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Abstract 
In the context of automated analysis of eye fundus images, it is an important 
common fallacy that prior works achieve very high scores in segmentation of 
lesions, and that fallacy is fueled by some reviews reporting very high scores, 
and perhaps some confusion with terms. A simple analysis of the detail of the 
few prior works that really do segmentation reveals scores between 7% and 
70% in sensitivity for 1 FPI. That is clearly sub-par with medical doctors 
trained to detect signs of Diabetic Retinopathy, since they can distinguish well 
the contours of lesions in Eye Fundus Images (EFI). Still, a full segmentation 
of lesions could be an important step for both visualization and further au-
tomated analysis using rigorous quantification or areas and numbers of le-
sions to better diagnose. I discuss what prior work really does, using evi-
dence-based analysis, and confront with segmentation networks, comparing 
on the terms used by prior work to show that the best performing segmenta-
tion network outperforms those prior works. I also compare architectures to 
understand how the network architecture influences the results. I conclude 
that, with the correct architecture and tuning, the semantic segmentation 
network improves up to 20 percentage points over prior work in the real task 
of segmentation of lesions. I also conclude that the network architecture and 
optimizations are important factors and that there are still important limita-
tions in current work. 
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1. Introduction 

When a trained medical doctor looks at an Eye Fundus Image (EFI) he is able to 
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distinguish sufficiently well not only coarse regions around lesions but also the 
contours and areas of many individual lesion instances. Likewise, the better the 
automated segmentation procedure is at classifying each pixel, the more precise 
automated analysis and quantification will be (e.g. areas, contours, number of 
instances). Difficulties segmenting lesions include the size of those lesions, fre-
quent lack of contrast and varying shapes. Most prior works frequently said to be 
related to this task do not segment at all. The subtle difference is that to segment 
an approach needs to receive as input the whole image and needs to trace the 
contours of each lesion. Most “lesion detection” approaches in related work do 
not even find locations of lesions in the image. Instead, they receive as input 
small squares and classify those squares as a certain lesion or as background. In 
other words, they do the easy work and leave out the difficult work. Worse still, 
surveys such as [1] [2] [3] can report scores of 90% to 100% in tasks that are 
segmentations of lesions but are not in reality, and I look at the details of the 
prior work to show that. There are three main reasons for the confusion: first of 
all, most works do not segment at all, as just explained before and review in re-
lated work; secondly, for those that do segment, when looking into the details of 
their experiments one discovers that those works only report very high scores for 
identification of lesions at image level (whether there is a lesion or not in an im-
age), reporting much lower scores in sensitivity versus FPI in true segmentation 
of lesions. The other problem that was also mentioned for instance in [4] is that 
many scores are artificially high, because in the context of eye-fundus images, 
the background is huge and hence the term TN (true negatives) is also huge, 
making specificity, ROC and AUC inviable as scores. Sensitivity is also inviable 
if reported alone because it lacks recognition of FP (false positives), and in the 
context of segmentation of lesions the default classification threshold of 0.5 is 
associated with too many FP. That is why authors reporting segmentation scores 
correctly use the sensitivity when FP varies between 1 to 10 false positives per 
image instead of just sensitivity. The last problem also frequent is that the ap-
proaches are evaluated based on the degree of overlap between segments, which 
means that, for instance, a large region matching only 20% with the true seg-
ment can be considered a match if the overlap threshold is 20%. An overlap of 
20% or even 50% between regions, no matter the shape of size, is a very bad 
tracing of contours that is accounted for as 100% correct in those works. 

The focus of this work is on explaining what prior works propose, expose the 
common fallacy and then build and evaluate semantic segmentation networks 
that really segment the lesions, comparing to prior work, to show that a 
good-performing segmentation network is better than prior work. This destroys 
a common fallacy and shows the way for future improvements in segmentation 
of lesions in eye-fundus-images. 

This article is very relevant because it identifies an important common fallacy 
concerning the perception of what prior works achieve in segmentation of di-
abetic retinopathy lesions, and compares true segmenters with what they do in 
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terms of segmentation. 
1) The Lesions segmentation problem 
Lesions that are characteristic of Diabetic Retinopathy (DR) in different stages 

include micro-aneurisms (MA), which are small red and rounded regions re-
sulting from augmented capillaries, exudates (hard and soft HE and SE), which 
are yellowish deposits of lipids and proteins, and hemorrhages (HA), larger 
blood stains that are a serious signal of advancing conditions. Proliferative Di-
abetic Retinopathy also exhibits neo-vascularization and other affections [5]. 
Figure 1(a) shows the original Eye Fundus Image (EFI) and Figure 1(b) shows 
the corresponding groundtruth pixelmap with hard and soft exudates (EX, HE, 
SE), microaneurysms (MA) and hemorrhages (HA). It also shows the optic disc 
(OD). The segmentation Deep Convolution Neural Network (DCNN) is given a 
large dataset with images similar to the one shown in Figure 1(a) and pixelmaps 
similar to Figure 1(b) and learns how to classify each pixel of the image to ob-
tain a pixelmap as close as possible to the pixelmap shown in Figure 1(b). Fig-
ure 1(c) is an example of a segmentation result, showing the lesions and optic 
disk that were detected by the deep learning network. In summary, semantic 
segmentation is the classification of each pixel as one of the possible classes that 
includes each type of lesion plus the background (BK, the background is every-
thing that is not a lesion and covers more than 93% of all the EFI area). Evalua-
tion is based on assessing the quality of segmentation of all pixels or pixels of a 
certain class (e.g. lesion), using a typical set of metrics. 

