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Abstract 
Plane, transverse MHD flow through a porous structure is considered in this 
work. Solution to the governing equations is obtained using an inverse me-
thod in which the streamfunction of the flow is considered linear in one of 
the space variables. Expressions for flow quantities are obtained for finitely 
conducting and infinitely conducting fluids. 
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1. Introduction 

Labropulu [1], elegantly stated that the movement of a fluid (liquid or gas) 
through a magnetic field may induce an electric field, and consequently a cur-
rent. The current then interacts with the magnetic field to produce a force that 
acts on the flowing fluid. It has long been recognized that these interactions, and 
magneto-hydro-dynamic (MHD) flows in general, occur in nature and in 
man-made media and devices [1], and find applications in both natural settings, 
such as in plasma dynamics and in astrophysics [2], and in engineering applica-
tions, such as in power generation [3] [4]. 

Importance of these and many other applications have motivated various re-
searchers to propose methods of solutions that are either specialized or approx-
imate to provide satisfactory solutions to the inherently complex governing equ-
ations that lack complete analytical solutions. Many methods have been pro-
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posed and implemented, and have been reported in the literature (cf. [5]-[10] 
and the references therein).  

Occurrence of MHD flows in the earth interior and in other porous materials 
underscores the need for studies of MHD flows in porous media. These flows 
enjoy a spectrum of engineering applications that have been investigated over 
the past few decades (cf. [4] and the references therein). Equations governing 
MHD flow through porous media have been thoroughly and elegantly analyzed 
by Geindreau and Auriault [4], who also presented a literature review of both the 
theoretical work, and the experiments that have been conducted in field. 

Of particular interest to the current work is plane transverse MHD flow 
through a porous structure, wherein the magnetic vector field is considered 
normal to the plane of the flow, shown in Figure 1.  

This type of flow might be of interest in some applications including lubrica-
tion theory where the magnetic field might have an impact on the load carrying 
capacity in mechanisms that include porous lining [11] [12] [13]. In the analysis 
to follow, we consider the steady, incompressible MHD flow through a porous 
structure with constant permeability. We parallel closely the elegant analysis and 
approach provided by Labropulu [1], in her study of Riabouchinsky flows of or-
dinary and second grade MHD fluids in free space in that we state, define and 
formulate the problem in a similar manner and assume that streamfunction is 
linear in one of the space variables. However, we present a method of solution 
that is based on the inverse approach introduced in by Hamdan [14] and re-
ceived success in the solution of flow problems in porous media [15]. We pro-
vide expressions for the streamfunction, velocity components, vorticity, pressure 
functions and magnetic field. 

While we consider in this work fluid flow in unconfined domains, solutions 
might be of interest in lubrication theory with porous lining under the influence 
of an electromagnetic field. 

2. Governing Equations 

Steady, magneto-hydro-dynamic (MHD) flow of an incompressible fluid, through 
a porous sediment, is governed by the following equations: 

0∇⋅ =v                              (1) 

0∇⋅ =H                             (2) 
 

 
Figure 1. Representative sketch of flow direction. 
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( ) ( )2
e mp

k
⋅∇ = −∇ + ∇ − + ∇× ×v v v v H Hµρ µ µ             (3) 

( ) 1

m

v∇× × − ∇×∇× =H H
µ σ

0                   (4) 

wherein mµ  is the magnetic permeability, v  is the velocity vector field, H  
is the magnetic field, p is the pressure function, ρ  is the fluid density, µ  is 
the base fluid viscosity coefficient, eµ  is the effective viscosity of the fluid in the 
porous medium, k is the (constant) permeability, σ  is the electrical conductiv-
ity, and ∇  is the gradient operator. We point out that the electric current den-
sity is given by ∇×H . 

Employing the identity  

( ) ( )21
2
 ⋅∇ = ∇ − × ∇×  

v v v v v                    (5) 

Equation (3) takes the form 

( ) ( )2 21
2 e mp

k
 ∇ − × ∇× = −∇ + ∇ − + ∇× ×  

v v v v v H Hµρ µ µ       (6) 

Now, governing Equations (1), (4), and (6) represent a determinate system of 
seven scalar equations in the seven unknown functions v , H  and p, while 
Equation (2) represents an additional condition on H  that signifies the ab-
sence of magnetic poles in the flow field.  

