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Abstract 
In this paper, we investigate the nonlinear neutral fractional integral-differential 
equation involving conformable fractional derivative and integral. First of all, 
we give the form of the solution by lemma. Furthermore, existence results for 
the solution and sufficient conditions for uniqueness solution are given by the 
Leray-Schauder nonlinear alternative and Banach contraction mapping prin-
ciple. Finally, an example is provided to show the application of results. 
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1. Introduction 

The theory of fractional calculus has played a major role in control theory, fluid 
dynamics, biological systems, economics and other fields [1] [2] [3]. It serves as 
a valuable tool for the description of memory and hereditary properties of vari-
ous materials and processes. In recent years, plenty of interesting results have 
been observed for the Riemann-Liouville and Caputo type fractional derivatives. 

The definition of the conformable fractional derivative and integral was in-
troduced in 2014 by Khalil et al. [4]. Compared with Riemann-Liouville and 
Caputo type fractional derivatives, the conformable fractional derivative satis-
fies the Leibniz rule and chain rule, and can be converted to classical derivative 
[5]. This is of great help to study fractional differential equations. In the past 
few years, the conformable fractional derivative has been used in the field of frac-
tional newtonian mechanics, heat equation, biology and so on, and the results are 
abundant. The conformable fractional optimal control problems with time-delay 
were studied, which proved that the embedding method, embedding the admiss-
ible set into a subset of measures, can be successfully applied to nonlinear prob-
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lems [6]. Alharbi et al. utilized the homotopy perturbation method to solve a 
model of Ambartsumian equation with the conformable derivative and gave the 
approximate solution of equation [7]. The conformable fractional derivative was 
utilized to solve the time-fractional Burgers type equations approximately [8]. 

Over these years, there has been a significant development in fractional func-
tional differential equations. Among them, Li, Liu and Jiang gave sufficient con-
ditions of the existence of positive solutions for a class of nonlinear fractional 
differential equations with caputo derivative [9]. Guo et al. studied fractional func-
tional differential equation with impulsive, then they obtained existence, unique-
ness, and data-dependent results of solutions to the equation [10]. The existence 
of positive periodic solutions was given by Zhang and Jiang, for n-dimensional 
impulsive periodic functional differential equations [11]. In addition, the frac-
tional stochastic functional system driven by Rosenblatt process was investigated 
by Shen et al., and they obtained controllability and stability results [12]. 

Time-delay is part of the theoretical fields investigated by many authors, includ-
ing unbounded time-delay, bounded time-delay, state-dependent time-delay and 
others. In 2009, the existence and uniqueness of solutions of the Caputo 
fractional neutral differential equations with unbounded delays were dis-
cussed [13]. In 2011, Li and Zhang considered the Caputo fractional neutral 
integral-differential equations with unbounded delay, which used the fixed 
point theorem to study the existence of mild solutions of equations [14]. The 
caputo fractional neutral integral-differential equations with unbounded delay 
were discussed in 2013 [15]. The paper used Monch’s fixed point theorem via 
measures of non-compactness to study the existence of solutions of equations. 

Based on the above research background and relevant discussions, we found 
that few people used conformable derivative to study fractional differential equ-
ations with time-delay. In 2019, Mohamed I. Abbas gave the existence of solu-
tions and uniqueness of solution for fractional neutral integro-differential equa-
tions by the Hadamard fractional derivative of order ( )0,1α ∈  and the Rie-
mann-Liouville integral [16]. In this paper, we will discuss the nonlinear neutral 
fractional integral-differential equation in the frame of the conformable deriva-
tive of order ( )1,2α ∈  and the comformable integral. Then we make the 
condition 3 weaker to improve feasibility. Considering the following equation:  

 
( ) ( ) ( ) [ ]

( ) ( ) [ ]
1

, , , 0, ,

, ,0 ,

i
p

i t t
i

T w t I u t w l t w t

w t t t

βα ρ

ψ υ
=

  
− = ∈  

  
 = ∈ −

∑            (1.1) 

where Tα  denotes the conformable fractional derivative of order α , 1 2α< < , 
iI β  denotes the conformable fractional integral with order iβ , ( )0,1iβ ∈ , 

= 1,2,3, ,i p , p N+∈ . , 0ρ υ >  are constants. And for any [ ]0,t ρ∈ , we de-
note by tw  the element of [ ]( ),0 ,C Rυ−  and is defined by ( ) ( )tw w tθ θ= + , 