Figure 2 shows a slightly different definition of groundtruths and evaluation 
most used in related work. The images are taken from DIARET-DB1 dataset [7]. 
In this case the groundtruth segments are shapes with varied sizes that enclose 
lesions or sets of lesions. The quality of segmentation is assessed by analyzing the 
amount of overlap between the segments each pixel belongs to and the 
groundtruth segments. A match is found if the overlap is above a certain thre-
shold σ between 0 and 1, in which case all pixels in the segment are considered a 
hit (e.g. TP or TN depending on the case). 

Semantic segmentation DCNNs can be applied and evaluated with both types 
of groundtruth and evaluation approach. Since prior work evaluates using the 
second approach and DIART-DB1 is one of the most frequent datasets used in  

 

 
(a)                                       (b)                                     (c) 

Figure 1. Eye Fundus Image (EFI), groundtruth and output pixelmaps (IDRID dataset [6]). (a) Lesions on EFI Image; (b) Lesions 
Map; (c) segments. 
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those evaluations, it is used here as well to compare with prior works, while the 
first dataset and approach is used to evaluate and compare the quality among 
segmentation networks because it is more pixel-wise. 

2) Deep Learning Approaches to Segment Lesions 
Most proposals described as segmentation and/or identification of lesions in 

related work follow two main approaches shown in Figure 3(a) and Figure 3(b). 
Figure 3(a) shows the generation of lesions CAM/heatmaps from the inner 
coefficients of a Diabetic Retinopathy Classification network (e.g. [8] [9]).  

 

 
(a)                                    (b) 

Figure 2. Example of EFI and groundtruth (DIARET-DB1 dataset [7]). (a) Lesions in 
EFI; (b) groundtruth. 

 

  
(a)                                                          (b) 

 
(c) 

Figure 3. Types of segmentation or lesion identification networks. (a) CAM/Heatmap generation; (b) Small windows lesion clas-
sifier; (c) Segmentation network. 
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Figure 3(b) is a classifier of small windows (e.g. works [10] [11] [12] [13], with 
some typical window sizes being 25 × 25, 45 × 45, 65 × 65, 129 × 129). The first 
is trained with EFI images classified as DR or not DR, the second is trained with 
windows containing lesions of a single type and negative windows containing 
background and no lesions. Both approaches are based on a classification 
DCNNs, which consist of a set of convolution layers with pooling and ReLU that 
encode the image or window into features, followed by a fully connected neural 
network that produces the classifications. However, the classifier of small win-
dows is not by itself a real segmentation approach, because all it does is classify 
windows given to it directly, it does not process the image to segment contours. 
The most difficult part, actually localizing the lesions and the contours, is com-
pletely avoided, and up to hundreds of thousands of small windows (as many as 
the pixels) would have to be classified to segment the image using such an ap-
proach. Processing hundreds of thousands of windows would take a huge 
amount of time. It will be shown that the only small window classifier that 
processes the whole image uses trivial thresholding for hand-crafted segmenta-
tion of MA lesions, which is sub-par compared with end-to-end learning and 
produces lower scores. On the contrary, the segmentation network shown in 
Figure 3(c) trains and outputs a segmentation pixelmap with the classification 
of each pixel. It includes encoder and decoder stages. The encoder is in essence a 
DCNN without the last fully-connected stage that extracts features and com-
presses, the decoder is made of a set of de-convolution layers that together 
reinstate the image size and output a segmentation pixelmap. These alternatives 
have to be compared. In related work limitations of the proposed approaches 
will be discussed, and they will be compared in the experimental section. 

3) Contributions and organization of the work 
This work answers the following questions: 1) what are the referenced prior 

works really doing, are they segmenting at all, and those that segment, how good 
are they really in segmentation? 2) How do they compare with a real segmenta-
tion network? 3) How do different segmentation architectures compare? 4) How 
do the results vary depending on the lesion being detected? 5) What are the li-
mitations in terms of segmentation quality that need to be handled in future 
work? 

The remainder of this work is structured as follows: Section 2 reviews the 
contributions of others and how their approaches relate to ours. Section 3 
presents alternative segmentation network designs. Section 4 is experimental se-
tup. Section 5 presents experimental results and section 6 discusses the results 
and concludes regarding experimental work. Experimental work includes the 
comparison of architectures, optimizations of training options, comparison of 
the top-performing segmentation network to the solutions proposed in prior 
work, showing the superiority of segmentation network, and investigation of li-
mitations of current state-of-the-art. Finally, a few visualizations are shown and 
conclusions are provided in section 7. 
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2. Related Work 
Lesions detection and localization from eye fundus images using either classical 
Machine Learning (ML) or Deep Learning (DL) was surveyed most recently in 
works such as [1] [2] [3], where most tasks report very high performance scores 
(90% and 100%) measures in metrics such as sensitivity, ROC/AUC and others. 
However, if we look closer only at approaches that are reviewed and claim to 
“segment” lesions, the list is already filtered to a much smaller number, includ-
ing Prentasic et al. [10], Gondal et al. [8], Quellec et al. [9] (exudates, hemorr-
hages and microaneurisms), Haloi et al. [11], van Grinsven et al. [12], Orlando 
et al. [14] and Shan et al. [13] (microaneurisms, hemorrhages or both), and if we 
look at their performance results in detail and using the adequate metrics, it is 
possible to see that scores are not as high. Also importantly, there are other de-
tails that should be taken into account when analyzing related work, which we 
discuss next. 