Assuming the flow is in two space dimensions, (x, y), then the velocity vector 
field is given by  

( ), ,0u v=v                            (7) 

Assuming that that the magnetic field acts in a direction perpendicular to the 
plane of the flow, we take  

( )0,0, H=H                           (8) 

Equations (2) and (8) imply that 0zH =  and ( ),H H x y= , where subscript 
notation denotes partial differentiation. 

Using (7) and (8) in (1), (4) and (6), we obtain the following governing equa-
tions in components’ form: 

0x yu v+ =                           (9) 

( )2 2 * 2 21
2 2

m
x y x ex x

u v v v u p u u H
k

+ − − =         
− + ∇ − −

µµρ µ      (10) 

( )2 2 * 2 21
2 2

m
x y y ey y

u v u v u p v v H
k

 + + − = − + ∇ − −         

µµρ µ      (11) 

21 0x y
m

uH vH H+ − ∇ =
µ σ

                   (12) 

where 2
xx yy∇ ≡ ∂ + ∂  is the Laplacian in two dimensions, and  

* 2

2
mp p H= +

µ
                        (13) 
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Equations (9), (10), (11), (12) and (13) represent five scalar equations in the 
five unknowns , , ,u v H p  and *p  (the magnetic pressure function). These eq-
uations govern the two-dimensional flow of a finitely conducting fluid (σ  is fi-
nite) in a constant permeability porous material in the presence of a magnetic 
field.  

If the fluid is infinitely conducting then →∞σ , m →∞µ σ  and 1 0
m

→
µ σ

. 

Diffusion Equation (12) thus reduces to: 

0x yuH vH+ =                          (14) 

3. Vorticity-Streamfunction and Generalized Pressure  
Formulation 

For three dimensional flow, the vorticity vector is the curl of the velocity vector. 
This definition reduces to the following expression for vorticity, ω , of a fluid in 
two space dimensions 

x yv u= −ω                           (15) 

Defining the generalized pressure function 

( )* 2 21
2

h p u v= + +ρ                       (16) 

then Equations (10) and (11) are replaced, respectively, by 

2
x eh v u u

k
− = ∇ −

µρ ω µ                      (17) 

2
y eh u v v

k
+ = ∇ −

µρ ω µ                      (18) 

Now, equation of continuity (9) implies the existence of a streamfunction 
( ),x yψ  such that 

yu =ψ                            (19) 

and 

xv = −ψ                           (20) 

With the introduction of the streamfunction, the equation of continuity (9) is 
automatically satisfied, and the vorticity definition (15) becomes 

2= −∇ω ψ                           (21) 

Using (19) and (20) in (17), (18), (12) and (14), we obtain, respectively  

( ) ( ) ( )2 2
x x e y yh

k
− ∇ = ∇ −

µρ ψ ψ µ ψ ψ                (22) 

( ) ( ) ( )2 2
y y e x xh

k
− ∇ = − ∇ +

µρ ψ ψ µ ψ ψ               (23) 

21 0y x x y
m

H H H− − ∇ =ψ ψ
µ σ

                  (24) 

0y x x yH H− =ψ ψ                        (25) 
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Once Equations (21), (22), (23) and (24), or (25), are solved for , ,hψ ω  and 
H as functions of x and y, velocity components can be computed from (19) and 
(20), then *p  can be obtained from (16) and finally p from (13).  

4. Compatibility Equation and the Form of Streamfunction 

The generalized pressure function ( ),h x y  satisfying (22) and (23) is assumed 
to be a continuous function with the integrability condition, xy yxh h= . Integra-
bility condition leads us to the following compatibility equation, derived by dif-
ferentiating (22) with respect to y and (23) with respect to x, and equating the 
resulting derivatives:  

( ) ( )2 2 4 2
x y y x e k

 ∇ − ∇ + ∇ = ∇ 
µρ ψ ψ ψ ψ µ ψ ψ            (26) 

or 

( )
( )

2
4 2

,

, ex y k

∂ ∇
+ ∇ = ∇

∂

ψ ψ µρ µ ψ ψ                  (27) 

where 4 2xxxx xxyy yyyy∇ ≡ ∂ + ∂ + ∂ . 
The streamfunction ( ),x yψ  is a solution to (26) or (27). Its determination is 

a formidable task at present. We therefore assume that the streamfunction is li-
near in one of the space dimensions. We thus let 

( ) ( ) ( ),x y yf x g x= +ψ                     (28) 

