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Abstract 
We know that functional and structural organization is altered in human 
brain network due to Alzheimer’s disease. In this paper we highlight how 
Graph Theory techniques, its structural parameters like connectivity, diame-
ter, vertex centrality, betweenness centrality, clustering coefficient, degree 
distribution, cluster analysis and graph cores are involved to analyse magne-
toencephalography data to explore functional network integrity in Alzheimer’s 
disease affected patients. We also record that both weighted and unweighted 
undirected/directed graphs depending on functional connectivity analysis 
with attention to connectivity of the network and vertex centrality, could 
model and provide explanation to loss of links, status of the hub in the region 
of parietal, derailed synchronization in network and centrality loss at the vital 
left temporal region that is clinically significant were found in cases carrying 
Alzheimer’s disease. We also notice that graph theory driven measures such 
as characteristic path length and clustering coefficient could be used to study 
and report a sudden electroencephalography effect in Alzheimer’s disease 
through entropy of the cross-sample. We also provide adequate literature 
survey to demonstrate the latest and advanced graphical tools for both graph 
layouts and graph visualization to understand the complex brain networks 
and to unravel the mysteries of Alzheimer’s disease.  
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1. Introduction 

Generally, networks are deemed as a collection of certain objects and links join-
ing them. Mathematics through its subfield Graph Theory gives an apt way to 
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define networks and characterizes its properties. The word Graph was coined 
from the Greek term Graphos that stands for something that is drawn.  

1.1. Origin of Graph Theory 

Leonhard Euler announced the usefulness of a graphical representation, for 
comprehending a challenge from a practical life situation. In 1735, Euler lived in 
the Prussia of erstwhile Russia as a town of Konigsberg. It has 7 bridges along 
the Pregel River, joining the 2 banks of the river and 2 islands of the river in the 
middle. See Figure 1. A Challenge at that time was to devise a path that traverses 
each bridge exactly once Euler established the nonexistence of such a path by 
denoting the 4 land areas by vertices and the 7 bridges by edges. Euler demon-
strated that no more than 2 vertices can have number of edges of odd parity 
joining them to the other vertices of the graph for the existence of such a path. 
Number of edges of odd parity incident on all 4 vertices of the Konigsberg 
bridge graph implied that it is not possible to determine such a path. Euler 
proved beyond doubt this fact with a crisp two-page argument. This has led to 
the birth of a branch of mathematics called, Graph Theory. 

1.2. Definition of a Graph 

Mathematically, a graph is a pair ( , )G V E  with V, a non-empty of elements 
called nodes, where { }, 1, , ,iV u i n n Z += = … ∈ , E, a set of elements refereed as 
links, where { ( , )}; , {1,2, , },E e r s r s n n N= ∈ … ∈ , where ( , )e r s  stands for 
edge joining the vertex vr with vertex vs. The set E can be empty set, in which  
 

 
Figure 1. Euler’s first topological description of a graph. (x) Map of a town of Konigsberg 
with A - D denoting land areas, joined by seven bridges denoted by p - v. The challenge 
thwarted by Euler was: prove or disprove the existence of a path that traverses all bridges 
without traversing any bridge more than once. (y) Euler’s graphical modeling of the chal-
lenge. Here vertices stand for land areas and edges stand for bridges. Euler’s brilliant idea 
was centered around the edge count incident on each vertex. 
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case, we call the graph ( , )G V E  an empty graph. The relation between the 
elements of V and E are brought forth through a mathematical incidence rela-
tion : E V Vψ → × , where x stands for the cartesian product of V with itself. 
The incidence relation ψ  associates to each element ( ),e r s E∈  an element 
( ),r sv v V V∈ × such that ( )( ) ( ), ,r se r s v vψ = . We say that the ( ),e r s  joins 
the vertex vr with the vertex vs. Here × refers to the Cartesian product. 

