
Journal of Applied Mathematics and Physics, 2020, 8, 2241-2255 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2020.810168  Oct. 29, 2020 2241 Journal of Applied Mathematics and Physics 
 

 
 
 

Some Properties of the Sum and Geometric 
Differences of Minkowski 

Mashrabjon Mamatov, Jalolxon Nuritdinov 

Department of Geometry and Topology, National University of Uzbekistan Named after Mirzo Ulugbek, Tashkent, Uzbekistan 

 
 
 

Abstract 
The sets of Minkowski algebraic sum and geometric difference are consi-
dered. The purpose of the research in this paper is to apply the properties of 
Minkowski sum and geometric difference to fractional differential games. 
This paper investigates the geometric properties of the Minkowski algebraic 
sum and the geometric difference of sets. Various examples are considered 
that calculate the geometric differences of sets. The results of the research are 
presented and proved as a theorem. At the end of the article, the results were 
applied to fractional differential games. 
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1. Introduction 

Minkowski sums and geometric differences are important operations. They are 
used in many fields, such as: image processing, robotics, computer-aided design, 
mathematical morphology and spatial planning. Minkowski sums and geometric 
differences are used in various fields of science, such as differential games and 
optimal control [1] [2] [3], computer-aided design and production [2], comput-
er animation and morphing [3], morphological image analysis [4] [5], measures 
for convex polyhedral [6], dynamic modeling [7], robot motion planning [8] and 
so on.  

If our activity in the study of vector algebra in ordinary space n
  begins 

with the addition of two vectors, then this activity extends to the addition of a 
vector or vectors belonging to one set to vectors belonging to another set. It is 
important to understand intuitively that adding a set to a vector is a combina-
tion of vectors formed by adding each element of the set to the vector [9] [10] 
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[11]. For example, to add a set A to set B in a plane 2
 , you need to copy the 

set A onto each element of the set B and get the combination, or vice versa. This 
process is not difficult to imagine, even in arbitrary of n dimensional space, and 
it can be seen that the geometric nature of the sets A and B does not depend on 
their location relatively to the origin [12] [13] [14] [15]. 

Minkowski operators were first used in the work of L.S. Pontryagin to study 
differential games. L.S. Pontyagin’s 1967 article “On linear differential games II” 
[16] provides definitions and several properties of the Minkovsky algebraic sum 
and the Minkovsky geometric difference. 

Also, the application of Minkovsky’s operator to differential games is de-
scribed by N.Yu. Satimov, G.E. Ivanov, B.N. Pshenichny. In a 1973 article by 
N.Yu. Satimov, a linear differential game in n-dimensional Euclidean space is 
considered. In this work, N.Yu. Satimov finds in the linear differential game a 
sufficient condition that ensures that the chaser finishes the game in real time in 
the action of any possible line of the runner and proves it in the form of a theo-
rem. He used Minkowski’s difference and its properties to prove these theorems. 

In the above work, the Minkowski sum and geometric difference are applied 
to whole-order differential games. In this article, we have tried to solve the fol-
lowing problems: 

1) Identify and prove the important properties of the Minkowski sum and 
difference; 

2) Minkowski sum and difference of open and closed sets; 
3) Application of Minkowski’s sum and difference to fractional differential 

games.  

2. Research Methodology 

Definition 1. Let ,X Y E⊂  be nonempty sets on the linear space E. The Min-
kowski sum and difference of two sets X and Y are defined to be the sets 

{ }: ,X Y x y x X y Y+ = + ∈ ∈ , { }: .X Y x E x Y X∗ = ∈ + ⊂        (1) 

Definition 2. The multiplication of set X and number λ  is defined to be the 
set 

{ }: .X x x Xλ λ= ∈                          (2) 

Definition 3. The Minkowski sum of any vector a E∈  and nonempty set 
X E⊂  is defined to be the set 

{ }:a X a x x X+ = + ∈                        (3) 

By the definition of the Minkowski difference of sets, the set X Y∗  means 
the intersection of movement of the set X to vector d Y∈− , which is  

( )
d Y

X Y X d∗

∈−

= +


                         (4) 

To prove this equality, it’s enough to show all z X Y∗∈  are belonged to set 
( )

d Y
X d

∈−

+


 and on the contrary. By the definition of the muliplication of set 
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and number, expression d Y∈−  means that always there exists y element in the 
set Y such that d y= − . Hence y d Y= − ∈ . 

Let z X Y∗∈  be vector of set X Y∗ . Then by the definition of Minkowski 
difference of sets (4), z Y X+ ⊂ . By the definition of the Minkowski sum of sets, 
for all y Y∈  elements there exists x X∈  element such that z y x+ = , 
z x y= − . Since y d= − , z x d= + . This equality is true for all d Y∈−  and 
such x X∈ , so we can write following expressions 

( )
,

d Y

z X d
z X d

∈−

∈ +

∈ +


                        (5) 

Therefore, if z X Y∗∈ , then ( )
d Y

z X d
∈−

∈ +


. 
Now, let ( )

d Y
z X d

∈−

∈ +


 be vector of intersection ( )
d Y

X d
∈−

+


, then  

z X d∈ +  for all d Y∈−  vectors. Hence there exists x X∈  vector such that 
z x d= + . Then z x d x y= + = −  and z y x+ = , since d y= − . This equality 
is true for all y Y∀ ∈  and such x X∈ , so we can write z Y X+ ⊂ , hence 
z X Y∗∈ . Therefore equality (4) is really true. In formula (4), the Minkovsky 
difference is expressed by the Minkovsky sum, which helps to visualize the 
Minkovsky difference.  