[ ],0θ υ∈ − . Here )(⋅tw  represents the history of the state from time t υ−  up 
to the present time t. [ ] [ ]( ), : 0, ,0 ,il u C R Rρ υ× − →  are continuous functions 
that satisfy some hypotheses given later, [ ]( ),0 ,C Rψ υ∈ − . 
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The rest of this paper is organized as follows: In Section 2, we introduce the 
concepts and basic properties of conformable fractional integral and derivative. 
In Section 3, we give existence results for the solution and sufficient conditions 
for uniqueness solution by Leray-Schauder nonlinear alternative and Banach 
contraction mapping principle. In Section 4, the numerical simulation is showed 
to illustrate the results. 

Notations: [ ]( )0, ,C Rρ  denotes all continuous functions that mapped from 
[ ]0,ρ  to R and R denotes all real numbers. R+  denotes all positive real num-
bers. 

2. Preliminaries 

In this section, we present some necessary definitions and lemmas to establish 
our main results. 

Definition 2.1. ([5]) For a function [ ): ,w a R+∞ → , the conformable frac-
tional integral of order ( ) 1,n n n Nα α< ≤ + ∈  of the function w is defined as 
follows:  

( ) ( ) ( ) ( ) ( ) ( )1 11 1 d .
!

tn n nn
a a a

I w t I t a w t t x x a w x x
n

α αα − − − −+  = − = − −  ∫  

If 0a = , ( )aI w tα  can be written as ( )I w tα . 
Definition 2.2. ([5]) For a function [ ): ,w a R+∞ → , the conformable frac-

tional derivative of order ( ) 1,n n n Nα α< ≤ + ∈  of the function w is defined as 
follows:  

 ( )
[ ] ( )[ ]( ) [ ] ( )1 1

0
lim ,a

w t t a w t
T w t

α αα α

α

ε

ε

ε

−− −

→

+ − −
=  

where [ ]α  denotes the smallest integer greater than or equal to α . If 0a = , 
( )aT w tα  can be written as ( )T w tα . 

Lemma 2.3 ([4]) If function l is α  times differential at a point 0t >  for 
1n nα< ≤ + , n N∈ , then  

1) ( ) 0T l tα = , for all constant functions ( )l t λ= ;  
2) l is 1n +  times differential simultaneously, then ( )( ) [ ] [ ] ( )T l t t l tα α αα −= . 
Lemma 2.4. ([5])  
1) For a function [ ): ,w a R+∞ → , if ( )nw t  is continuous, then for any t a> , 

we have  

( ) ( ) ( ], , 1 ;a aT I w t w t n nα α α= ∈ +  

2) For a function [ ): ,w a R+∞ → , if w is 1n +  times differentiable, then for 
any t a> , we have  

( ) ( )
( ) ( )( ) ( ]

0
, , 1 .

!

iin

a a
i

w a t a
I T w t w t n n

i
α α α

=

−
= − ∈ +∑  

Lemma 2.5. ([4]) If ( ]0,1α ∈ , functions 1w , 2w  are α  times differentia-
ble at a point 0t > , then  

1) ( ) ( ) ( )1 1 2 2 1 1 2 2 ;T a w a w a T w a T wα α α+ = +   

https://doi.org/10.4236/am.2020.1110069


R. Li et al. 
 

 

DOI: 10.4236/am.2020.1110069 1044 Applied Mathematics 
 

2) ( ) ;p pT t ptα α−=   
3) ( ) ( ) ( )1 2 1 2 2 1 ;T w w w T w w T wα α α= +   

4) 
( ) ( )
( )

2 1 1 21
2

2 2

.
w T w w T wwT

w w

α α
α − 

= 
 

 

Lemma 2.6. ([17]) (The nonlinear alternative of Leray-Schauder type) Let C 
be a Banach space, 1C  be a closed, convex subset of C, and P be an open subset 
of 1C , 0 P∈ . If 1:A P C→  is a continuous, compact map. Then  

1) A has a fixed point in P, or  
2) There is a w P∈∂  (the boundary of P in 1C ) and ( )0,1λ ∈ , such that 

( )w A wλ= . 
Lemma 2.7. Let ( )l t  be a continuous function, then the fractional differen-

tial equation  

 
( ) ( ) ( ) [ ]