For a work to propose a way to segment, it should input an EFI image and 
output all segments of its lesions or at least of a specific type of lesion that exists 
in the EFI image, and we should expect experiments in those papers to include a 
setup that does and evaluates that. Prentasic et al. [10], Haloi et al. [11], Van 
Grinsven [12] and Shan et al. [13] do not fit this definition of segmentation. 
Those works are classification DCNNs that classify small square windows as be-
ing of a specific type of lesion or not. They can also be seen as classifiers of a sin-
gle pixel, the center pixel of the squared window since the classification they 
output does not intend to guarantee that all the other pixels in the window have 
that same type. Although an image typically has hundreds of thousands of pixels, 
those works do not clarify how the classifier would be applied to the whole im-
age or how segmentation of the whole image would work based on the classifier. 
Not only those works in general involve no segmentation, as the test windows 
for evaluating the approaches use windows picked based on the groundtruths 
with the lesions perfectly centered. Such experiments are totally unrealistic from 
the perspective of segmentation, where the input should be the EFI image and 
there is no prior knowledge of the location of lesions. The authors make no at-
tempt in the papers at applying this as a building block to segment lesions, and 
there is also no good solution provided or experimented to scale this to real-time 
operation classifying all pixels of an EFI in a way that could enable segmenta-
tion. For instance, [10] is a pixel classifier that takes a window around a pixel to 
be classified, achieving 77% sensitivity classifying exudates, but the small test 
squares used for evaluation, as well as the train ones, were picked based on the 
groundtruth to get squares centered on a lesion (and also negative squares with 
background only). All that is done is the classification of those squares, the au-
thors do not propose or experiment with scaling this to classify or segment all 
pixels in an EFI image. [12] and [13] have exactly the same limitations. [12] re-
ports, at 1 false positive per image (FPI), a maximum sensitivity of 0.786 detect-
ing Hemorrhages. 
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Haloi [15] is another pixel/window classification approach, but there the au-
thors propose to preprocess the image with a color threshold to leave out trivial 
non-MA pixels to reduce computation time. To detect MA in an unseen image, 
they first apply a mask to get all pixels of interest, removing the usual black re-
gion, and apply a color threshold to leave out trivial non-MA pixels to reduce 
computation time. Then a window of size 129 × 129 centered at each image pixel 
is extracted. The classifier is used to classify every of the extracted pixels, result-
ing in a probability map that is then post-processed to remove false detections 
by analyzing connected regions using the concept of convexity and area. The 
authors report sensitivity for 1 false positive per image (FPI) around 50% (70% 
for 10 FPI). This is an interesting work that, contrary to the previous ones, deals 
with the whole EFI image, but it also has some limitations. First of all, the colour 
threshold is a very basic hand-crafted solution that easily returns too many false 
positives and also easily misses many MA, and the time cost of processing all 
remaining image pixels one-by-one, each one centered on a 129 × 129 square 
window around it can be large if the threshold is set to keep more pixels. A tra-
deoff would need to be studied between the colour threshold, precision of the 
approach and runtime. The main advantage of the segmentation network com-
pared to this threshold is that it is optimized end-to-end. The backpropagation 
learning learns to extract MA and other lesions based not on a fixed manual-
ly-defined colour threshold, but rather on learning adjustments to convolution 
filter coefficients. Another limitation of [15] is that it is only dealing with MA, 
the procedure would have to be defined for other lesions as well, and it is not 
clear how the colour threshold and post-processing details would be defined for 
those. 

The remaining related works Gondal et al. [8], Quellec et al. [9] and Orlando 
[14] all segment the EFI. [8] and [9] are based in DR classifier networks from 
which CAM/heatmaps are extracted to get the positions of lesions. Orlando [14] 
uses a different approach that combines DL with image processing to find can-
didate regions. These three works evaluate the quality of segmentation of lesions 
using the amount of overlap of connected componentes as criteria. In those 
works sensitivities reported for 1 false positive per image (1 FPI) are: (HA = he-
morrhages, MA = micro-aneurisms, HE = hard exudates, SE = Soft Exudates): 
Quellec [9] (HA = 47%; HE = 57%; SE = 70% and MA = 38%), Gondal [8] (HA 
= 50%; HE = 40%; SE = 64% and MA = 7%) and Orlando [14] (HA: 50%, MA: 
30%). These relatively low scores mean that improvements are welcome. 