Definition 4. Unit of all the boundary points of set X is called boundary of X 
and written X∂ .  

Definition 5. The complement of given set X on the linear space E is written 
cX  and defined to be the set  

{ }, .cX x E x X= ∈ ∉                       (6) 

Definition 6. The Minkowski operators of the multiple-valued function 
: 2EG E → , written as : 2 2E E

GA →  and : 2 2E E
GB → , are defined to be op-

erators  

( )( ) ( )( ), \ \G G G
x S

A S x G x B S E A E S
∈

= + =


           (7) 

in here S E⊂  be any set. 
In especial condition multiple-valued function G is constant ( ) 0G x G=  for 

each x S∈ , then Minkowski operators become as Minkowski sum and differ-
ence: 

( )0 0,G GA S S G B S S G∗= + = −                   (8) 

It is very important to know that, Minkowski sum and difference of the given 
sets are open or closed set. Therefore, we are writing following lemmas and theo-
rems. 

3. Analysis and Results 

Lemma 1. Let ,X Y E⊂  be nonempty sets on the linear space E and X Y∗ ≠ ∅ . 
For any vectors y Y∈  there exists a vector x X∈  such that 

x y X Y∗− ∈ .                         (9) 
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Proof. Let a X Y∗∈ , then by the definition of Minkowski difference  
a Y X+ ⊂ . By the definition of Minkowski sum of sets for each y Y∈ there exists 
vector x X∈  such a y x+ = . Hence a x y= − . Therefore,  
a x y X Y∗= − ∈  relation is true.  

Lemma 2. For any nonempty sets X and Y on the linear space E following re-
lation is true: 

( ).X Y X Y∗ ⊂ + −                     (10) 

Proof. To prove this lemma we show that every element of X Y∗  will be an 
element of ( )X Y+ −  and on the contrary.  

Let a X Y∗∈  be any vector. By the definition of the Minkowski differ-
ence of sets we can write a Y X+ ⊂ . For all y Y∈  vectors a y X+ ∈ . We 
add y Y− ∈− vector to both sides of this relation. Hence ( )a X y∈ + − . Since 

( ) ( )X y X Y+ − ⊂ + −  relation, follows that ( )a X Y∈ + − . Following example 
shows that each ( )a X Y∈ + −  vector does not belong to X Y∗  set every time. Let 

[ ] ( )4,5 ; 3,4X Y= − =  be given sets. Then ( )4, 3Y− = − − , ( ) ( )8,2X Y+ − = − , 
[ ]7,1X Y∗ = − . Therefore, ( )X Y X Y∗ ⊂ + − . 

Lemma 3. For any nonempty sets X and Y on the linear space E following re-
lation is true: 

( )c cX Y Y X∗ = − +                      (11) 

Proof. Let ( )ca X Y∗∈  be any vector, then a X Y∗∉ . By the definition of 
the Minkowski difference of sets a Y X+ ⊄ . There exists y Y∈  vector such 
that ca y X+ ∈  and there exists cx X′∈  vector such that a y x′+ = . Hence 

ca x y Y X′= − ∈− + , therefore ca Y X∈− + . 
Lemma 4. For any nonempty sets X and Y on the linear space E following re-

lation is true:  

( )X Y X Yλ λ λ∩ = ∩                    (12) 

Proof. Let ( )a X Yλ∈ ∩  be any vector. By the definition of multiplication 
of sets and number there exists t X Y∈ ∩  vector such that a tλ= . Since 
t X Y∈ ∩ , we have t X∈  and t Y∈ . Hence, t Xλ λ∈  and t Yλ λ∈ . It means 
that t X Yλ λ λ∈ ∩ . We can show that every vector a X Yλ λ∈ ∩  belongs to 
set ( )X Yλ ∩  by using this method. Lemma has been proved. 

Lemma 5. For any nonempty set X on the linear space E and for number λ  
following relation is true: 

( )X Xλ λ∂ = ∂                       (13) 

in here X∂  means boundary of the set X. 
Proof. Let a Xλ∈ ∂  be a vector, there exists x X′∈∂  vector such that 

a xλ ′= . x X′∈∂  means that for all neighborhoods  
( ) { }: ,rB x x x x r r R′ ′= − < ∈  of x′  ( )rB x X′ ∩ ≠ ∅ , ( ) c

rB x X′ ∩ ≠ ∅ . We 
multiply both sides of these relations by number λ  and according to the lem-
ma 4, we have ( )rB x Xλ λ λ′ ∩ ≠ ∅ , ( ) ( )c

rB x Xλ λ λ′ ∩ ≠ ∅ . It means that 
( )a x Xλ λ′= ∈∂ . We can show that every vector ( )a Xλ∈∂  belongs to set 

https://doi.org/10.4236/jamp.2020.810168


M. Mamatov, J. Nuritdinov 
 

 