( ) ( )0 0

, 0, , 1 2,

0 , 0 ,

T w t t l t t

w w

α η ρ α

ψ ψ

 − = ∈ < <   


′ ′= =
            (2.1) 

is equivalent to the integral-differential equation  

 ( ) ( ) ( ) ( ) ( ) ( )2
0 0 0

0 0 d ,
t

w t t t t s s l s sαψ η ψ η η −′ ′= − + − + + −   ∫     (2.2) 

where ( )0 0wψ = , ( )0 0wψ ′ ′= . 
Proof. Consider Equation (2.1), for any [ ]0,t ρ∈ ,  

 ( ) ( ) ( ).T w t t l tα η− =    

Transforming α  times conformable fractional integral on both sides of the 
equation and using Lemma 2.4, since 1 2α< < , we have  

 ( ) ( ) ( ) ( ) ( ) ( )2
0 0 0

0 0 d ,
t

w t t t t s s l s sαψ η ψ η η −′ ′= − + − + + −   ∫  

where ( )0 0wψ = , ( )0 0wψ ′ ′= . The proof is completed.                 □ 

3. Main Results 

In this section, we give several results about the fractional integral-differential 
Equation (1.1). 

If [ ]( ){ }| , ,X w w C υ ρ= ∈ −   is Banach Space, the norm is defined as 
( ) [ ]{ }sup , ,w w t t υ ρ= ∈ − . 

Let ( ) ( )
1

,i
p

i t
i

t I u t wβη
=

= ∑ . Giving the definition of the operator :A X X→ ,  

 ( ) ( ) ( ) ( ) ( ) [ ]

( ) [ ]

2
0 0 0

1
0 , , d , 0, ,

, , 0 .

j
p t

i t s
i

t I u t w t s s l s w s t
Aw t

t t

β αψ ψ η ρ

ψ υ

−

=

 ′ ′+ − + + − ∈   = 
 ∈ −

∑ ∫ (3.1) 

where ( )0 0wψ = , ( )0 0wψ ′ ′= , ( ) ( )0 0w w θ ψ θ= + = , [ ], 0θ υ∈ − , 

( ) ( )
1 0

0 , 0i
p

i t
i t

I u t wβη
= =

= =∑ . 

It should be noticed that Equation (1.1) has solutions if and only if the opera-
tor A has fixed points. So as to achieve the desired goals, we impose the follow-
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ing assumptions for the Equation (1.1).  
(H1) There exist functions ( ) ( ) [ ], : 0,it t Rγ δ ρ +→  and continuous non 

decreasing functions ( ) ( ) [ ] [ ], : 0, 0,it tζ φ ∞ → ∞ , such that, for any ( ), tt w ∈

[ ]0,ρ [ ]( ),0 ,C Rυ× − ,  

( ) ( ) ( ), ,t tl t w t wγ ζ≤  

( ) ( ) ( ), .i t i i tu t w t wδ φ≤  

(H2) Functions [ ] [ ]( ), : 0, ,0 ,il u C R Rρ υ× − →  are continuous. There exist 
positive functions ,iλ µ  with bounds ,iλ µ , 1,2, ,i p=  , p N+∈ , respec-
tively such that  

( ) ( ) ( ), , ,i i iu t x u t y t x yλ− ≤ −  

( ) ( ) ( ), , .l t x l t y t x yµ− ≤ −  

(H3) There exists constant 0M > , 1υ υ< , such that  

 
( ) ( ) ( ) ( )0 0 1 1

1

1.
0

1

ip

i i
i i

M
β αρ ρψ ψ η ρ δ φ υ γ ζ υ
β α α=

>
′ ′+ − + +   −∑

 

(H4)  

( )1
1.

1

ip

i
i i

β αρ ρλ µ
β α α=

+ <
−∑  

We give an existence result based on the nonlinear alternative of Leray-Schauder 
type applied to a completely continuous operator.  

Theorem 3.1. Suppose that the assumptions (H1)-(H3) are satisfied, then the 
Equation (1.1) has at least one solution.  