This related work section is ended by briefly reviewing deep segmentation 
networks. The segmentation network has two well-distinguished parts, the en-
coder, most frequently an existing Convolution Neural Network (CNN) without 
the final fully connected layers, a decoder that reinstates the full image size, and 
the pixel classifier layer that assigns a score for each class to each pixel. The Fully 
Convolutional Network (FCN) [16] uses a CNN for encoding (e.g. VGG16 [17]), 
replacing all the fully connected layers by convolutional layers with large recep-
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tive fields and adds up-sampling layers based on simple interpolation filters. The 
U-Net [18] is another segmentation network especially designed for segmenta-
tion of biomedical images (around 75 layers). The architecture consists of “a 
contracting path to capture context” and a “symmetric expanding path that 
enables precise localization”. Finally, the DeepLabV3 network [19] is used in 
experiments, using Resnet-18 encoder and applies some new techniques to im-
prove the quality of segmentation, including Atrous Spatial Pyramid Pooling 
(ASPP) [20] that is implemented to better capture objects at multiple scales, and 
Conditional Random Fields (CRF) for improved localization of object bounda-
ries using probabilistic graphical models. From the mentioned networks, best 
results are obtained with DeepLabV3 [21], which I hypothesize to be due both to 
the ASPP and CRF and to the use of Resnet-18 as the encoder CNN. 

3. DCNN Segmentation Architectures 

The DCNN (deep convolution neural network) networks used in segmentation 
are distinguished by different architectural choices and innovations. Our pur-
pose is to choose the best possible architecture and to understand the influence 
of the architecture in the quality of the results. Next, the main characteristics and 
layers of the four architectures tested are summarized, and Figure 4 shows a 
rough sketch of those architectures. 

Simple: “Simple” is a basic encoder-decoder CNN architecture that was built 
from scratch to compare with deeper, more complex architectures. With only 
four convolution layers accompanied by max pooling and ReLU operations on 
each, and another four deconvolution layers accompanied by ReLU plus a soft-
max and pixel classification layer for output. The convolution layers apply 64 3 × 
3 filters with stride [11], and the deconvolution layers apply 64 4 × 4 filters. Ta-
ble 1 summarizes the layers of “Simple”. 

 
Table 1. Layers of “Simple”. 

1 Image Input 2848 × 4288 × 3 images 13 Max Pooling 2 × 2 max pooling 

2 Convolution 64 3 × 3 convolutions 14 Transposed Convolution 64 4 × 4 

3 ReLU 15 ReLU 

4 Max Pooling 2 × 2 max pooling 16 Transposed Convolution 64 4 × 4 

5 Convolution 64 3 × 3 convolutions 17 ReLU 

6 ReLU 18 Transposed Convolution 64 4 × 4 

7 Max Pooling 2 × 2 max pooling 19 ReLU 

8 Convolution 64 3 × 3 convolutions 20 Transposed Convolution 64 4 × 4 

9 ReLU 21 ReLU 

10 Max Pooling 2 × 2 max pooling 22 Convolution 5 1 × 1 convolutions 

11 Convolution 64 3 × 3 convolutions 23 Softmax 

12 ReLU 24 Pixel Classification (loss function) 
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Fully Convolution Network (FCN): the FCN, sketched in Figure 4(b) and 
whose layers are summarized in Table 2, uses a DCNN classification network 
for feature extraction or encoding (VGG-16 with 7 stages corresponding to 41 
layers), plus a much smaller sequence of up-sampling layers (decoding stages) 
for a total network size of 51 layers. FCN also forwards feature maps (the pooled 
output of coding stage 4 is fused with an output of the first up-sampling layer, 
and the pooled output of coding stage 3 is fused with the output of the second 
up-sampling layer. Finally, the image input is also fused with the output of the 
third up-sampling layer, all this followed by the final pixel classification layer. 

Segnet (and U-Net): Segnet shares a similar architecture with U-Net, with 
encoder stages and symmetric decoding stages. The Segnet uses VGG-16 for 
feature extraction (encoding), while the decoder up-samples using pooling in-
dices computed in the max-pooling step of the corresponding encoder, to per-
form non-linear up-sampling (while the U-Net forwards cropped feature maps 
directly after ReLu regularization at each stage, which are concatenated with the 
corresponding stage outputs at the destination, Segnet forwards max-pooled 
outputs and unpools at the destination). Segnet can be configured with any 
number of stages, defined for this work 5 encoding layers and the symmetric 
decoding layers, for a total of 73 layers. Segnet (and U-Net) architecture is 
sketched in Figure 4(c). 

DeepLabV3: it is the deepest network tested in this work, with 100 layers 
listed in Table 3. The general layout of layers in DeepLabV3 is shown in Figure 
4(a). DeepLabV3 uses Resnet-18 as feature extractor, with 8 stages totaling 71 
layers, the remaining stages being ASPP plus the final stages. Forwarding con-
nections are also added from encoding stages to the Atrous Spatial Pyramid  

 
Table 2. Layers of “FCN”. 