DOI: 10.4236/jamp.2020.810168 2245 Journal of Applied Mathematics and Physics 
 

Xλ∂  by using this method (13). Lemma has been proved.  
Lemma 6. For any nonempty sets , ,A B C  and D on the linear space E fol-

lowing relation is true:  

( ) ( ) ( ) ( )A B C D A C B D∩ + ∩ ⊂ + ∩ +              (14) 

Proof. Let ( ) ( )x A B C D∈ ∩ + ∩  be a vector. By the definition of Minkows-
ki sum there exists t A B∈ ∩  and k C D∈ ∩  such that x t k= + . It means 

, , ,t A t B k C k D∈ ∈ ∈ ∈ . Hence, it follows t k A C+ ∈ +  and t k B D+ ∈ + . 
Therefore, ( ) ( )x t k A C B D= + ∈ + ∩ + . Following example shows that each 

( ) ( )x A C B D∈ + ∩ +  vector does not belong to ( ) ( )A B C D∩ + ∩  set every 
time (14). Let [ ] [ ] [ ] [ ]1,2 , 3,4 , 7,8 , 5,6A B C D= = = =  be given sets. Then 
( ) ( )A B C D∩ + ∩ = ∅ , ( ) ( ) [ ] [ ] [ ]8,10 8,10 8,10A C B D+ ∩ + = ∩ = . Therefore 
( ) ( ) ( ) ( )A B C D A C B D∩ + ∩ ⊂ + ∩ + .  

Lemma 7. Let ,X Y E⊂ be nonempty sets on the linear space E. If X Y⊂ , 
then X Yλ λ⊂ .  

Proof. From X Y⊂  there exists set Z such that Y X Z= ∪ . It means that 
each element y Y∈  is an element of set X or an element of set Y or an element 
of both sets. This implies that for y Y∀ ∈  there exists vector x X∃ ∈  or vector 

z Z∃ ∈  such that y x=  or y z= . By the definition of liner space we multiply 
both sides of these equalities by number λ  and it follows that y xλ λ=  or 

y zλ λ= . Hence, y Xλ λ∈ or y Zλ λ∈ . It means equality Y X Zλ λ λ= ∪  is 
true. Therefore, X Yλ λ⊂ . 

Lemma 8. Let 1 2 1 2, , ,X X Y Y  be nonempty sets on the linear space E. If 

1 2 1 2,X X Y Y⊂ ⊂ , then 1 1 2 2X Y X Y+ ⊂ + . 
Proof. Let 1 1a X Y∈ +  be any vector of set 1 1X Y+ . By the definition of 

Minkowski sum of sets there exists 1 1x X∈  and 1 1y Y∈  such that 1 2a x y= + . 
Since 1 2 1 2,X X Y Y⊂ ⊂ , we have 1 2x X∈  and 1 2y Y∈ . It means that  

1 1 2 2x y X Y+ ∈ + . Therefore 1 2 2a X Y∈ + . Lemma has been proved. 
Lemma 9. Let 1 2 1 2, , ,X X Y Y  be nonempty sets on the linear space E. If 

1 2 1 2,X X Y Y⊂ ⊃ , then 1 1 2 2X Y X Y∗ ∗⊂ .  
Proof. Let 1 1a X Y∗∈  be any vector. By the definition of the Minkowski dif-

ference 1 1a Y X+ ⊂ . Since 1 2X X⊂ , it follows 1 1 2a Y X X+ ⊂ ⊂ , 1 2a Y X+ ⊂ . 
According to the condition of the theorem, 2 1Y Y⊂  and by the lemma 8, 

1 2 2 1a Y Y X Y+ + ⊂ + . Hence, 2 2a Y X+ ⊂ . Therefore, 2 2a X Y∗∈ . 
Lemma 10. For any nonempty sets X, Y and Z on the linear space E following 

relation is true:  

( )X Y Z X Y Z∗ ∗+ ⊂ +                  (15) 

Proof. Let ( )a X Y Z∗∈ +  be any vector of set ( )X Y Z∗+ , then there exists 
x X∈  and t Y Z∗∈  such that a x t= + . Since t Y Z∗∈ , we have t Z Y+ ⊂ . 
We add vector x X∀ ∈  to both sides of these relations and we obtain  
x t Z x Y X Y+ + ⊂ + ⊂ + . It means that a Z X Y+ ⊂ + . Hence, a X Y Z∗∈ + . 

Following example shows that each a X Y Z∗∈ +  vector does not belong to 
( )X Y Z∗+  set every time. Let ( ) ( ) ( )0,4 ; 3,5 ; 2,1X Y Z= = = −  be given sets. 
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Then we obtain ( ) ( )5,8X Y Z∗+ =  and [ ]5,8X Y Z∗+ = . Therefore,  
( )X Y Z X Y Z∗ ∗+ ⊂ + . 

Lemma 11. For any nonempty sets X, Y and Z on the linear space E following 
relation is true:  

( ) ( )X Y Z Y Z X∗ ∗ ∗+ ⊂                    (16) 

Proof. Let ( )a X Y Z∗∈ +  be any vector of the set ( )X Y Z∗+ , then by de-
finition of the Minkowski sum, there exists vectors x X∈  and t Y Z∗∈  such 
that a x t= + , t a x= − . Since t Y Z∗∈ , t Z Y+ ⊂ . According to t Y Z∗∈ , 
we have a x Z Y− + ⊂ . Thus, ( )a Z X Y+ + − ⊂ . By the lemma 2, we have 

( )Z X Z X∗ ⊂ + − . Hence, ( ) ( )a Z X a Z X Y∗+ ⊂ + + − ⊂ . Thus,  
( )a Z X Y∗+ ⊂ . Therefore, ( )a Y Z X∗ ∗∈ . 

