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Abstract

The solution of Dirac particles confined in a one-dimensional finite
square well potential is solved by using the path-integral formalism
for Dirac equation. The propagator of the Dirac equation in case
of the bounded Dirac particles is obtained by evaluating an appro-
priate path integral, directly constructed from the Dirac equation.
The limit of integration techniques for evaluating path integral is
only valid for the piecewise constant potential. Finally, the Dirac
propagator is expressed in terms of standard special functions.
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1. Introduction

The solution of quantum mechanical problems in non-relativistic
Schrodinger and relativistic Dirac equation with a finite square well
potential which were conceptually very relevant for our understand-
ing about 80 years ago seem to be no longer of primary importance.
Occasionally, however, there is a new line of inquiry into this problem
typically by applying new mathematical technique [1-5]. Moreover
the finite square well potential is of great practical importance since
it forms the basis for understanding low-dimensional structures such
as quantum well devices.

For relativistic quantum mechanics, the problem of a Dirac particle
confined in a finite square well potential is a useful tool to discuss, in
advanced quantum mechanics courses. The issues arise when one ex-
tends quantum mechanics to incorporate special relativity. In a series
of papers [6,7] titled “The Relativistic One-Dimensional Square Po-
tential” and the textbooks of Relativistic Quantum Mechanics [8] the
problem of relativistic spin—% particle (or Dirac particle) confined in a
finite square well potential is studied by solving the one-dimensional
Dirac equation. It is surprising that this problem has not been solved
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using path integral approach despite the fact that one can do so for
the non-relativistic counterpart, for example Nevels et al. [9] evalu-
ated the path integral when a spinless particle encounters an infinite
potential barrier, Janke and Kleinert [10] exhibited the path integral
for particle in a box (infinite square well), Goodman [11] solved the
problem of the infinite squarewell potential in one dimension using the
path integral, and Barut and Duru [12] evaluated the exact path inte-
gral for the propagator for square potential barriers in one dimension
and for the radial square-well potential in two dimensions. Here we
will solve the problem of Dirac particle confined in a finite square well
potential via the path integral for Dirac equation.

It is fair to say that the Dirac equation and its propagator are
more fundamental concepts than the Schrodinger equation and its
propagator. There have been attempts to write down a path inte-
gral expression for the Dirac propagator similar to the Feynman path
integral expression for the Schrodinger propagator. For example Ri-
azanov [13] showed that the Feynman path integral is identical to the
propagation function of the Dirac equation. Papadopoulos and J. T.
Devreese [14] obtained the Dirac propagator through the Feynman
path integral [15-18], directly constructed from the Dirac equation.
Gaveau and Schulman [19] constructed path integral formula for the
Dirac propagator in three spatial dimensions, called the “projector
path” summation, which is one of a generalization of the Feynman
“checkerboard” propagator [18]. Rosen [20] discovered that the Feyn-
man path summation for the one-dimensional Dirac equation can be
projected into three spatial dimensions to yield a path-summation for-
mula for physical Spin—% particles of nonzero 2 mass. Since the three-
space projection matrix is independent of time and does not involve
the particle’s mass, relativistic motion governed by the Dirac equation
has an underlying one-dimensional aspect.

The purpose of the present paper is to write down the Dirac prop-
agator for Dirac particles confined in a one-dimensional square well
potential of depth Vy < 0 and width a. The organization of the rest
of the paper is as follows: In Section 2 we evaluate the propagator of
the Dirac particle in a square well. Finally, we summarize our results
in Section 3.

2. Dirac Propagator for a One-Dimensional
Square Well

This section deals with the construction and the evaluation of the
propagator of Dirac particles confined in an one-dimensional finite
square well potential of depth ¥ < 0 and width a. The one-
dimensional Dirac Hamiltonian for the motion in one dimension under
the influence of square well potential is

H = Hy+ V(z) (1)
where
) 0]
Hy = 716h0[m% + moc®p (2)

is the free particle Hamiltonian, the matrix « is

oy = ((BT %””) (3)
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0 1
1 0

i=(5 ) (1)

where 1 = (é ?) is identity 2 x 2 matrix, and V(z) denotes square

well potential

where the Pauli matrix o, = < >, the matrix 5 is

_ Vo, for —a/2<x<a/2
Viz) = { 0 forz < —a/2,x > a/2 (5)

The propagator K (zp, ts; Tq,t,) satisfies the Dirac equation

(m(i - H) K=0 (6)

The short-time propagator of the above equation is given by

i
K(zj,tj—1 +&wj1,tj1) = exp (—hH€> Isb(zj —xj1)  (7)
where I, is the 4 x 4 identity matrix.