1.3. Matrix Representation of a Graph 

It is possible to express a graph in matrix form as a n n×  matrix called adja-
cency matrix ( )ijA u= . For a graph bereft of weight for edges, the un-weighted 
adjacency matrix A will have for its element iju , the value 1 if ( , )e i j E∈ , indi-
cating the presence of an edge from iu  to ju  and iju  will take the value 0 if 

( , )e i j E∉  indicating the absence of an edge between iu  to ju . For a 
weighted graph, the weighted adjacency matrix A will have for its element iju , 
values other than 0 or 1 to stand for strength or relevance.  

1.4. Undirected/Directed Graph and Terminologies 

Graphs can be of two types depending on the presence/absence of a direction on 
their link elements. In the case of a former, we call it a directed graph or dia-
graph and in the case of latter, we call it an undirected graph. Note that for an 
undirected graph, its adjacency matrix will be symmetric and for a diagraph, its 
adjacency matrix will be asymmetric. Suppose no self-loops are present in 

( , )G V E , then the cardinality of E or the number of elements in E, denoted E  
can be a maximum of ( 1)

2
p p −  in the case of undirected graphs and a maxi-

mum of ( 1)p p −  in the case of a diagraph where V p= . If set ( 1)
2

p pE −
=  

then we call G, a complete graph.  
In ( , )G V E , a sequence of elements of V, denoted, 0 1, , , ru u u…  is said to 

form a walk W of length r, if 0 1 1 2 1( , ), ( , ), , ( , )r ru u u u u u−… ∈  and if 0 ru u=  then 
we call it a closed walk. If all vertices and edges occur in a walk 0( , )rW u u  are 
distinct and do not repeat then we call it a path 0( , )rP u u  between 0u  and 

ru . By the length 0( ( , ))rl P u u  we mean the number of edges between 0u  and 

ru . By a distance ( , )d r s  between the vertex ru  and the vertex su , we mean 
the length of the shortest path from ru  to su . If no path exists between ru  
and su  then we set ( , )d r s = ∞ . 

A graph ( , )G V E  is said to be disconnected if there exists a pair ,r su u V∈  
such that there is no path between them. Note that a path of length 1 between 

iu  to ju  is called the edge joining iu  and ju . If every pair of vertices iu , 

ju  has a path between them in G, then it is called a connected graph. A network 
or a diagraph is said to be weakly connected if between each pair of vertices 
there is an undirected path. A diagraph is called strongly connected if from each 
vertex to every other vertex there exists a directed path. Figure 2 provide in-
stances of various forms of graphs. 

By a bipartite graph, we mean a graph, ( , )G V E , where V is split into ,V V′ ′′  
with ( , )i ju u E∈  in case ( iu V ′∈  and ju V ′′∈ ) or ( ju V ′∈  and iu V ′′∈ ). If  
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Figure 2. Various forms of graphs. (a) Undirected, connected graph; (b) Directed, weakly 
connected graph; (c) Undirected, disconnected graph; (d) Undirected, complete graph. 
 

multiple edges are present between two vertices, then we call it a multi-edge 
graph. A graph is called a simple graph if it contains no multiple edges. Along 
with a vertex set V, a hypergraph comprise a set E of hyper edges where a link 
can join more than one vertex. A disjoint union of complete graphs forms a 
cluster and a complete subgraph of a given undirected graph is called a clique. 
Figure 3 provides instances of some more forms of graphs. One can refer to [1] 
[2] for graph theory terminologies. 

2. Graph Parameters and Methods 

By allowing graphs as the underlying model to depict relationships between ob-
jects Graph Theory gives a number of ways to study and analyse data. Certain 
classifications of well tested methods and metrics permit the analysis of topology 
of networks which are global or local and /or clustered and facilitate propagation 
of information. 

