
cific point of origin. Projective space in our case can be seen as a sectoral space 
with neither specific point of origin neither specific scale. The projective space is  

 

 
Figure 27. Sector and projection. 
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the space of homographies and the sectoral space the space of projections, as the 
affine space is the space of affine applications and the vector space the space of 
linear applications. 

Notes: The linear applications are the lines which turn around the origin, in 
our case the sectoral applications are the planes which turn around the “orange” 
side axis. We can also note that if the dimension of the affine space is N then the 
dimension of the associated vector space is N and the “intermediate” element 
(the vector) is of dimension 1. Similarly in our case, if the dimension of the pro-
jective space is N then the dimension of the associated sectoral space is equiva-
lent to the dimension of the associated vector space either (N + 1) but the “in-
termediate” element (the sector) is of dimension 2. The increase of an order of 
the dimension of the sectoral space is compensated by a basic element of dimen-
sion also of a higher order. 

6.3. From a Binary Structure of Linear Group  
to a Ternary Structure of Non-Linear Group 

As we can expect from the definition of non-linear group, this implies no longer 
a binary distinction as in the linear group but a ternary distinction. The source 
of this ternary division appears in the notion of projection which, as we have just 
seen, is closely linked to our sectoral space. In Figure 28, a projection of center 
“C” is shown from the red line to the blue right. The green line is the line by 
which the point and its projection is equidistant from the point of intersection of 
the 2 lines (i.e. parallel to the external bisector of the 2 lines passing through 
“C”). On one side of the green line, the point P1 is more distant from “0” than 
P0, while on the other side P3 is closer than P2 to “0”. And similarly, on the oth-
er side of “0”, we still continue to have P5 closer to “0” than P4, but in the latter 
case there was an inversion of the distances at point “0”. Whereas in the linear 
approach (ring or field), the division of the multiplicative group of ] 0; +00 
[ around 1 is replicated symmetrically beyond 0 (by the additive group) forming 
a double binarity (“(+, +) | -1 | (+, −) | 0 | (−, +) | 1 | (−, −)”) in which these 4 
domains are independent (without overlapping), here it is as if there always was  

 

 
Figure 28. Ternary structure of non-linear group. 
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these 2 divisions of the multiplicative group of ] 0; +00 [ but this time the second 
division is symmetrized around “1⁄2” (and not “0”) causing an overlap between 
“0” and “1” giving a triptych (“{+, +} | 0 | {+, −} | 1 | {−, −}”). This symmetriza-
tion around “1⁄2” comes from the association of the 2 operations in writing z∀  

1z∃  telque ( )1 1z z e z= − . 
But then, in these new structures, the objects become “thick”, any element 

being defined by a combination of the 2 operations ( z∀ , 1z∃ ( )1 1z z e z= − ), they 
mix. And mixture cannot appear neither in a punctual representation, nor in the 
relation between two punctual representations idealized by a vector (only a sur-
face element, “thick” object, can idealize a mixture). One could criticize that this 
ternary division is nevertheless less fine than that doubly binary of the field or 
ring. But the advent of this thickening and this mixing takes place in our struc-
tures at the more fundamental level of the group and generates the possibility of 
self-similarity, replication at different scales of this ternary diagram (as the logis-
tic sequence ( ) ( )1 1n n nf x x x+ = − ), like the baker’s transformation (lengthening 
and folding) involved in the study of dynamic systems [6]. This harmonious 
tangle is ensured by the rules of distributivities of the nonlinear field. The non-
linear group and its ternary division thus generate an infinitely finer modeling, 
more nuanced than the binary domain. 

7. Conclusions 

In this study, we have proposed 3 new nonlinear algebraic structures which 
extend the linear notions of group, field and vector space. Geometrically, sec-
torial space, analytically, the set of complex numbers and algebraically, the pairs 
of complex vectors are 3 sets studied in this article which verify these 3 struc-
tures of nonlinear space (sectorial space), of nonlinear field and of nonlinear 
group. 

The first fundamental characteristics which emerge from these structures are 
the notions of extended object and ternary structure (“{+, +} | 0 | {+, −} | 1 | {−, 
−}”) through the complementary association which appears in the definition of 
the nonlinear group, z∀  1z∃  such that ( )1 11z z z= − . These notions extend 
and “qualify” what the linear group depicts with its punctual objects and its bi-
nary structure (“+ | 0 | −”). The segment/vector becomes parallelogram/sector, 
the minimum dimension of space “1D” becomes “2D”, the opposites/inverses 
become association/mixture of complementarities, the single center is deployed 
in 2 focuses, circle and line of the vector space are transformed into the 3 conics, 
from linear equations we go to 2nd degree equations, from translations we go to 
projections, at invariance by translation is added invariance by zoom and rota-
tion … 

This complementary association “ ( )1 11z z− ” allows to glimpse its full poten-
tial in the light of the dynamic systems of which this form is the echo of the lo-
gistic sequence (mixing, transformation of the baker, iteration, pattern of period 
doubling, fractal, chaos, …). And this ability to process mixtures leads us to 
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phase transitions, renormalization groups, etc. Because these structures are in 
relation to the projective spaces, they could appear at the center of a very large 
set of domains. 

One of the foundations of quantum mechanics is the existence of conjugate 
parameters that do not commute. A parameter cannot be known as precisely as 
one wants without losing knowledge about the conjugate parameter. However, a 
sector characterizes an extended object (irreducible to a point) and this irreduci-
bility is conceptually close to the behavior of these conjugated parameters. It 
correlates two degrees of freedom which cannot be defined independently. 

Current theoretical physics is based on very general principles of invariance. If 
we perform an experiment, we must be able to describe it in the same way re-
gardless of the location and orientation in the laboratory (translational and rota-
tional invariance). However, it would be quite relevant to be able to describe this 
same experience whether you are giant or tiny. In other words, the laws of phys-
ics should also be zoom invariant. Note that at present, general relativity sche-
matically models large scales and quantum mechanics models small scales and 
that these two theories are irreconcilable. One of the major themes of current 
theoretical physics is to try to reconcile these two models. To this goal, the sec-
toral space could be the appropriate mathematical tool. 

To end with a speculative but also very exciting perspective, one can notice 
that this work is, from a certain point of view, in the continuity of the evolution 
of mathematics. Very schematically, we could say that at order 0, mathematical 
theories are based on the strict equality of entities: “ a b= ”. At order 1, more 
general mathematical theories are based on the equality of the ratio of entities: 
“ a b c d= ”. Our theory would then define a theory of order 2 based on the 
double-ratio equality of entities: “ ( ) ( ) ( ) ( )a b c d e f g h= ”. Note also that, 
once again very schematically, these equalities (through the intermediary of the 
equivalence classes) are also associated with sets of numbers, the natural num-
bers for the 1st equality, the rational for the second. We can then wonder if equi-
valence classes based on the double-ratio would not give rise to a new set of 
“projective” numbers. One could then also wonder if this set would be equiva-
lent to algebraic or transcendent numbers. Unless in the same way as between 
natural numbers and rational numbers, an intermediate set (associated with the 
notion of group) appears (integers), an intermediate set between rational and 
projective numbers (associated with the notion of nonlinear group) would ap-
pear and which would perhaps be algebraic or other numbers ... 
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