The finite-time propagator can be constructed via the composition
law

a/2 N—1
K(xp, tp; Ta,ta) :gii% / HdIJHK xj,tia + e @i, tia)
7(1/2

,a/gN 1
/ HdI]HKO l‘j, j—1 + ¢, ZE]_l,tj_l)

Jj=1

oN—1 N

+/ Hdl‘jHKO(xjatjfl +€;.’Ej,1,tj,1) (8)

a/2521  j=1

This is the propagator for Dirac particles confined in an one-
dimensional finite square well, then, each integral is limited to the
domain —a/2 < x < a/2, otherwise the propagators for free Dirac
particles are taken into account, and allows all imaginable paths, in-
cluding those with velocities greater than that of light. It seems like
the principles of relativistic mechanics is being violated. However, the
situation is similar to that of nonrelativistic quantum mechanics in
which the non-classical paths are allowed.

The first term on right-hand side (RHS) of (8) depends only on the
short-time propagator

i
K(zj,tj1+exj_1,tj—1) = zj| exp (—h€H> |21

i i
= x| exp (—tho - hEV(xj)) |1
9)
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It can be approximate up to the order of O(e?) using Zassenhaus
formula [21-24]. Equation (9) becomes

i . i Vi)

— Ellg g Zj

K(l’j,tj,1+€;£rj,1,tj,1) :xj\e h |£L’j,16 h

1
—7eVi(x))
= Ko(zj,tj—1 +&xj-1,tj-1) e e

(10)

It is important to observe the order of the various Ko(xj,tj—1 +
g;xj_1,t;—1) in (10); they are noncommuting matrices and their time
ordering relates to the way a given spinor evolves according to the
Dirac dynamics.

The Dirae equation, being of first order in time, enables one to write
a short-time free propagator Ko(z;,t;—1+¢€;2j-1,tj—1) in terms of the
infinitesimal generator [I4 — (i/h)eHy] as

Ko(xj,tjfl + €;l'j71,tj,1) = <I4 — hEH@) (5( — X 1) (].1)

The expression (11) can also be obtained by expanding the exact ex-
pression for the propagator to the first order in time.

By operating I, — ithO on the Fourier representations of o4-
functions, the short-time free propagator becomes

Ko(zj, tja+e;xja,tj)

dk;

o (12)

— / {14 — %E (chamkj + moc25) x explikj(z; — xj-1)] ==
Here we also use the fact that Hy does not operate on V(z;) because
it is a constant potential.

Inserting (10) and (12) into (8) and making use of isomeric time
partitions, i.e., all € of the Nth partition will be taken equal to /N,
we obtain for the finite-time propagator the expression

K($b7tb;$a,ta)

a/2 N—-1 iel ,(x )
o Nlﬁoo (27T / dx] dk 37y eXp ( N )

a/2 ;21
—a/2 N-1 oo N—1
/ H dz, Hdk s //2 I] d; Hdk ) ] iy (2 —,1)
B (13)
where x; is a 4 x 4 matrix given by
=I,— - (chozmk: + mOCQB) (14)

hN

Again it should be noted that as far as (13) is concerned the order
of the x; matrices is important. Equation (13) is already a form of
the path integral giving the propagator of the Dirac particle under the
influence of a potential V(z). The summation over all paths starting
from z, at time ¢, and ending at position x; at time ¢, is attained
through the infinitely multiple process of integration.
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The integrations over various k;’s are essentially path summations in
momentum space. However, one would like to express the summation
in term of paths in configuration space. This is easily done in the
following manner: the short-time propagators entering the process of
multiple integration need only be taken to the first order in e/N. If we
replace —ick;je/N in (13) by [exp(—ick;je/N)—1] and put the resulting
k; in (12), the limit as N — oo will not be affected. With the above
replacement we are able to perform the integrations, and the resulting
path integral in terms of configuration paths alone is given by

K(mb; tb; mazta)

a/2 N—-1 ie —a/2 N-1
= ngnoo /a/2 ]1;[1 dz; exp [hNV(:cj)} +/ H dz;

—0 )

+ g6 (xj — T — c%) } (15)

This propagator is valid for piecewise constant potential. The product
of the various short-time propagators in (15) is ordered from right to
left in increasing order of time.