Using (28) in (26), and equating coefficients of similar powers of y, we obtain 
the following ordinary differential equations for ( )f x  and ( )g x , wherein prime 
notation denotes ordinary differentiation 

[ ] 0iv
e f f f ff f

k
′ ′′ ′′′ ′′+ − − =

µµ ρ                  (29) 

[ ] 0iv
e g g f fg g

k
′ ′′ ′′′ ′′+ − − =

µµ ρ                  (30) 

Integrating (29) and (30) once with respect to x, we obtain, respectively: 

( )2
1e f f ff f C

k
 ′′′ ′ ′′ ′+ − − = 

µµ ρ                 (31) 

[ ] 2e g f g fg g C
k

′′′ ′ ′ ′′ ′+ − − =
µµ ρ                  (32) 

where 1C  and 2C  are arbitrary constants, whose values will be discussed fol-
lowing solution of pressure function, below. Once Equations (31) and (32) are 
solved for ( )f x  and ( )g x , the streamfunction given by (28) can then be ob-
tained. 

Using (28) in (19) and (20), we obtain the following expressions for the veloc-
ity components: 

yu f= =ψ                          (33) 

and 
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xv yf g′ ′= − = − −ψ                      (34) 

Equations (21) and (28) give the following expression for vorticity: 

yf g′′ ′′= − −ω                        (35) 

Using (28) in (22) and (23) we obtain, respectively; 

( )[ ]x eh yf g yf g f f
k

′ ′ ′′ ′′ ′′= + + + −
µρ µ             (36) 

( ) [ ]y eh yff fg yf g yf g
k k

 ′′ ′′ ′′′ ′′′ ′ ′= + − + + + 
 

µ µρ µ        (37) 

From (31) and (32), we can write 

( )1
2

e f f C ff f
k

′′′ ′ ′′ ′− = + − 
 

µµ ρ               (38) 

[ ]2e g g C fg f g
k

′′′ ′ ′′ ′ ′− = + −
µµ ρ                (39) 

Using (38) and (39) in (36) and (37), followed by integrating (36) and (37), we 
obtain the following expression for the generalized pressure function ( ),h x y  

( ) [ ] ( )
2

2 2
1 2 3d

2 2 e
yh C f y C f g g f f x C

k
 ′ ′ ′ ′ ′= − − − − + + − +  ∫

ρ µρ ρ µ  (40) 

where 3C  is an arbitrary constant. 
Using (28) in the diffusion Equation (24), we obtain 

( ) 21 0x y
m

fH yf g H H′ ′− + − ∇ =
µ σ

                (41) 

If the fluid is infinitely conducting, then (40) reduces to 

( ) 0x yfH yf g H′ ′− + =                     (42) 

Using (33), (34) and (40) in (16), we obtain 
2

* 2
1 2 3

1 d
2 2e
yp C C y f f f x C

k
′= − − + − − +∫

µµ ρ           (43) 

while using (43) in (13) gives 
2

2 2
1 2 3

1 d
2 2 2

m
e

yp C C y f f f x C H
k

 
′= − − + − − + − 

 
∫

µµµ ρ       (44) 

5. Determination of the Streamfunction 

In the absence of a general solution to Equations (31) and (32), the functions 
( )f x  and ( )g x  have customarily be determined in accordance with the fol-

lowing procedure that received attention in the study of Navier-Stokes flow and 
in MHD flow [1]: 

1) Find a particular solution for ( )f x  satisfying (31). 
2) Substitute the solution for ( )f x , found in step 1), in (32) and find a gen-

eral solution for ( )g x . 
3) Once ( )f x  and ( )g x  are found, the streamfunction ( ),x yψ  can be 
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calculated using (28). 
This procedure has some drawbacks that have been discussed in details in [14] 

and [15], and include the difficulty of finding particular solutions to (31) for 
general flows, and the presence of many arbitrary constants in the function 
( )g x . These and other drawbacks can be overcome with the following modified, 

inverse procedure. 
1) Assume the form of the function ( )g x . 
2) Substitute the assumed form of ( )g x  in (32). This produces an ordinary 

differential equation for ( )f x . 
3) Solve the equation that arises in step 2) for ( )f x . Solution obtained in 

this step will involve some arbitrary constants and the solution must satisfy (31). 
4) Substitute ( )f x  that is obtained in step 3) in (31) and determine the ar-

bitrary constants. 
We apply the modified algorithm to obtain a solution to Equations (31) and 