1 Image Input 19 Conv 512 3 × 3 × 256 filters 37 ReLU + 50% dropout 

2 Conv 64 3 × 3 × 3 filters 20 ReLU 39 Conv 5 1 × 1 filters 

3 ReLU 21 Conv 512 3 × 3 × 512 filters 40 Transposed Conv 5 4 × 4 × 5 

4 Conv 64 3 × 3 × 64 filters 22 ReLU 41 Addition 

5 ReLU + max pool 2 × 2 23 Conv 512 3 × 3 × 512 filters 42 Transposed Conv 5 4 × 4 × 5 

7 Conv 128 3 × 3 × 64 filters 24 ReLU + max pool 2 × 2 43 Addition 

8 ReLU 26 Conv 512 3 × 3 × 512 filters 44 Transposed Conv 5 16 × 16 × 5 

9 Conv 128 3 × 3 × 128 filters 27 ReLU 45 Crop 2D 

10 ReLU + max pool 2 × 2 28 Conv 512 3 × 3 × 512 filters 46 Softmax 

12 Conv 256 3 × 3 × 128 filters 29 ReLU 47 Pixel Classification Layer 

13 ReLU 30 Conv 512 3 × 3 × 512 filters 48 Conv 5 1 × 1 filters 

14 Conv 256 3 × 3 × 256 filters 31 ReLU + max pool 2 × 2 49 Crop 2D 

15 ReLU 33 Conv 4096 7 × 7 × 512 filters 50 Conv 5 1 × 1 filters 

16 Conv 256 3 × 3 × 256 filters 34 ReLU + 50% dropout 51 Crop 2D 

17 ReLU + max pool 2 × 2 36 Conv 4096 1 × 1 × 4096 filters 
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Table 3. Layers of “DeepLabV3”. 

1 Image Input 37 Batch Normalization + ReLU 72 Conv 256 3 × 3 filters 

2 Conv 64 7 × 7 filters 39 Conv 256 3 × 3 filters 73 Batch Normalization + ReLU 

3 Batch Norm + ReLU + maxPool [3 × 3] 40 Batch Normalization + Residue addition + ReLU 75 Conv 256 3 × 3 filters 

6 Conv 64 3 × 3 filters 43 Conv 256 1 × 1 filters 76 Batch Normalization + ReLU 

7 Batch Normalization + ReLU 44 Batch Normalization 78 Conv 256 3 × 3 filters 

9 Conv 64 3 × 3 filters 45 Conv 256 3 × 3 filters 79 Batch Normalization + ReLU 

10 Batch Norm + Res add + ReLU 46 Batch Normalization + ReLU 81 Conv 256 1 × 1 filters 

13 Conv 64 3 × 3 filters 48 Conv 256 3 × 3 filters 82 Batch Normalization + ReLU 

14 Batch Norm + ReLU 49 Batch Normalization + Residue addition + ReLU 84 Transposed Conv 256 8 × 8 filters 

16 Conv 64 3 × 3 filters 52 Conv 512 3 × 3 filters 85 Crop 2D 

17 Batch Norm + Res add + ReLU 53 Batch Normalization + ReLU 86 Conv 48 1 × 1 filters 

20 Conv 128 3 × 3 filters 55 Conv 512 3 × 3 filters 87 Batch Normalization + ReLU 

21 Batch Norm + ReLU 56 Batch Norm + addition + ReLU 89 Depth concatenation 

23 Conv 128 3 × 3 filters 59 Conv 512 1 × 1 filters 90 Conv 256 3 × 3 filters 

24 Batch Norm + Res add + ReLU 60 Batch Normalization 91 Batch Normalization + ReLU 

27 Conv 128 1 × 1 filters 61 Conv 512 3 × 3 filters 93 Conv 256 3 × 3 filters 

28 Batch Normalization 62 Batch Normalization + ReLU 94 Batch Normalization + ReLU 

29 Conv 128 3 × 3 filters 64 Conv 512 3 × 3 filters 96 Conv 5 1 × 1 filters 

30 Batch Norm + ReLU 65 Batch Norm. + addition + ReLU 97 Transposed Convolution 5 8 × 8 filters 

32 Conv 128 3 × 3 filters 68 Depth concatenation 98 Crop 2D 

33 Batch Norm + Res add + ReLU 69 Conv 256 1 × 1 filters 99 Softmax 

36 Conv 256 3 × 3 filters 70 Batch Normalization + ReLU 100 Pixel Classification 

 

  
(a)                                      (b)                                   (c) 

Figure 4. Rough sketch of network architectures. (a) DeepLabV3; (b) FCN layers; (c) Segnet layers. 
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Pooling (ASPP) layers, for enhanced segmenting of objects at multiple scales. 
The outputs of the final DCNN layer are combined with a fully connected Con-
ditional Random Field (CRF) for improved localization of object boundaries us-
ing mechanisms from probabilistic graphical models. 

4. Experimental Setup 

In experimental work two datasets are used, one to compare between segmenta-
tion networks that are very useful to evaluate semantic segmentation quality pix-
el-wise, the other one to compare with prior work because most prior works use 
it and are evaluated based on the connected components model (overlap be-
tween found segments and groundtruth segments). The first dataset is IDRID 
[6], a dataset that is publicly available for the study of automated detection of 
Diabetic Retinopathy and segmentation of characteristic lesions. It has 
groundtruth labelled data for each of 83 Eye Fundus Images (EFI), where most 
images have a large number of instances of each specific lesion, and the 
groundtruths represent the class that should be assigned to each individual pixel. 
IDRID contains the pixel groundtruths for micro-aneurisms, hemorrhages, ex-
udates (hard and soft) and the optic disk. The equipment used to acquire the 
images was a Kowa VX-10 alpha digital fundus camera with 50-degree field of 
view (FOV), centered near the macula. Image resolution was 4288 × 2848, saved 
as jpg. Experts validated the quality of the images and their clinical relevance. 
For our work the dataset was divided randomly 80%/20% train/test images (and 
groundtruths), with cross-validation on five folds. 