We found that the difficulties in evaluating the integrand (15) are
now obvious; the Gaussian integrals cannot be evaluated in closed form
if them are restricted to a bounded domain. We repeat the integration
of (8) with additional following term

a/2 N—1 N
/ dejHKo Tjtia+eziatia)
70,/2 j=1
a/2N—-1
deJHKO Tj tiateixia,ti) (16)
a/2

We can rewrite the propagator in (8) as
K (wp, ty; Tas ta) = Ko(2b, ty; Tas ta) + 0K (Tp, th; Ta, ta) (17)

The first term in (17) is the free propagator (see also Ref. [14])

Ko(2p, ty; Ta, ta) :/1(I4+H0(k))e[ik(“_“)_%E(k)E}dk

2\ T E®R) o
10 Ho(k)\ [ik(zy—za)+ B IF
+/2<I4 E(k) >e " o (18)

which contains the states of positive energy, E(k), in the first term
and the states of negative energy, —F(k), in the second term. This
propagation of a given spinor both types of states enter the procedure,
in general.

For the second term is the propagator due to square well potential,
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called the perturbed propagator d K, reads

1 a/2 N-1 N
OK (xp, tp; Ta, ta) :J\;iinm (27")N/ H dl‘dekjlij
—a/2 o o1

1 €
. ==V (a
weki@ra) | AN g (19)

To evaluate (19) we rearrange the exponential terms in the form
expi(k; — kjy1)z;, where j = 1,2,..., N — 1. We can then integrate
the various exponential term over x; using the identity

—a/2 b
resulting in the product of sine functions and two plane wave as

sin [(kN_l — kN)g] sin [(k]v_g — kN_l)g} sin [(kg — k3)%}
(kn—1—kn) (kny—2—kn—1) 7 (k2 —ks)

sin [(kl - kQ)g]

T (b — )

exp[(ikyzn — ik120)] (21)

These integrations do not include the potential term becuase we set
V(x) = —Vp which is just a constant.

Then integrating over k; when j = 1,..., N — 1 and setting z¢ = z,,
TN = Ty, ky = k, Equation (19) becomes

. N
OK (zp, th; Tayta) = 1\/11—r>noo {14 - % (chazk + mOCQB) ;]

« explik(zy — 7o)] [eXp (;svo) _ 1} e

The limit as N — oo can now be taken and leads to
0K (xp, ty; Ta,ta) :/exp {_711 (chagck + mOCQﬁ) é‘]

dk

o (23)

« explik(zy — 24)] [eXp (;EVO) _ 1}

By replacing the operator —ihd/Ox in the free Dirac Hamiltonian H
with Rk, the free Dirac Hamiltonian in momentum vaiable is Hy(k) =
chagk + moc?8. With the aid of the anticommutation relations of
the matrices a, and 3, it is easy to show that HZ(k) = [(chk)? +
(moc®)?]I; = (E(k))?, where E(k) will denote the positive root as
E(k) =+ [(chk)? + m{c?] /2

Next, with the aid of the first term of an exponential in (23) we are
able to write

exp (—;Hoa) :cosEE(k)g] I —isin[;E(k)s} o @
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Equation (24) inserted into (23) gives an expression for the required
propagator

= o v ] 2

x explik(zp — )] {exp (;_st()> - 1] g (25)

Clearly, (25) satisfies the bounded particles Dirac equation and at
the same time as t, — t4, it goes to I40(xp — x4). It can therefore
propagate any spinor given at t, = t, evolving then via the Dirac
equation. The matrix structure of the propagator this is in a simple
form since it only depends linearly on the off-diagonal matrix Ho(k).