Following example shows that each vector a X Y Z∗∈ +  does not belong to 
set ( )X Y Z∗+  every time (15). Let ( ) [ ] ( )0, 2 ; 3,8 ; 2,1X Y Z= = = −  be given 
sets. Then ( ) ( )5,9X Y Z∗+ =  and ( ) [ ]5,9Y Z X∗ ∗ = . Therefore,  

( ) ( )X Y Z Y Z X∗ ∗ ∗+ ⊂ . 
Lemma 12. For any nonempty set X on the liner space E following equality is 

true.  

( )ccX X− = −                        (17) 

Proof. Let ca X∈−  be any vector of the set cX− . By the definition of mul-
tiplication of sets and numbers, there exists ca X− ∈ . Thus, a X− ∉  It means 
that for all x X∈ , a x− ≠ , a x≠ − . This implies a X∉− . Consequently, 

( )ca X∈ − . We can show that every vector ( )ca X∈ −  belongs to set cX−  by 
using this method. Lemma has been proved. 

Theorem 1. For any nonempty sets X, Y on the linear space E following 
equality is true: 

( ) ( ) ( )c cY Y X X Y Y∗ ∗ ∗= + − −                (18) 

Proof. Let ( )a Y Y X∗ ∗∈  be any vector. By the definition of the Minkowski 
difference of sets, ( )a Y X Y∗+ ⊂ . It means that a t Y+ ∈  for all vectors 
t Y X∗∈ . Thus, a t Y− − ∈−  and ( )ca t Y− − ∉ − . Then for all vectors 
( ) ( )cy Y′− ∈ −  following relations is true 

( ) ,a t y ′− − ≠ −  

( ) ( ) ,a y t Y X∗′+ − ≠ − ∈−                    (19) 

( ) ( ).a y Y X∗′+ − ∉−  

From this and by the lemma 12, it follows that ( ) ( ) .ca y Y X∗′+ − ∈−  By the 
lemma 3, we can write following relations 

( ) ( ) ( )
( )

,c c

c c

a y Y X X Y

a Y X Y

∗′+ − ∈− = − − +

+ − ⊂ −
              (20) 

Since ( )ccY Y− ∈ − , we have ( ) ( )c ca Y X Y+ − ⊂ + − , ( ) ( )c ca X Y Y∗∈ + − − . 
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We can show that every vector ( ) ( )c ca X Y Y∗∈ + − −  belongs to set  
( )Y Y X∗ ∗  by using this method (18). Lemma has been proved. 

Theorem 2. For any nonempty sets X, Y and Z on the linear space E following 
relation is true:  

( ) ( ) ( )X Z Y Z X Y Z∗ ∗ ∗∩ = ∩                 (21) 

Proof. Let ( ) ( )a X Z Y Z∗ ∗∈ ∩  be any vector of set ( ) ( )X Z Y Z∗ ∗∩ . By 
the definition of the intersection of sets, it follows that a X Z∗∈  and a Y Z∗∈ . 
By the definition of Minkowsli difference of sets, we have a Z X+ ⊂  and 
a Z Y+ ⊂ . From these, a Z X Y+ ⊂ ∩ , ( )a X Y Z∗∈ ∩ . 

Now, let ( )a X Y Z∗∈ ∩  be any vector. Then by the definition of the Min-
kowski difference of sets, a Z X Y+ ⊂ ∩ . By the definition of intersection of 
sets, we have a Z X+ ⊂  and a Z Y+ ⊂ . Thus, a X Z∗∈  and a Y Z∗∈ . It 
means that ( ) ( )a X Z Y Z∗ ∗∈ ∩ . Therefore ( ) ( ) ( )X Z Y Z X Y Z∗ ∗ ∗∩ = ∩ . 
Theorem has been proved.  

Theorem 3. For any sets ,X Y E⊂  and any vector a E∈ , following equali-
ty is true 

( ) ( ) ( ).a X a Y a X Y+ ∪ + = + ∪                (22) 

Proof. Let ( ) ( )t a X a Y∈ + ∪ +  be any vector. By the definition of the union 
of sets, ( )t a X∈ +  or ( )t a Y∈ + , or both relation will be true. By the defini-
tion of the Minkowski sum of sets, there exists x X∈  or y Y∈  such that 
t a x= +  or t a y= + . Thus, t a x− =  or t a y− = . These imply t a X− ∈ or 
t a Y− ∈ . It means that ( )t a X Y− ∈ ∪ . Therefore, ( )t a X Y∈ + ∪ .  

We can show that every vector ( )t a X Y∈ + ∪  belongs to set  
( ) ( )a X a Y+ ∪ +  by using this method. Theorem has been proved. 