Proof. The operator A is defined as (3.1). Define  

[ ]( ){ }1, , : .tD w C R wυ ρ υ= ∈ − ≤  

Firstly, we prove that operator A is uniformly bounded. For any ( ), tt w ∈
[ ]0,ρ [ ]( ),0 ,C Rυ× − , 1,2, ,i p=  , p N+∈ , and w D∈ , by (H1), we have  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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2
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t I t w t s s t w s

t s s t s s s

β α

β α

β α

β α

ψ ψ η

ψ ψ η

ψ ψ η δ φ γ ζ

ψ ψ η δ φ υ γ ζ υ

ψ ψ

−

=

−

=

−

=

− −

=

′ ′= + − + + −  

′ ′≤ + − + + −

′ ′≤ + − + + −

′ ′≤ + − + + −

′≤ +

∑ ∫

∑ ∫

∑ ∫

∑ ∫ ∫
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0 1 1
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0
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0 .
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i i
i i
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i i
i i
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M

β α

β α

η δ φ υ γ ζ υ
β α α

ρ ρψ ψ η ρ δ φ υ γ ζ υ
β α α

=

=

′− + +
−

′ ′≤ + − + + <
−

∑

∑

 

For any [ ], 0t υ∈ −  and w D∈ , we have  
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( ) ( ) .Aw t tψ ψ= ≤  

Denote { }1 max , M M ψ= , then  

( ) [ ]1, , , .Aw t M t w Dυ ρ≤ ∈ − ∈  

This implies that the operator A is uniformly bounded in D. 
Besides, we need to prove that AD is an equicontinuous set. Let nw  be a se-

quence such that lim n

n
w w

→∞
=  in D. Then, for any [ ]0,t ρ∈ , we have  

( ) ( ) ( )

( ) ( )

1
0 0 0

1

2
0

lim 0 lim , d

lim , d .

i
p tn n

i sn n i
t n

sn

Aw t t s u s w s

t s s l s w s

β

α

ψ ψ η −

→∞ →∞ =

−

→∞

′ ′= + − +  

+ −

∑∫

∫
 

By (H2), functions , il u  are uniformly continuous, thus, we have  

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

1
0 0 0

1

2
0

1
0 0 0

1

2
0

lim 0 lim , d

lim , d

0 , d

, d
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→∞ →∞=
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−

=
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′ ′= + − +  

+ −

=

∑∫

∫

∑∫

∫

 

For any [ ], 0t υ∈ − , it is obvious that  

( ) ( ) ( )lim .n

n
Aw t t Aw tψ

→∞
= =  

Therefore, ( )Aw t  is continuous and uniformly continuous for [ ],t υ ρ∈ − , 
which implies that ( )Aw t  is equicontinuous for [ ],t υ ρ∈ − , A is continuous in 

[ ]( ), ,C Rυ ρ− . 
Furthermore, we consider ( ) ( )2 1Aw t Aw t− , for any [ ]1 2, ,t t υ ρ∈ − , 1 2t t< . 
Case 1. If 1 20 t t ρ≤ < ≤ , for any ( ) [ ] [ ]( ), 0, ,0 ,tt w C Rρ υ∈ × −  and w D∈ , 
1,2, ,i p=  , we have  
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=
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If 2 1 0t t− → , then ( ) ( )2 1 0Aw t Aw t− → . 
Case 2. If 1 20t tυ ρ− < < ≤ < , for any ( ) [ ] [ ]( ), 0, ,0 ,tt w C Rρ υ∈ × −  and 

w D∈ , 1,2, ,i p=  , ( ) ( )1 1Aw t tψ=  holds for any 1 0tυ− < < , we have  
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∑ ∫

∫

∑
 

Since ( )tψ  is a continuous function, if 1 0t → , then we have ( )1 0tψ ψ→ . If 

2 1 0t t− → , then ( ) ( )2 1 0Aw t Aw t− → . 
Case 3. If 1 2 0t tυ− ≤ < < , for any 1 2 0t tυ− ≤ < <  and w D∈ ,  

( ) ( ) ( ) ( )2 1 2 1 .Aw t Aw t t tψ ψ− = −  

Since ( )tψ  is continuous function, if 2 1 0t t− → , then ( ) ( )2 1 0Aw t Aw t− → . 
From what has been discussed above, AD is equicontinuous. By Arzelá-Ascoli 

theorem, AN is compact, then A is completely continuous on X. 
For any ( ) [ ] [ ]( ), 0, ,0 ,tt w C Rρ υ∈ × −  and [ ]0,t ρ∈ , 1,2, ,i p=  , we have  
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=

′ ′= + − + + −   ∑ ∫  

For any [ ]0,t ρ∈ , by assumption (H1), we have  
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Consider the assumption (H3), there exists ( )M w t≠ . Define set  
[ ]( ) ( ){ }, , :P w C R w t Mυ ρ= ∈ − < . We can show that :A P D→  is conti-

nuous and completely continuous. Assuming there exists w P∈∂  and ( )0,1λ ∈ ,  

such that ( )w A wλ= . Then we have 
( )

1
w

A w
λ = ≥ . 