We shall now put (25) into a more transparent form, as far as the
energy spectrum is concerned. To this end we just decompose the
trigonometric functions into their combinations of exponentials. We
have

(SK((Eb, tb; T, ta)

[ Ho(k)\ [ik(ws—za)— 1 B(k)e] 4B
- [/2 (I” B(K) ) 2

- / % <I4 - }éo(%)) e[i’f@b—wa)ﬂE(@E];’f_] et 1] (26)

By substituting (14) and (26) into (17), we obtain the propagator
for Dirac particles confined in an one-dimensional finite square well
potential as

K(il'b7 tb; Ty ta)

1 Ho(K)\ [ik(ey—2a)— (B0 ~Vole] I
— _ I b a 0 -
/2<4+E(k))e ' o

1 Ho(K)\ [ik(es—za)— 1 [~ B(k) - Vole] IF
+/2 (I4 E(k) )e h or (27)

In (27), we say that the propagator for bounded particles with po-
tential —V} are obtained from the free propagator by the subsitution
+F — +FE — Vj. In this case no spin-flip occurs at the border of the
well. The allowed energies can take all values from —oo up to oo, so
that we can describe particles as well as antiparticles.

By performing the integrations over k and making use of the func-
tions (20, \)

%No(mﬁ) — LB Jo(mVA) for A >0
ATN=Y (28)
%Ko(m\/j) for A <0

with m = moc/h, 29 = ce, e = ty—to, v = |mp—24|, 1 = (1 — Vo /E(k))
and A = (n2°)? — 72, defined in Bogoliubov and Shirkov [25]. The
Dirac propagator for Dirac particles confined in an one-dimensional
finite square well potential is thus
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K({L‘b,tb; $a7ta)

0 0 10
|:I485U0 - awa - 1m5:| |:47T(97‘ {90('7"05 )‘) + (,0*(.1707 )‘)}:|

N | =

N =

— — (N E(@°)] (mﬁ)} (29)

3. Conclusion

This paper applied the path-integral formalism to solve the Dirac e-
quation of Dirac particles confined in a one-dimensional finite square
well potential of depth Vj < 0 and width a. The Dirac propagator
which is obtained by evaluating an appropriate path integral, directly
constructed from the Dirac equation, is expressed in terms of standard
special functions as in Equation (29). We note that the limit of this
technique for evaluating the propagator is only valid for a square well
potential, which is a piecewise constant potential. For a more gen-
eral potential new technique is needed. One possible direction is to
write down the path integral for the special wave equation associat-
ed with the Dirac equation instead of writing down the path integral
directly [14].

Acknowledgements

The work of Phonphimon Kongkhuntod and Nattapong Yongram has
been supported by the Faculty of Science Funding. We would like to
thank Asst. Prof. Dr. Sikarin Yoo-Kong for discussions and guidance.
We would like to thank Dr.Watee Srinin for discussions, guidance and
manuscript preparation. We also would like to thank Sujin Wangsuya
for discussions and comments. Finally, we would like to acknowledge
with thanks the Department of Physics, Naresuan University, Phit-
sanulok, Thailand, for its kind hospitality.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication
of this paper.

References

[1] Ciftja, O. and Johnston, B. (2019) European Journal of Physics,
40, Article ID: 045402.
https://doi.org/10.1088/1361-6404 /abla61

[2] Ewa, LI, Howusu, S.X.K. and Lumbi, L.W. (2019) Physical Sci-
ence International Journal, 22, 1-9.
https://doi.org/10.9734 /psij/2019/v22i330134

[3] Al-Ani, L.A. and Abid, R.K. (2019) Al-Nahrain Journal of Sci-
ence, 22, 52-58. https://doi.org/10.22401/ANJS.22.4.07

DOLI: 10.4236/jmp.2020.1110102

1646 Journal of Applied Mathematics and Physics


https://doi.org/10.1088/1361-6404/ab1a61
https://doi.org/10.9734/psij/2019/v22i330134
https://doi.org/10.22401/ANJS.22.4.07
https://doi.org/10.4236/jmp.2020.1110102

P. Kongkhuntod, N. Yongram

[14]

[15]

[16]

[23]

Ewa, LI, Lumbi, L.W. and Howusu, S.X.K. (2018) International
Journal of Theoretical and Mathematical Physics, 8, 28-31.