The second dataset, DIARET-DB1, consists of 89 color fundus photographs 
collected at the Kuopio University Hospital, in Finland [7]. Images were cap-
tured with the same fundus camera, a ZEISS FF450plus digital camera with a 
50-degree field-of-view. Images all have a definition of 1500 × 1152 pixels. Inde-
pendent markings were obtained for each image from four medical experts. The 
experts were asked to manually delineate the areas containing microaneurysms 
(or “small red dots”), hemorrhages, hard exudates and cotton wool spots (or 
“soft exudates”) and to report their confidence (<50%, ≥50%, 100%) for each 
segmented lesion. Based on these annotations, only five images in the dataset are 
considered normal: none of the experts suspect these images to contain any le-
sions. The DIARET-DB1 dataset was randomly divided into 80% train and 20% 
test to ensure train/test independence, cross-validated with 5 folds as well. 

The deep learning segmentation networks were all trained using the SGDM 
learning optimization function with learning rate 0.005. This was decided after 
preliminary tests to verify that the networks would converge to classify all le-
sions correctly. The loss function used was the default cross-entropy with class 
balancing added to the last pixel classification layer in order to counter the nat-
ural class imbalance that exists in this EFI context. The networks were trained 
for 300 epochs, after initial tests in which it was observed that they would stabil-
ize much before that number of epochs. The minibatch size was configured to 
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32, and the momentum was 0.9. I also experimented with data augmentation to 
improve the robustness and quality of the network predictions. These consisted 
with the random transformations (rotations, small translations and scaling) and 
adding the two datasets. In terms of hardware, a machine running windows 10 
was used. The hardware was an intel i5, 3.4 GHz, 16 GB of RAM 1TB SSD disk. 
A GPU was added to the PC, consisting of an NVIDEA GForce GTX 1070 GPU 
(the GTX 1070 has a Pascal architecture and 1920 cores, 8 GB GDDR5, with 
memory speed of 8 Gbps). 

In terms of reporting the results of segmentation networks on IDRID, two 
scenarios are distinguished, one without data augmentation and one with data 
augmentation, defined in Table 4. 

The same dataset, metrics and results that were used in prior works are also 
used in the comparison of the segmentation networks to those prior works, and 
the segmentation network with the best performance was chosen for those com-
parisons (deepLabV3). The main metric used for the comparison is sensitivity vs 
false positives per image (FPI), plus image-level sensitivities to compare lesion 
detection at image level (I also show the ROC curve for the segmentation net-
work). Prior works compared used DIARET-DB1 [7]. 

For comparing the various segmentation networks, semantic segmentation 
evaluation metrics and the dataset IDRID [6] are used, which contains per-pixel 
classification groundtruths. In that case, the main metrics used are, in order of 
importance for the characterization of segmentation performance, are mean 
IoU, mean BFScore and then mean accuracy, weighted IoU and global accuracy. 
Metrics using the mean take the mean value over all classes (classes are each le-
sion plus the background), while weighted and global metrics take the average 
over all pixels directly. The values over all pixels are less informative than mean 
over classes because more than 90% of all pixels are background, therefore they 
characterize the quality of segmentation of the background mostly. 

Training evolution curves 
Figure 5 briefly shows plots of validation accuracy curves when training the 

IDRID images. It is apparent that Simple has more difficulties to converge to 
high accuracy, DeepLabV3 converged well and with fewer fluctuations than 
FCN. 

5. Results 

1) Comparing segmentation network to prior work 
Table 5 compares lesion-level sensitivities between the segmentation network 

and the prior work that actually segments the lesions, i.e. [8] [9] and [14]. These  
 

Table 4. Training options. 

No DA Fixed learn rate, no data augmentation, IDRID data 

DA 
Data augmentation, learn rate decay (85% every 25 epochs), IDRID plus 

DIARET-DB1 data 
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(a)                                                (b) 

 
(c) 

Figure 5. Training evolution. (a) Training DeepLabV3; (b) Training FCN; (c) Training Simple. 
 

Table 5. Comparing lesion-level sensitivities. 

Method 
Hemorrhages Hard Exudates Soft Exudates RSD (micro-aneurisms) 

SE% FPs/I SE% FPs/I SE% FPs/I SE% FPs/I 

Quellec et al. [8] 71 10 80 10 90 10 61 10 

Gondal et al. [9] 72 2.25 47 1.9 71 1.45 21 2 

Orlando [14] 50 1     50 1 

Segm. network 
DeepLabV3 

87 10 94 2.76 87.5 3.92 48 6.4 
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results were obtained using the connected components model of evaluation (de-
scribed for instance in [4]) with similar conditions as used in the compared 
works. The sensitivities are measured against the number of false positives per 
image (FPI), and both should be considered in the analysis of results. Note that 
we used the approach in [9], where FPIs can differ because they are obtained 
against the class classification threshold (0 to 1). Table 6 compares image-level 
detection of lesions for referral, where one can see again that DeepLabV3 ranks 
first in HA and SE and also ranks well in HE and MA when compared with the 
alternatives tested. Table 7 compares the segmentation network sensitivities to 
those of the small-window classifiers reviewed in the related work section. To 
finalize this first experiment Figure 6 shows the ROC curves of each lesion using 
DeepLabV3 semantic segmentation network. 