Analysis of topology (global) of graphs enables one to comprehend its net-
work structure, viz., 1) connectivity 2) distribution of edges, 3) magnitude of 
clustering or 4) distribution of path lengths. The edge density / maxE Eρ =  
is a good measure for a network’s overall connectivity. Note that a complete 
graph emerges when ρ  takes the value 1 and a sparse graph emerges when ρ  
is much smaller than 1. We define max ( , )d r s  as the diameter D of the graph 
and ( , ) / maxd r s EΣ  as the mean path length L of the graph. If L varies as 
ln( )n  then G is said to denote a small-world network. The small-world attribute 
conveys the information that any vertex ru  in the graph can be reached from a 
given vertex su  by making use of only a small number of links. 

Degree distribution is a vital parameter to describe a graph. We call a vertex ur 
is a neighbour of vertex us, if ( , )e r s E∈ , and the number of neighbours ur has is 
refereed as degree centrality (DC) of that vertex. the DC of vertex ur in an undi-
rected graph is , ,( )r r s s rDC u u u= Σ = Σ  where s = 1 to n and for a digraph we 
introduce DCin and DCout referred respectively as the in-degree/out-degree and 
write ( )in r srDC u u= Σ  where s = 1 to n and out rsDC u= Σ  where s = 1 to n. The 
probability ( )urP DC t=  can be mathematically modelled through power law  
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Figure 3. (a) A bipartite graph; (b) Complete bipartite graph; (c) A multi edge graph; (d) 
A hypergraph; (e) A cluster; (f) A clique of size 4. 
 
distribution ( ) ~P DC t t γ−=  and the graph in such an instance is said to be free 
of any scale. This means that in such a free of any scale network one can find a 
large number of vertices with small degree and fewer numbers of vertices with 
large degree. On the other hand if all the vertices of a graph tend to have almost 
the same degree around a mean degree value “t” then we call such a graph a 
random graph. A random graph is indicated by ( , )G n p  with n V=  and p, a 
probability for every edge possible. DC then can be described through binomial 
distribution 1( ) 1 (1 )t n t

tP DC t n C p p − −= = − −  and in the case when t is much 
smaller than n, one can describe it through Poisson distribution ( )

!

t te tP DC t
t

−

= = . 
A probe on topological (local) properties of graph permits recognition of sub-

structures or vertices with specific features. For example, an innumerable met-
rics can be seen in literature to set vertex priorities exploiting connectivity  

pattern. Betweenness centrality (BC) of a vertex ru  is: 
)

( )
(rs m

r
rs

u
BC u

σ
σ

= Σ ;  

( r m s≠ ≠ ). Here rsσ  stands for the path count of least length from ru  to su  
and ( )rs muσ  stands for the path count of least length from ru  to su  that 
comprise mu . 

Based on data modelled, edges may be oddly distributed in the graph, yielding 
an irregular topological network. For example, the graph might show group of 
vertices called modules that exhibit to each other a high degree of connectivity in 
comparison with the others in the network. In such cases graph clustering comes 
in handy. It is concerned with following distinct approaches to locate substruc-
tures that partition a given graph into subgraphs. 

Characteristic path length L is the estimated path length defined as: 

1 ,
( 1)

ijj V
ii V

d
L L j I

p p
∈

∈

 
= = ≠  − 

∑
∑  and ( )G VE= , with ( )V G p=  and  

( )E G q=  where iL  is the estimated distance among vertex i and every other 
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vertex in the network, ijd  is the path of shortest length, ( , )i j  is a join be-
tween i and j. The inverse of the characteristic path length is the efficiency  

*
( 1)1 ( )

1
iji V j V

j Id
E

p p
∈ ∈

≠ −
=

−
∑ ∑

. The clustering coefficient is a proportion of 

vertex’s neighbors that are neighbors of each other and it is a measure of segre-

gation: ,

1 1 1( ) ( ) (( ) )
2 ( 1

ij ih jh
ii V i V j h V

a a a
C C

p p ki ki∈ ∈ ∈
= =

−∑ ∑ ∑  where iC  is the  

clustering coefficient of vertex, 0iC =  and 2ik <  and ki is the degree count of 
vertex i, i ijj VK a