(32). In order to parallel solutions obtained for flow through porous media with-
out magnetic effects, discussed in [15], we assume the following form of ( )g x : 

( ) e xg x = + βγ α                         (45) 

wherein ,α β  and γ  are known parameters. 
Using (45) in (31) and (32) we obtain the following first order ordinary diffe-

rential equation for ( )f x : 

2 2e Cf f
k

′ − = − +
µµβ β

ρ ρ αβρ
                  (46) 

whose solution takes the form 

( ) 2
42

1 e x
e

Cf x C
k

 
= − − + 

 
βµµ β

ρ β αβ
               (47) 

where 4C  is an arbitrary constant. 
Using (45) and (47) in (28), we obtain the following expression for the 

streamfunction: 

( ) ( )2
42

1, e x
e

Cx y y C y
k

 
= + − − + + 

 
βµψ γ µ β α

ρ β αβ
        (48) 

Using (48), velocity components u and v, given by Equations (33) and (34), 
respectively, and vorticity, given by Equation (35), take the following forms, re-
spectively 

2
42

1 e x
e

Cu C
k

 
= − − + 

 
βµµ β

ρ β αβ
                (49) 

[ ]4 e xv C y= − + ββ α                      (50) 

[ ]2
4 e xC y v= − + =βω β α β                   (51) 

The generalized pressure function ( ),h x y  given by Equation (40), and the 
pressures *p  and p, given by Equations (43) and (44), respectively, take the fol-
lowing forms, respectively 
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( )
2

22 2
1 2 4 4

2
52

e e
2

x x
e

e

yh C C y C y C
k

C x C
k k

 
= − − + + + − 

 
 

− − − + 
 

β β µρβ α µ β
β

µ µµ β
ρ β αβ

      (52) 

where 5C  is an arbitrary constant. 
2

* 24 2
1 2 2 2 2

2
2

2
4

52

e e
2 2

1
2 2 2

x x
e

e

C Cyp C C y C C x
k k

C C
k

 
= − − + −

 
 
 

− − − 
 

− − − +

β βρ µ µµ β
ρ βαβ αβ

ρµµ β
ρ β αβ

  (53) 

2
24 2

1 2 2 2 2

2
22

52

2
4e e

2 2

1
2 2 22

x x
e

m
e

C Cyp C C y C C x
k k

C C H
k

 
= − − + − − − − 

 

 
− − − + − 

 

β βρ µ µµ β
ρ βαβ αβ

µρµµ β
ρ β αβ

  (54) 

Equation (54) requires the determination of ( ),H x y  in order to determine 
the pressure. To accomplish this, we consider the cases of infinitely conducting 
fluid and finitely conducting fluid, discussed in what follows. 

If the fluid is infinitely conducting then the diffusion equation is given by Eq-
uation (25), or, equivalently, (42). In this case if ( ), constantH x y =  or if 

( ) ( ),H x y R= ψ , where ( )R ψ  is an arbitrary function of ψ , then (25) is sa-
tisfied. For example, the following function satisfies (42): 

( ) ( ) ( ) ( )

( )2
42

,

e xe

H x y R yf x g x

C y C y
k

= = = +

 
= + − − + + 

 
β

ψ ψ

µ µγ β α
ρ ρ β ραβ

        (55) 

For finitely conducting fluid, we follow the procedure introduced by Labro-
pulu [1] which leads us to a solution to the diffusion Equation (41) of the form 

( ) ( ) ( ) ( ),H x y Z x F y G y= +                   (56) 

where  

( ) de dm f xZ x x∫ =  ∫ µ σ                      (57) 

and the functions ( )F y  and ( )G y  in (56) must be such that 

( ) 1 0y yy
m

yf g H H′ ′+ + =
µ σ

                  (58) 

or equivalently 

( ) ( ) ( )

( ) ( ) ( )

d1 e d

1 0

m f x

m

m

yf g F y F y x

G y yf g G y

∫   ′ ′ ′ ′′+ +    

′′ ′ ′ ′+ + + =

∫ µ σ

µ σ

µ σ

          (59) 

Using (45) and (47), we write (59) as 
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[ ]( ) ( ) ( ) ( )