2) Comparison between segmentation networks, improvements and limi-
tations 

Table 8 shows the comparison between different architectures of the segmen-
tation DCNN networks using IDRiD dataset, 5-fold cross validation (80%/20%). 
These results were obtained without data augmentation. Table 9 shows the 
comparison of results with two scenarios: an initial scenario with no data aug-
mentation and a second scenario with data augmentation (DA) that improves 
the results in general. Table 10 shows the quality of segmentation of each lesion 
measured as IoU and sensitivity. 

3) Example visualizations of segmentations 
Figure 7 shows an example visualization of segmentation network results in 

IDRID, with the groundtruth on the left and the segmentation output on the 
right. Figure 8 shows an example for the dataset DIRET-DB1, with the labels  

 
Table 6. Image-level sensitivities. 

Method HA HE SE MA 

Zhou et al. [22] 94.4 - - - 

Liu et al. [23] - 83 83 - 

Haloi et al. [15] - 96.5 - - 

Mane et al. [24] - - - 96.4 

Gondal [9] 97.2 93.3 81.8 50 

Ours (DeepLabV3) 100 90 87.5 71 

 
Table 7. Comparison with small-window lesion classifiers. 

Work Target lesion sensitivity 
Segmentation network 

sensitivity 

Haloi [15] Micro-aneurisms 50% (1 FPI), 70% (10 FPI) 48% (6.8 FPI) 

Prentasic [10] exudates 77% (σ = 0.2) 88 to 94% (3 FPI) 

Van Grinsen [12] hemorrhages 
79% (1 FPI, 8 px center) 

89% (10 FPI) 
87% (10 FPI) 
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Figure 6. Lesions ROC (sens/FPR). 

 
Table 8. Comparison between network architectures (basic scenario with no DA). 

Method Global Accuracy Mean Accuracy Weighted IoU Mean IoU Mean BF Score 

FCN 89.5 74.6 87.5 37.9 48.5 

DeepLabV3 81.2 84.1 78.5 32.8 33.6 

U-Net 58.7 59.8 56.2 16.1 19.6 

Segnet 52.7 45.4 50.2 14.2 17.5 

Simple 49.0 54.6 46.4 11.6 19.1 

 
Table 9. Improvement using data augmentation and tuning. 

Network Setup 
Global 

Accuracy 
Mean 

Accuracy 
Weighted 

IoU 
Mean IoU 

Mean BF 
Score 

deepLabV3 no DA 81 84 79 33 34 

 DA 96 83 94 52 69 

FCN no DA 90 75 88 38 49 

 DA 89 79 87 41 52 

 
Table 10. Sensitivity and IoU in DIARET. 

DIARET scores sens = recall IoU 

BK 0.99 0.99 

MA 0.31 0.096 

HA 0.74 0.33 

HE 0.78 0.48 

SE 0.555 0.287 
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(a)                                      (b) 

Figure 7. Example visualization of test image on IDRID. 
 

 
(a)                                                         (b) 

 
(c)                                                         (d) 

Figure 8. Example visualization of test image on DIARET-DB1. (a) HA labels and HA segmentation output; (b) HE and HE seg-
mentation outputs; (c) SE and SE segmentation outputs; (d) MA and MA segmentation outputs. 
 

and segmentation outputs for each class (MA, HA, HE, SE). 

6. Discussion of Results 

1) Comparing segmentation network to prior work 
The comparison of lesion-level sensitivities between the segmentation net-

work and prior work, in particular Quellec et al. [8], Gondal et al [9] and Or-
lando et al. [14] (Table 5) reveals that the segmentation network improves the 
sensitivity for most lesions, i.e. for HA, HE and SE, while for MA the results 
seem worse than [14] but in line with the results of the remaining prior works 
compared to. The prior works scored 50% to 72% in HA, 47% to 80% in HE, 71 
to 90% in SE and 21% to 61% in MA, the segmentation network scored 87% in 
HA, 94% in HE, 87.5% in SE and 48% in MA. This means that the deep segmen-
tation network with around 100 layers, Resnet-18 as encoder network and the 
innovations we discussed previously that include ASPP and CRF proved better 
than prior works for segmentation of lesions. Note also that segmentation net-
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works are most often evaluated using Jaccard Index (JI), also known as inter-
sect-over-the-union (IoU), or the Dice coefficient, and we include, at the end of 
the experimental section, an evaluation using IoU, but in this experiment we 
compared using exactly the same conditions and evaluation approaches that the 
prior works use. 