∈
= ∑  where ija  is the status of connection between i and j 

when an edge joining i and j is present. The small-world effect is  
/

( )
/

random

random

C C
S

L L
γ
λ

= =  where C and Crandom stands for the un-randomized and 

randomized mean clustering coefficients, while L and Lrandom stands for the 
un-randomized and randomized characteristic path lengths. Normalizing the 
clustering coefficient by determining the proportion of the clustering coefficient 
to the clustering coefficient computed in 100 simulated random networks and 
marked by γ . Then the path length after normalization was the proportion of 
the path length to the path length computed in 100 simulated random networks, 
and marked by λ . See Table 1 and Figure 4. 

Motifs are subgraphs of a smaller size of a larger graph that appear any num-
ber of times in a directed and/or undirected network to capture patterns of inte-
ractions between vertices [3]. These are used for many applications in brain 
networks [4]. Motif analysis is vital to understand building blocks associated 
with neuronal communication. 

Graphs are excellent tools for biomedical research to spell out the associations 
among biological entities like diseases, drugs, proteins, genes, ligands, small mole-
cules, metabolites etc. They capture both the functions and molecular interactions  
 
Table 1. Indicator for certain graph connectivity parameters/centrality measures. 

Classification Properties Type Description 

Global C, a clustering coefficient To measure the magnitude of a local cluster 

Global Characteristic path length, L 
estimate of the least path length among  

any given pair of regions 

Global Small-world, σ Proportion of C/L 

Global Modularity, Q 
Module Measure of within/between,  

dense/sparse connectivity 

Nodal Nodal degree, DC 
count of links on a vertex joined  

to the rest of the vertices 

Nodal 
Vertex specific 

degree distribution 

The degree count of all the vertices,  
in a random network yielding 

a Gaussian distribution 

Nodal Betweenness centrality, BC 
count of paths of least length that traverse  

through a vertex among any given pair of vertices 
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Figure 4. Graphical visualization of certain Graph/Network properties. (a) Degree; (b) 
Clustering coefficient, C; (c) Characteristic path length, L; (d) Betweenness. 
 
from or within cells to a complete organ. These are networks pointing to: Se-
quence Similarity; Gene Regulation; Signal Transduction; Metabolic; Gene Co- 
expression; Disease etc. 

The links among causative genes in a disease network can be formed depend-
ing on counsel from OMIM-Online Mendelian Inheritance in Man associations. 
Bipartite graphs serve as good models [5]. The Disease symptom graphs relate 
diseases with their symptoms and explain their evolution and aid clinicians to 
choose appropriate treatment swiftly [6]. By depending on medical records one 
can generate by employing concept retrieval of cause and effect in traditional 
sense of disease symptom graphs. 

3. First Announcement of AD 

We are very grateful to James M. Ellison for nicely describing the history of Alz-
heimer’s disease in [7]. We provide here a brief outline of his exposition. Emil 
Sioli brought to the notice of Alzheimer’s, the death of one of his patients Au-
guste Deter by sending her brain material. Alzheimer’s examined her brain ma-
terial microscopically with new stains to announce what we coin as amyloid 
plaques and neurofibrillary tangles.  