Theorem 4. For any nonempty sets X, Y and Z on the linear space E following 
equality is true: 

( ) ( ) ( ).X Y X Z X Y Z∗ ∗ ∗∩ = ∪                 (23) 

Proof. Let ( ) ( )a X Y X Z∗ ∗∈ ∩  be any vector of set ( ) ( )X Y X Z∗ ∗∩ . By 
the definition of the intersection of sets a X Y∗∈  and a X Z∗∈ . By the defi-
nition of the Minkowski difference of sets, a Y X+ ⊂  and a Z X+ ⊂ . Thus, 
( ) ( )a Y a Z X+ ∪ + ⊂ . According to the theorem 3,  

( ) ( ) ( ) .a Y a Z a Y Z X+ ∪ + = + ∪ ⊂               (24) 

Hence, ( )a X Y Z∗∈ ∪ .  
We can show that every vector ( )a X Y Z∗∈ ∪  belongs to set  

( ) ( )X Y X Z∗ ∗∩  by using this method. Theorem has been proved. Therefore 
equality ( ) ( ) ( )X Y X Z X Y Z∗ ∗ ∗∩ = ∪  is true (23). 

Following theorems may be proved by using of the lemmas given above. 
Theorem 5. If X be open (closed) set, then Xλ  will be open (closed) set too. 
Proof. Suppose X be open set. Then for each 0x X∈  vectors there exists 

neighborhood ( ) { }0 0:rB x x x x r= − <  such that ( )0rB x X⊂ . It is multip-
lied both sides of this relation by the number λ , consequently ( )0rB x Xλ λ λ⊂ . 
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In here ( ) { }0 0:rB x x x x rλ λ λ λ′ ′= − < . It means that all points of set Xλ  are 
interior points, therefore Xλ  is open set. 

Now suppose X be closed set. By the definition of closed set for all 0x X∈  
vectors there exists neighborhoods ( ) { }0 0:rB x x x x r= − <  such that  

( )0rB x X∩ ≠ ∅ . It is multiplied both sides of this relation by the number λ , 
consequently ( )0rB x Xλ λ λ∩ ≠ ∅ . It means that all points of set the Xλ  are 
adherent points, therefore Xλ  is closed set. 

Theorem 6. Let ,X Y E⊂  be nonempty sets on the linear space E. If either 
of them is an open set, then X Y+  will be an open set and in other conditions 
it will be a closed set.  

Proof. According to the condition of the theorem, either of given sets must be 
open set. Suppose set X be open set. According to the definition of the open sets, 
for all 0x X∈  vectors there exists it’s neighborhood ( ) { }0 0:rB x x x x r= − <  
such that ( )0rB x X⊂ . By the properties of Minkowski sum of the sets and ac-
cording to the lemma 8 we can write following relation: 

( )0 0rB x y X Y+ ⊂ +                     (25) 

in here 0y  is any vector of the set Y. 
The neighborhood ( ) { }0 0:rB x x x x r= − <  is open ball with center 0x  

and radius r. By the definition of the Minkowski sum,  

( ) ( )0 0 0 0r rB x y B x y+ = +                   (26) 

In here the set ( ) ( ){ }0 0 0 0:rB x y z x y z r+ = + − <  is open ball with center 
( )0 0x y+  and radius r. Since (25) and (26), it follows ( )0 0rB x y X Y+ ⊂ + . 
Therefore, X Y+  is open set. First part of theorem has been proved. 

Now we must prove second part of theorem. Suppose both sets ,X Y  are 
closed. By the definition of closed sets, for all neighborhoods  

( ) { }1 0 0 2:rB x x x x r= − <  and ( ) { }2 0 0 2:rB y y y y r= − <  of 0x X∈  and 

0y Y∈  we can record ( )
1 0rB x X∩ ≠ ∅ , ( )

2 0rB y Y∩ ≠ ∅ . Hence,  
( )( ) ( )( )1 20 0r rB x X B y Y∩ + ∩ ≠ ∅ . According to the lemma 6, it follows  
( )( ) ( )( ) ( ) ( )( ) ( )

1 2 1 20 0 0 0r r r rB x X B y Y B x B y X Y∩ + ∩ ⊂ + ∩ + ≠ ∅ . By the  
Minkowski sum ( ) ( ) ( )

1 2 1 20 0 0 0r r r rB x B y B x y++ = + , then relation becomes 
( ) ( )

1 2 0 0r rB x y X Y+ + ∩ + ≠ ∅ . It means that X Y+  is closed set. Theorem has 
been completely proved. 

Theorem 7. Let ,X Y E⊂  be nonempty sets on the linear space E. If the set 
X is open and the set Y is closed, then the set X Y∗  will be the open one, and 
in other conditions it will be a closed set. 

Proof. Suppose set X Y∗  be closed. Then set ( )сX Y∗  will be an open set. 
By the lemma 3, ( )с cX Y Y X∗ = − + . It means that, set cY X− +  must be open. 
But according to the condition of theorem, set X is open and the set Y is closed 
so cX  will be closed and according to the theorem 1, set Y−  will be closed 
too. By the theorem 2, set cY X− +  will be closed. It means contradiction. 
Therefore, our suppose is not true and X Y∗  will be open set. 
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4. The Discussion of the Results 

In this section we give possible applications of the results of the previous para-
graph. 