By Lemma 2.6, A has a fixed point in P, which implies that there exists at least 
one solution to the Equation (1.1). The proof is completed.                □ 

We will give the uniqueness result of solutions of Equation (1.1): 
Theorem 3.2. Suppose that the assumptions (H2) and (H4) are satisfied, then 

the Equation (1.1) has a unique solution.  
Proof. The operator A is defined as (3.1). For any [ ]0,t ρ∈  and  

[ ]( )1 2, , ,w w C Rυ ρ∈ − , by (H2), we have  
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≤ − +  − 
 

≤ − +  − 

∑ ∫

∑∫ ∫

∑

∑

 

For any [ ],0t υ∈ − ,  

( ) ( ) ( ) ( )1 2 0.Aw t Aw t t tψ ψ− = − =  

By (H4), A is a contraction mapping, then Equation (1.1) has a unique solu-
tion. The proof is completed.                                      □ 

4. An Illustrative Example 

This section presents an example where we apply Theorems 3.1 and 3.2 to some 
particular cases.  
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Example 4.1. Consider the fractional integral-differential equation  

( )
( )( ) ( ) [ ]

( ) ( )

3 3
2 4

2
1

1 1 , 0, 2 ,
51620 6 1 3 1

1, ,0 .
2

i
t t

i t t

w w
T w t I t

ti t w w

w t t tψ

=

    
 − =  +  ∈   −+ + +     
  = ∈ −   

∑
(4.1) 

where 
3
2T  denotes the conformable fractional derivative of order 

3
2

, 4
i

I  de-

notes the conformable fractional integral of the order 
4
i

, 1,2,3i = . If  

( ) 1: , 2
2

w t R − →  
, then for any [ ]0,2t∈ , we define ( ) ( )tw w tθ θ= + ,  

1 ,0
2

θ  ∈ −  
. Functions  
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20 6 1

t
i t

t

w
u t w

i t w
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+ +
 

( ) ( )2

1 1, .
516 3 1

t
t

t

w
l t w

t w

 
=  + 

 − + 
 

The continuous function ( )tψ  satisfies the condition that ( ) ( )0 0 0ψ ψ ′= = . 

For any ( ) [ ] 1, 0,2 ,0 ,
2tt w C R  ∈ × −    

, 1,2,3i = , we have  

( )
( )( )

1 1, .
20 6 2020 6 1

t
i t

t

w
u t w

i ti t w
= ≤ ≤

++ +
 

For any ( ) [ ] 1, 0,2 ,0 ,
2tt w C R  ∈ × −    

, we have  
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1 1 2, .
5 4516 3 1

t
t

t

w
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=  +  ≤

 − + 
 

For any ( ) [ ] 1, 0,2 ,0 ,
2tt w C R  ∈ × −    

, ( ) ( ) ( ) ( )0 0 0 0 0ψ ψ η η′ ′= = = = , if 

0.659M > , we have  

3
3 4 2

1

1, 1, 2,3.
1 2 2 2

3 320 45 1
4 2 2

i

i

M i

i=

> =

+
 − 
 

∑

 

Consequently, by Theorem 3.1, the Equation (4.1) has at least one solution. 

For continuous functions column ( )1,i tu t w , ( ) [ ]2 1, : 0, 2 ,0 ,
2i tu t w C R  × −    

, 

1,2,3i = , we have  
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i t i t
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For continuous functions ( )1, tl t w , ( ) [ ]2 1, : 0, 2 ,0 ,
2tl t w C R  × −    

, we have  

( ) ( ) ( ) ( )
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1 2
1 2
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For any ( ) [ ] 1, 0,2 ,0 ,
2tt w C R  ∈ × −    

, we have  

3
3 4 2

1

1 2 1 2 0.596 1, 1, 2,3.
3 320 36 1

4 2 2

i

i
i

ii=

+ < < =
 − 
 

∑  

Thus, by Theorem 3.2, the Equation (4.1) has a unique solution.  

5. Conclusion 

The conformable fractional derivative brings great convenience to the study of 
fractional functional differential equations due to its unique properties. This pa-
per uses conformable derivative to study the fractional neutral integro-differential 
equations, and obtains the results of the existence of the solution and the suffi-
cient conditions for the uniqueness of the solution. 
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