4. Comprehending Alzheimer’s Disease 

“Cholinergic hypothesis” of Alzheimer’s disease was propounded in the late 
1970’s. It describes the symptoms of this disease is due to the deficiency of ace-
tylcholine, the neurotransmitter, vital for proper function of the memory. But to 
our dismay this type of cure has not more than a little impact on progression of 
disease. The discovery of a protein of beta-amyloid kind in 1987 in Down syn-
drome noticed patient’s blood vessels and Alzheimer’s disease revealed the chro-
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mosome of 21st type and provides us a path to the comprehension of Alzheimer’s 
disease pathology. Then in 1990’s mutations discovery responsible for excessive 
secretion of protein of beta-amyloid kind with Alzheimer’s disease led to the 
“amyloid cascade” hypothesis responsible for inflammatory response and brain 
cell destruction. Also there are other theories that insist the pertinence of taking 
into account the “tau” protein abnormalities. But in Alzheimer’s disease the 
protein named after tau is abnormal and leads to the structural collapse of mi-
crotubule. However there are other factors such as lifestyle, infections caused by 
inflammation, blood-brain barrier alterations and metabolism of erroneous type 
also contribute to the progression of Alzheimer’s disease. 

5. Graph Theory for Brain Modelling 

Graph theory essays a crucial role to comprehend the structural/functional pat-
tern of complex systems. Pertinently, brain graphs are created from connectivity 
matrices that are neural based. Note that here each row/column marks a distinct 
region of brain in the matrix and is deemed as a vertex and the edges correspond 
to each entry in the matrix. A huge portion of theory of graphs is the systematic 
outcome of probe about matrices. Graph theory is a good tool for connectomics. 
See Figure 5 for general description of the process of Brain network construc-
tion.Brain network organization aims to lower cost due to wiring. Features that 
are topological in nature such as modules are mostly co localized, which pre-
serves material in anatomic sense. Features like short characteristic path length 
are opted to lower delay in conduction, to increase the rate at which counsel is 
shared among neurons. Hence connectomics refined laws of conservation among 
reduction of cost of wiring [8]. 

Ramon y Cajal’s exertion on connectivity of neurons almost paralleled the 
seminal endeavour to comprehend interconnected networks of macroscopic 
cortical areas. Theodor Meynert, Carl Wernicke, and Ludwig Lichtheim drew 
network diagrams to describe connections due to white matter among areas that 
are cortical centred and to detail how the brain disorder forewarnings are linked 
to lesions that are pathological. The language replica due to Wernicke Lichtheim 
is the sought after early replica in macro scale of brain graph organization, con-
necting a creation area in the cortex at the front to the medium of understanding 
area in the cortex that is temporal. Certain features specific to this model con-
tribute for the generation of particular forewarning. Specifically, arcuate fasci-
culus’s lesion joining medium of communication areas that are both temporal 
and frontal was determined and demonstrated to induce a challenge to respell 
words that are heard in spite of conduction aphasia. Wernicke extended these 
notions of brain function as an associative theory, where cognitive abilities of 
higher-order were deem to emanate from the integration of cortical areas that 
are intact with respect to connectivity. The 19th century of brain network organ-
ization diagrams consisting of vertices denoting circumscribed areas interlinked 
by edges that denote tracts of white matter, provided the platform to accord graph  
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Figure 5. Schema chart for construction of brain networks. 
 
theory touch to nervous systems in the same manner as the theory of neurons set 
the tune for cellular replicas that are graph based [8]. 

A vast number of vertices denoting cortical or subcortical areas of brain 
graphs interlinked by edges that are axonal, depend on cat/monkey data. It 
measures propagation of a signal that are of the axonal type from the injection 
site to all other regions of brain. Here every endeavour generates connectivity 
centric data of injection lots and several trials are joined to assess the link mag-
nitude of the nervous system. To find a solution to this issue, the original con-
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nectomes were created by consolidating the findings from published literature. 
These probes also led to systematic endeavours to consolidate and organize 
tract-tracing probes, the findings recorded in a connectomic data repository da-
tabase, the CoCoMac. 