Roberts, K. and Valluri, S.R. (2017) Canadian Journal of Physic-
5, 95, 105-110. https://doi.org/10.1139 /cjp-2016-0602

Coulter, B.L. and Adler, C.G. (1971) Journal of American Math-
ematical Society, 39, 305-309.

Gumbs, G. and Kiang, D. (1986) Journal of American Mathe-
matical Society, 54, 462-463.

Greiner, W. and Bromley, D.A. (2000) Relativistic Quantum Me-
chanics. 3rd Edition, Springer, Berlin.
https://doi.org/10.1007/978-3-662-04275-5

Nevels, R.D., Wu, Z. and Huang, C. (1993) Physical Review A,
48, 3445-3451. https://doi.org/10.1103/PhysRevA.48.3445

Janke, W. and Kleinert, H. (1979) Lettere al Nuovo Cimento, 25,
297-300. https://doi.org/10.1007/BF02776259

Goodman, M. (1981) Journal of American Mathematical Society,
49, 843-847.

Barut, A.O. and Duru, I.H. (1988) Physical Review A, 38, 5906-
5909. https://doi.org/10.1103/PhysRevA.38.5906

Riazanov, G.V. (1958) Journal of Experimental and Theoretical
Physics, 6, 1107-1113.

Papadopoulos, G.J. and Devreese, J.T. (1976) Physical Review
D, 13, 2227-2234. https://doi.org/10.1103/PhysRevD.13.2227

Feynman, R.P. (1942) The Principle of Least Action in Quantum
Mechanics. Ph.D. Thesis, Princeton University, Princeton.

Feynman, R.P. Brown, L.M. and Dirac, P.A.M. (2005) Feynmans
Thesis: A New Approach to Quantum Theory. World Scientific,
Hackensack, NJ.

Feynman, R.P. (1948) Review Modern Physics, 20, 367-387.
https://doi.org/10.1103/RevModPhys.20.367

Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and
Path Integrals. McGraw-Hill College, New York.

Gaveau, B. and Schulman, L.S. (2000) Annals of Physics, 284,
1-9. https://doi.org/10.1006 /aphy.1999.5993

Rosen, G. (1983) Physical Review A, 28, 1139-1140.
https://doi.org/10.1103 /PhysRevA.28.1139

Naimark, M.A. and Stern, A.I. (1982) Theory of Group Repre-
sentation. Springer, Berlin, Heidelberg.

Suzuki, T. (1977) Communications in Mathematical Physics, 57,
193-200. https://doi.org/10.1007/BF01614161

Wilcox, R.M. (1967) Journal of Mathematical Physics, 8, 962-
982.

DOLI: 10.4236/jmp.2020.1110102

1647 Journal of Applied Mathematics and Physics


https://doi.org/10.1139/cjp-2016-0602
https://doi.org/10.1007/978-3-662-04275-5
https://doi.org/10.1103/PhysRevA.48.3445
https://doi.org/10.1007/BF02776259
https://doi.org/10.1103/PhysRevA.38.5906
https://doi.org/10.1103/PhysRevD.13.2227
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1006/aphy.1999.5993
https://doi.org/10.1103/PhysRevA.28.1139
https://doi.org/10.1007/BF01614161
https://doi.org/10.4236/jmp.2020.1110102

P. Kongkhuntod, N. Yongram

[24] Grosche, C. and Steiner, F. (1997) Handbook of Feyman Path
Integrals. Springer-Verlag, Berlin.

[25] Bogoliubov, N.N. and Shirkov, D.V. (1959) Introduction to Quan-
tized Fields. Wiley, New York, 147-150.

DOLI: 10.4236/jmp.2020.1110102 1648 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jmp.2020.1110102

	Abstract
	Keywords
	1 Introduction
	2 Dirac Propagator for a One-Dimensional Square Well
	3 Conclusion
	Acknowledgement