4.1. Fractional Differential Games with Lumped Parameters 

Let the motion of an object in a finite-dimensional Euclidean space nR  is de-
scribed by a differential equation of fractional order of the form 

( )0tD z Az Bu G f tα υ= + − +                   (27) 

where , 1nz R n∈ ≥ ; 0tDα —fractional differentiation operator, 0α > , [ ]0,t T∈ , 
A—n × n, B—p × n and G—q × n constant matrices, ,u υ —control parameters 
u—chasing player control parameter, pu P R∈ ⊂ , υ —runaway control para-
meter, qQ Rυ ∈ ⊂ , P and Q—compacts, ( )f t —known measurable vector 
function. The fractional derivative will be understood as the left-side fractional 
derivative of Caputo [11]. Recall that the Caputo fractional derivative of an arbi-
trary non-target order 0α >  from function ( ) [ ] ( )1 10, ,z t AC b b Rα +∈ ∈ , de-
fined by the expression 

( )
{ }( )

[ ] ( )
[ ] ( ){ }

1

0 1
0

d1 d
1 d

t

t

z
D z t

t

α
α

αα

ξ ξ
α ξ ξ

+

+
=
Γ − −

∫             (28) 

Also in space nR  terminal set is allocated M. Chasing player goal to deduce z 
to many M, the fleeing player seeks to prevent this. 

We consider the pursuit problem of approximating the trajectory of a con-
flict-controlled system (27) with a terminal set M for a finite time from given in-
itial positions 0z . We say that the differential game (27) can be completed from 
the initial position 0z  during ( )0T T z= , if there is such a measurable function 
( ) ( )( ) [ ]0 , , 0,u t u z t P t Tυ= ∈ ∈ , what’s the solution to the equation 

( ) ( ) ( ) ( )0 0, 0tD z Az Bu t G t f t z zα υ= + − + =            (29) 

belongs to many M in the moment t T=  for any measurable functions ( )tυ , 
( )t Qυ ∈ , 0 t T≤ ≤ . 
Let us pass to the statement of the main results. Throughout what follows: 1) a 

terminal set M has the form 0 1M M M= + , where 0M —linear subspace nR , 

1M —subset of subspace L—orthogonal additions 0M ; 2) π —orthogonal pro-
jection operator from nR  on L; 3) under operation *  Minkowski geometric 
difference operation. 

Let
( )( )

1

0 1

k
At k

k

te t A
k

α
α

α α

∞
−

=

=
Γ +

∑ -matrix α -exhibitor [11] and 0r ≥ ,  

( )ˆ rAu r e BPαπ= , ( )ˆ rAr e GQαυ π= , ( ) ( ) ( )* ˆˆ ˆw r u r rυ= ; 
 

( ) ( ) ( ) ( )1 1
0

ˆ d , 0,W w r r W M W
τ

τ τ τ τ= > = − +∫            (30) 

In [12], it was proved that if in the game (27) for some 1τ τ= , turning on 
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( ) ( ) ( )0 0 1
0

dA rz e Az f r r W
τ

τ
απ π τ−− − + ∈  ∫               (31) 

then from the starting position 0z  can complete the pursuit in time 1T τ= . 

4.2. Fractional Differential Games with Distributed Parameters 

A controllable distributed system is described, described by equations of frac-
tional order [11] 

( )0 0 0 , , , ,t x x y yD z C D z C D z u t x yα β β υ= + − + ∈Ω            (32) 

( )0 0, , ,tz x y G
=
= ∈                     (33) 

( ) ( ), , , ,Lz x y x y Gϕ= ∈                   (34) 

where z-unknown function from class ( )2С Ω , ( ]0,G TΩ = × ,  
{ }0 1,0 1G x y= ≤ ≤ ≤ ≤  

- rectangle with border L. [ ]0,t T∈ , T—arbitrary positive constant; ,x yC C
—thermal conductivity coefficients; 0 1α< ≤ , 1 2β< ≤ ;  

( ) ( ) ( )
22

1 2 2
0 0 0 0 0 0, , , , , , , ,t t x x y yD z t x y I D z t x y I D z t x y I

t x y
α α β β β β− − − ∂ ∂ ∂ = = =   ∂ ∂ ∂   

 

- partial fractional derivatives of Riemann-Liouville; 

( ) ( )
( )

( )0 1
0

, ,1, , d
t z s x y

I z t x y s
t s

α
αα+ −=

Γ −
∫  

- partial fractional Riemann-Liouville integrals with respect to the corres-
ponding variable [11]. ,u υ —control parameters u—chasing player control 
parameter, u P R∈ ⊂ , υ —runaway player control parameter, Q Rυ ∈ ⊂ , 
P and Q-compacts. Also in space nR  terminal set is allocated M M Sε= +  
where 0ε > , [ ]1,1S = − . Chasing player goal to deduce z to many M, the 
fleeing player seeks to put it. A game is considered completed if z fall into M: 
z M∈ .  