It was claimed that the small world attribute could meet a dual function. The 
brain network’s least path length might vote processing of counsel as a whole 
and high value clustering could vote separated processing cliques of vertices that 
are of within type. That is, brain’s small-world architecture provides a substrate 
that is in topological sense for functional separation and accumulation thereby 
neutralising the riddle regarding whether it could support a single architecture 
of these opposing tendencies. Further, by rewiring computationally the edges it 
was demonstrated that PL is linked to cost of wiring. It is estimated by the Euc-
lidean distance among linked vertices, could be decreased by the link rewiring 
among vertices to lower its real distance. But this leads to increased characteris-
tic path length. This was the compromise among various attributes of the con-
nectome. Hence other existing graph centric probes showed concept centric 
proof. It established that the tools induced by theory of graphs were adoptable to 
nervous systems that are made simple. But, these findings were restricted to facts 
on the cat/macaque. Connectomics took a wiser step with the introduction of 
pipeline processing that permitted graph centric techniques’ application to data 
on human aided by neuroimaging technique [8]. 

Human brain functional/anatomical networks’ first graph theoretic analyses 
depend on matrix connectivity estimated from MRI and M/EEG data and on 
knowhow of MRI data that are diffusion centric and tractographic. So trace tract 
induced brain graphs, structural/functional/diffusion MRI are quite welcome. It 
is pertinent to observe that these are distinct concepts in several viewpoints. 
Graph centric probes of connectivity networks have witnessed activities that are 
neurophysiological over long period with correlation coefficient. Investigated in 
this manner the connectivity that is functional is in positive correlation with 
anatomical connectivity. Figure 6 provides a Flow Diagram of states of network 
of Brain. 

It was established through massive degree count that, in MRI graphs of Alz-
heimer’s disease that, vertices have higher content of amyloid protein in contrast 
to less central lots of brain in topologically sense. Among a variety of disorders 
that are neurodegenerative, vertex degree and centrality measures have been po-
sitively correlated assessed using MRI in functional connectivity networks with 
local grey matter atrophy.  

In the last few decades graph theoretical viewpoints depending on MRI, MEG, 
and EEG have widely grown and most of the step by step improvement of con-
nectomics that is concept centric has centred on knowhow of data of human 
neuroimaging type denoting networks in macroscale. A latest improvement hoped 
to be trend setting for the coming decades of connectomics, is the abundance of data 
of high calibre on brain networks at mesoscales roughly 10,000 m and microscales  
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Figure 6. Flow diagram showing various network’s states. 
 
roughly 1,000,000 m. 

In brain connectivity analysis how to substantiate the utility value of graph 
centric proceed with the given toolkit? 

1) What aspect has been investigated in modelling human cognitive abilities 
of a human and disorders that are psychiatric after the arrival of graph theory in 
cognitive neuroscience? 

2) In graph-based probe on human connectome what topics are pertinent for 
further investigation? 