The segmentation network was also better in terms of image-level detection of 
lesions for referral (Table 6), where we can see again that DeepLabV3 ranks first 
in HA and SE and also ranks well in HE and MA when compared with the al-
ternatives compared (Zhou et al. [22], Liu et al. [23], Haloi et al. [15], Mane et al. 
[24], Gondal et al. [9]). The segmentation network achieved 100% HA, 90% HE, 
87.5% SE and 71% MA, against 94% to 97% HA, 83% to 96.5% HE, 81 to 83% SE 
and 50% to 96.4% MA for the related work compared. 

Table 7 compares the segmentation network sensitivities to some of the 
small-window classifiers reviewed in the related work section. The results can be 
interpreted as revealing that the segmentation network achieves worse sensitivity 
than Haloi [15] on MA lesions, but better sensitivity than Prentasic [10] on Ex-
udates and a comparable sensitivity to van Grinsen [12] on HA. But, as we dis-
cussed in related work section, except for Haloi [15], but, as we discussed in re-
lated work section, except for Haloi [15], the remaining small window classifiers 
are only classifying lesions centered in small windows, and their evaluation is 
based on lesions centered and picked manually based on the groundtruth infor-
mation. 

The remaining small window classifiers are only classifying lesions centered in 
small windows, and their evaluation is based on lesions centered and picked 
manually based on the groundtruth information. In contrast, a segmentation al-
gorithm inputs and processes the whole images to find and extract contours and, 
since the locations of the lesions are unknown. 

The ROC curves in Figure 6 complement the information for the segmenta-
tion network. It shows that MA is the hardest lesion to segment, with sensitivity 
around 58% for FPR 0.1, followed by SE (73% FPR 0.1), HA (85% FPR 0.1), and 
HE (97% FPR 0.1). 

2) Comparison between segmentation networks, improvements and limi-
tations 

For the remaining analysis we switched dataset (to IDRID) and evaluation 
approach, to consider semantic segmentation instead of overlap of coarse seg-
ments in the evaluation of the segmentation networks. Using this approach, Ta-
ble 8 shows that, without any training optimizations, DeepLabV3 [19] and FCN 
[16] compare favorably with the other segmentation network architectures that 
we described in the setup (UNET [18], SegNet and Simple) for the task of seg-
mentation of eye fundus lesions. For instance, in terms of weighted IoU, FCN 
scored 87.5% and DeepLabv3 scored 78.5%, while the remaining ones scored 
between 46.5% and 56.2%. These results were obtained without data augmenta-
tion. Table 9 shows the effects of data augmentation. Looking in particular at 
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weighted IoU, DeepLabv3 with DA improved from 78.5 to 94%, while FCN did 
not improve. 

Even though the segmentation networks outperform prior work, Table 9 and 
Table 10 also show that there is still a long way to go in terms of optimizing se-
mantic segmentation quality. DeepLabV3 achieves 94% weigthed IoU, but its 
mean IoU shown in Table 9 is 52%, and the quality of segmentation of each le-
sion (Table 10) is even lower for some lesions (MA and SE). We noticed that, 
while background, HA and HE have high scores (e.g. sensitivity of 74% to 99%), 
MA and SE have much lower scores (31% and 55% respectively). Additionally, 
significant difference between IoU and sensitivity signals a significant amount of 
false positives (e.g. background marked as lesions). These results show that seg-
mentation networks could still benefit from further research in future to better 
deal with FP and also FN. 

3) Visualizations and Conclusions from Experiments 
The visualizations shown in Figure 7 for IDRID and in Figure 8 for 

DIRET-DB1 help illustrate the capacity of the segmentation network, since we 
see that the lesions are reasonably well recognized in those figures, but they also 
show that there are still many false positives. 

Our experimental results succeeded to show that the deep segmentation net-
work improves the quality of lesions segmentation from Eye Fundus Image 
(EFI) when compared with prior work that also segments those lesions. We have 
also compared segmentation network architectures, showing that the simplest 
architectures (e.g. Simple, with 5 simple encoder and decoder layers) were una-
ble to reach the segmentation performance of deeper and more complex net-
works. Our best results were achieved with DeepLabV3, a deep segmentation 
network with 100 layers using Resnet-18 as encoder CNN and integrating im-
portant innovations that include atrous spatial pooling (ASPP) and conditional 
random fields (CRF). FCN, another well-known deep segmentation network us-
ing VGG-16 also obtained quite reasonable results. Finally, we also revealed 
some limitations of current state-of-the-art in segmentation of lesions. 

7. Conclusion 

In this work, we have shown that most prior works on segmentation of diabetic 
retinopathy lesions only detect lesions approximately and do not segment them. 
We proposed the use of deep semantic segmentation networks to segment the 
lesions. Our main objective was twofold: to compare the segmentation networks 
solution with prior works, showing that they improve performance, and to 
compare between segmentation network architectures, to investigate whether 
the characteristics of those networks were important to improve the perfor-
mance, and to see their limitations. We found out that the architecture is very 
important, achieving top performance the DeepLabV3 design with Resnet-18 as 
the encoder. Comparing with prior work segmenting EFI lesions, the advantage 
of the top-performing deep segmentation network reached 10 to 20 percentage 
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points in HA, HE and SE lesions, although it was slightly worse than some of the 
others segmenting micro-aneurisms. But we also revealed the limitations of cur-
rent best performing networks. Future work needs to deal with the still existing 
imperfections, including many false positives. 
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