Let be ( )f x —some function with scope Ω . Then there is a finite-difference 
definition of the derivative of the order Rβ ∈  at the point ( )x D f∈ : 

0
lim ,

n

ax kn k

n x aD f q f x k
x a n

β
β

→+∞ =

−   = −   −   
∑              (35) 

where 1 2β< ≤ ; 0 1q = , ( ) ( ) ( )1 1 1 !k
kq k kβ β β= − − − + . According to 

[11], if ( )2f C∈ Ω , then the Grunwald derivative coincides with the Riemann- 
Liouville derivative. To approximate fractional Riemann-Liouville derivatives 
with respect to variables ,x y  at 1 2β< <  on the segment [ ] [ ]0,1 , 0,1  we use 
the Grunwald-Letnikov formula with an offset: 

( )( )
[ ]

0

1lim 1 ,
x h

ax kn k
D f q f x k h

h
β

β→+∞ =

= − −∑                (36) 

where h x M= . Formula (36) provides a more accurate approximation than 
the standard Grunwald-Letnikov formula. 

Using Formula (36), for derivatives of fractional Riemann-Liouville order 
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with respect to spatial variables in the case 1 2β< <  we get 

( ) ( )
1

0 1
0

1, , , , ,
n

n

x j n jx j
D z t x y q z t x y

h
β

β

+

− +
=

≈ ∑               (37) 

( ) ( )
1

0 1
0

1, , , , ,
m

m

y j m jy j
D z t x y q z t x y

h
β

β

+

− +
=

≈ ∑               (38) 

here ( ) ( )1 11 , 1n j n m j mx x j h y y j h− + − +≈ − − ≈ − − . 
Using a sufficient sign of the existence of a fractional derivative of the Rie-

mann-Liouville 0 1α< ≤ , on the segment [ ]1,k kt t +  we get 

( ) ( )
( )

( )
( )

( )

1

0
1 1

, , , d1, , ,
1

k

k
k

t
k

t t
tk k k

z t x y z x s s
D z t x y

t t t s
α

α αα

+

+ +

 ′
 = +
 Γ − − − 

∫         (39) 

here  

( ) 1

0

e dxx xαα
∞

− −Γ = ∫                         (40) 

Introducing the Derivative ( ), ,z x yτ′  on the segment [ ]1,k kt t +  in the form 
of a finite difference 

( ) ( )1, , , ,d ,
d

k k

k

z t x y z t x yz
τ τ

+ −  ≈ 
 

                   (41) 

difference approximation of a fractional derivative α  on the segment [ ]1,k kt t +  
can be written as 

( )

( )
( )

( )
( ) ( )

( )
( ) ( )

( )( )

1

0

1

1 1

1

, ,

, , , , , ,1 d
1

, , , ,
1 1

k

k

k

t t

t
k k k

tk k k

k k

D z t x y

z t x y z t x y z t x y s
t t t s

z t x y z t x y

α

α α

α

α τ

α
α α τ

+
+

+ +

+

 −
 ≈ +
 Γ − − − 

−
=

Γ − −

∫     (42) 

To find a solution to problem (32)-(34) in the region  
( ){ }, , : 0 1,0 1,0x y t x y t TΩ = ≤ ≤ ≤ ≤ ≤ ≤  introduce the grid  

( ){
}

, , 0

0 0 0 0

, , : , , ; 0,1, , ,

1 ; 0,1, , , 1 ; 0,1, ,
x yh h n m k n x m y k

x y

x y t x nh y mh t k n n

h n m m h m k T k

τϖ τ= = = = =

= = = =



 

    (43) 

in increments xh  on x, yh  on y and τ  on t. Denote  

( ) ( )
( ) ( )

( )

, , , 1, 1

, , 1 1 , ,

, ,

, , , , , ,

, , , , , ,

, , .

k n m k n m k n j m k n j m

k n m j k n m j k n m k n m

k n m k n m

z z t x y z z t x y

z z t x y u u t x y

t x yυ υ

− + − +

− + − +

≈ ≈

≈ ≈

≈

           (44) 

Using equalities (35)-(40) for Equation (32), we write the explicit difference 
scheme 

( )
1

1, , , ,
, 1, , , , 1,

2

1

, , 1 , , , , 1 , , , ,
2

2

.

n
k n m k n m x

k n m k n m j k n j m
jx

m
y

k n m k n m j k n m j k n m k n m
jy

z z C
z z q z

h

C
z z q z u

h

α β

β

α
β

α τ

β υ

+
+

+ − +
=

+

+ − +
=

−  
= − + 

Γ −  
 

+ − + − + 
 

∑

∑
     (45) 
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It is known that the difference scheme (45) is stable when 

( ) ( )
1 ,

2 2
yx

x y

CC
h h

α
β β

ατ
β α

  +
+ ≤   + Γ − 

 

where 0 1α< ≤ , 1 2β< ≤ . 
Decomposing functions 1, 1, 1, , , , 1, 1, , , 1 , , 1, , , , ,k i j k i j k i j k i j k i j k i jz z z z z z+ + + + − + −  in the 

Taylor series and substituting the obtained relations in the difference scheme 
(45), we obtain 

( ) ( ) ( )

( ) ( ) ( )
, ,

2 2 2
, ,

, , , , , ,

,

k i j x k i j y k i j k i j

k i j x y

z z zt x y C t x y C t x y u
t x y

a b h c h

α β β

α β β

αυ τ −

∂ ∂ ∂
= + −

∂ ∂ ∂

+ + + +

    (46) 

where , ,a b c —some constants. Therefore, the difference scheme (45) approx-
imates Equation (32) with the order 2 α−  in time and second order in coordi-
nates ,x y . 