6. Further Scope 

First we wish to eliminate the factors such as data based on resting-state, the 
impact of conduction which is volume based in MEG knowhow that are sen-
sor-space centric, and feature selection that has affected the outcome measures 
and subsequent interpretations done in [9] and we intend to investigate syste-
matically the effect of coupling measures on graph analysis results. Then we wish 
to apply other measures, explaining network clustering properties. Then we 
propose to compare the findings obtained in [9] with the spectral results in 
graphical sense on other measures of connectivity that are functional, datasets 
on specific tasks, or various conditions for disease. From the view point of clini-
cal sense the criticizing factors are small sample size, disease of heterogenic type, 
comorbidity and the application of psychoactive medication. We would defi-
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nitely make changes in these with choice of selection of patients from India. We 
aim to EEG activity analysis done in [10] to almost double the patients with de-
mentia due to AD and with the help of CC and PL. Then we propose characteri-
zation of mechanisms in AD that are neural. In [11] Graph Regression Model 
depended framework was suggested to know the structure of neuroimaging data. 
We wish to use other available statistical models to enlarge the knowledge do-
main of AD. We describe briefly here about the current status of the graph-based 
probe on human connectome and recommend the readers to [12] for more. One 
can model the human brain as a network referred as the human connectome) 
[13]. Here different lots of the brain are the vertices and the relation describing 
adjacency between them is called as links or the edges. The links can be thought 
of as diffusion tensor imaging (DTI) obtained through magnetic resonance im-
aging (MRI), EEG, MEG or functional MRI, fMRI that are arterial spin labelling 
(ASL) enabled blood flow with dependencies in time series that are statistical. 
Through this a connection matrix evolves and the concept of small-worldness 
provides the balance among short-distance and long-distance connectivity. 
BRAPH is a popular software package widely used off late in brain connectome 
projects. It is written in Matlab. It is both open source and object oriented. It is 
applied with a graphical user interface (GUI) for graph theoretical analysis. This 
software can be employed to assess network topology on Alzheimer’s disease af-
fected patient’s structural MRI data. It can also compute 1) degree distribution 
of the vertices in such a massive brain graph and such a distribution follows 
power law as examined on patients largely of European origin and we intend to 
verify the same by making use of data taken from patients in India 2) the short-
est distance among two vertices by which we mean the least number of links re-
quired to reach a given vertex from a given vertex 3) the characteristic path 
length by which we refer to the estimate of the minimum path lengths among 
one vertex and all other vertices 4) the centrality due to closeness, that stands for 
the reciprocal of the least path length 5) the betweenness centrality, that denotes 
the proportion of all least paths that pass through a given vertex in the network. 
Such computation helps us to determine whether a vertex is a brain hub. If the 
vertices are close to each other and the path length is shorter than the transfer of 
information between them will be highly efficient. To determine the efficiency 
due to communication among a vertex and its close links, the local measure of 
efficiency can also be found. It can be estimated over all vertices to explain main 
attributes of the brain network. 6) The C is a vital tool that determines the cli-
ques (complete subgraphs). For each vertex, this can be computed as the ratio of 
the vertex's adjacencies that are also adjacents of each other. For the network in 
full, the C of all vertices can be pooled into the mean C. 7) Mean C is the pro-
portion of paths that transverse 2 links by the triangle count. If a vertex is linked 
to another vertex, and it is in turn linked to a 3rd one, the transitivity property 
spells the probability that the first vertex is linked to the 3rd. 8) Modularity con-
cept can be employed to find the feasibility to which a network has been grouped 
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into distinct lots and it also bloats the edge count within lots and keep down the 
number of links among distinct lots. 9) z-score in a module that are of within 
type to calculate how well a vertex is joined with others 10) the participation 
coefficient determines whether a vertex has several links with vertices from dis-
tinct modules. It is presumed that if a vertex has a large degree count of with-
in-module type then it is named as a temporary fulcrum and in case if it has a 
large participation value for coefficient then it is called a linker fulcrum. 

We very much intend to understand the disruptions in the structural brain 
networks of Alzheimer’s disease affected patients from Indian hospitals k-cores 
where one can observe drastic alterations among the white matter integrity in 
the left hemisphere of affected patients. We propose to establish that graph me-
tric measures can function as a distillation of the brain’s network. 

7. Conclusion 

So graphs are highly simple models through which the intricacies of the brain 
are transformed to mere vertices and edges. This feature is a unified choice in 
“big data” era in the presence of an impending danger of getting drowned by 
voluminous data. Underlying mathematics of graphs is adoptable and amenable 
to life scientists who lack quantitative sciences. A graphical view of brain has the 
possibility of yielding a conceptual model through an easily comprehensible me-
dium of communication.  
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Abbreviations and Acronyms 

PL—Path Length 
CC—Central Coefficient 
BC—Betweenness Centrality 
AD—Alzheimer’s Disease 
EEG—Electroencephlography 
MRI—Magnetic Resonance Imaging 
fMRI—functional Magnetic Resonance Imaging 
rsfMRI—resting state functional Magnetic Resonance Imaging 
ASL—Arterial Spin Labelling 
MEG—Magnetoencephalography 
NIBS—Non-Invasive Brain Stimulation  
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