In the case of a square grid, i.e. when x yh h h= = , x yC C C= = , for differ-
ence scheme (45) we have  

( )

( ) ( )

1

1, , , , , 1, , 1, , , 1
2

1

, , 1 , , , ,
2

2

2 ,

n

k n m k n m k n m j k n j m k n m
j

m

j k n m j k n m k n m
j

z z z q z z

q z uα

α γβ γ

α τ υ

+

+ + − + +
=

+

− +
=


= − + + +




+ + Γ − − +


∑

∑
    (47) 

( ) ( )
( ) ( )

,0, , ,

, ,0 , ,

0, ,

0, , 1, ,

,0 , ,1 ,
0,

k m m k N m m

k n n k n M n

n m

z y z y

z x z x
z

ϕ ϕ

ϕ ϕ

= =

= =

=

               (48) 

where ( )2 С hα βγ α τ= Γ − . 
The difference scheme (48) is stable when 

( )
( ) ( )

1
,

2 2
h

С

β
α α

τ
β α

+
≤

+ Γ −
                   (49) 

where 0 1α< ≤ , 1 2β< ≤ . 
Now for the convenience of presentation, we write problem (47), (48) in ma-

trix form 

1k k k k kz A z lu lυ+ = − + , 0,1,2, , 1k θ= − , 0z ϕ= ,         (50) 

where kz , ku , kυ —H-dimensional matrices, H—the total number of nodes 
belonging to one layer, i.e. given t kτ= , where in 

( )
( )
( )

T
,1,1 ,1,2 ,1, 1 , , , 1, 1

T
,1,1 ,1,2 ,1, 1 , , , 1, 1

T
,1,1 ,1,2 ,1, 1 , , , 1, 1

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

k k k k r k i j k r r

k k k k r k i j k r r

k k k k r k i j k r r

z z z z z z

u u u u u u

υ υ υ υ υ υ

− − −

− − −

− − −

=

=

=

  

  

  

         (51) 

respectively, 

( ) ( ) ( )( ) ( )(
( ) ( )( ))T

, , , 2 , , , 1 , , , , ,

1 , 1

h h h h h r h ih jh

r h r h

ϕ ϕ ϕ ϕ ϕ

ϕ

= −

− −

  

      (52) 
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initial vector, ( )1n r H− = , kA —H-dimensional square matrix. 
Let in HR  terminal set is allocated M. We say that in the game (47), (48) 

from the point 0 \Hz f R M= ∈  can complete the persecution for N θ≤  
steps, if by any sequence 0 1 1, , , Nυ υ υ −  runaway control can build such a se-
quence 0 1 1, , , Nu u u −  management prosecution that decision ( )0 1 1, , , Nz z z −  
equations 1k k k k kz A z lu lυ+ = − + , 0,1, , 1k N= − , for some d N≤  gets on 

: dM z M∈ . 
Suppose that in game (50) the terminal set has the form 0 1M M M= + , where 

0M — ( )H γ− -dimensional linear subspace HR , 1M —subset of subspace 
L—orthogonal additions 0M  in HR . Next, through Π  denote the orthogonal 
projection matrix from HR  on L, and through A B+  and *A B  algebraic 
sum and geometric difference of Minkowski sets ,A B  respectively. Let be 

( ) { } ( )

( ) ( )

1 1 1 1

1
* *

1 1
1

1 1

, , , 1 ,

0 0 , ,

H H

m

m m k m m k
k

P P P P Q Q Q Q M M M M H

W W W m lP lQ A A lP A A lQ

W m M W m

γ

γ

−

− − − −
=

= × × × = × × × = × × × ≤ ≤

= = Π Π + Π Π  

= +

∑

  






  (53) 

where 0,1,m θ=  . 
Assuming that n—smallest of those natural numbers m, for each of which the 

inclusion ( )0 1
mC z W m∈∏ , proved from the point 0z f=  can complete the 

persecution for N steps [12]. 
Thus, in the specified 4.1, 4.2, in cases, the task is presented to calculate the 

geometric differences of Minkowski and study their geometric properties. More 
precisely, in the first case (30), the set ( ) ( )1 1W M Wτ τ= − +  in the second case 
(53), the set ( ) ( )1 1W m M W m= +  plays an important role in solving tasks. 

5. Conclusion 

This article discusses some essential properties of Minkowski sum and difference 
of sets and gives their proofs. It includes new theorems about Minkowski sum 
and difference of open and closed sets. The considered examples are presented 
for sets in the plane. It is difficult to measure in three dimensional spaces and is 
often mistaken. Even it is not explored in four dimensional polyhedrons. It may 
be easy and fast to calculate Minkowski sum and difference of sets in three di-
mensional spaces. Recorded results can be used to get sufficiency conditions to 
finish the game in differential games. We showed that if we take Minkowski 
sums of members of a family of pair wise disjoint convex sets, each of which has 
a constant description complexity, the radii of which are chosen by a suitable 
model, then the expected complexity of Minkowski sums is almost linear. It 
would be useful to prove or disprove that density and permutation models are 
equivalent in the sense that the value is asymptotically the same in both models 
for any family of pair wise disjoint convex sets. However, it is possible that there 
is a large class of density functions for which the density model gives a better 
upper bound. 
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