[ ]( ) ( )

d
4

4

1 1e e d

e 0

m f xx

m m

x

C y F y F y x G y

C y G y

∫   ′ ′′ ′′+ + +    
′+ + =

∫ µ σβ

β

β α
µ σ µ σ

β α

   (60) 

where  

( ) { }2 4
2exp exp exp dxm

e m m
C CZ x x e B x

k
     = − − ⋅ ⋅    
     

∫ βµ σ µµ β µ σ µ σ
ρ β βαβ

(61) 

and B is an arbitrary constant. 
For the sake of illustration, if we take ( ) 0F y =  in (56), then ( ) ( ),H x y G y= , 

where ( )G y  satisfies 

[ ]( ) ( ) ( )4
1e 0x

m

C y G y G y′ ′′+ + =ββ α
µ σ

              (62) 

whose solution is given by 

( )
2

4
6 7exp e d

2
x

m
C yG y y C y C

  
= − + + +     
∫ βµ σβ α          (63) 

where 6C  and 7C  are arbitrary constant. 

6. Determination of the Arbitrary Constants 

In the above analysis, we derived expressions for the flow quantities under the 
assumption that the streamfunction is linear in one of the space variables. Solu-
tions obtained are given by Equations (48) to (54), and (55) or (56), and involve 
seven arbitrary constants, 1C  to 7C . 

The expression for ( )f x  given by Equation (47), namely 

( ) 2
42

1 e x
e

Cf x C
k

 
= − − + 

 
βµµ β

ρ β αβ
                (47) 

contains two arbitrary constants, 2C  and 4C . This solution for ( )f x  must 
satisfy (29). We can use (29) as a condition to help us determine the arbitrary 
constants 2C  and 4C .  

Upon substituting (47) into (29), and simplifying, we obtain the following 
condition on 2C  and 4C  

2 4 0C C =
β
α

                           (64) 

Condition (64) implies that either 2 0C =  or 4 0C = . 
Case 1: If 4 0C =  and 2 0C ≠  
When 2 0C ≠  then the pressure is unbounded, unless the fluid extent is fi-

nite. This leads to the following observation. 
Observation (1). In the MHD flow at hand, if the fluid is of finite extent then 

the flow variables are given by 

( ) 2
2, e x

e
Cyx y

k
 

= − − + + 
 

βµψ µ β γ α
ρ β αβ

             (65) 
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2
2

1
e

Cu
k

 
= − − 

 

µµ β
ρ β αβ

                   (66) 

e xv = − βαβ                         (67) 

2e x v= − =βω αβ β                       (68) 
2

2 2 2 2
1 2 52e

2
x

e
Cyh C C y x C

k k
 

= − − + − − − + 
 

β µ µρα β µ β
ρ β αβ

   (69) 

2
* 2

1 2 2

2
2

52

2

1
2 2 2

e

e

Cyp C C y x
k k

C C
k

 
= − − − − − 

 

− − −




+






µ µµ β
ρ β αβ

ρµµ β
ρ β αβ

           (70) 

2
2

1 2 2

2
22

52

2

1
2 2 22

e

m
e

Cyp C C y x
k k

C C H
k

 
= − − − − − 

 

−
 
 
 

− − + −

µ µµ β
ρ β αβ

µρµµ β
ρ β αβ

          (71) 

where 

( ) ( ) ( ) ( ),H x y Z x F y G y= +                   (72) 

( ) { }2
2exp exp dm

e m
CZ x x B x

k
   = − − ⋅  
   

∫
µ σ µµ β µ σ
ρ β αβ

      (73) 

and ( )F y  and ( )G y  satisfy 

( ) ( ) ( ) ( ) ( )1 1e e 0x x

m m

F y F y Z x G y G y
 

′ ′′ ′′ ′+ + + = 
 

β βαβ αβ
µ σ µ σ

  (74) 

If in the above solutions, k →∞ , we recover solution to flow through a 
free-space domain, that is a domain without the presence of a porous matrix. 

Case 2: If 2 4 0C C= =  
For fluid of infinite extend, we take 1 2 0C C= =  so that the pressure is 

bounded. Taking 4 0C =  as well leads to the following observation. 
Observation (2). In the MHD flow at hand, if the fluid is of infinite extent 

and 4 0C = , then the flow variables are given by 

( ), e x
e

yx y
k

 
= − + + 

 
βµψ µ β γ α

ρ β
              (75) 

1
eu

k
 

= − 
 

µµ β
ρ β

                    (76) 

e xv = − βαβ                        (77) 
2e x v= − =βω αβ β                     (78) 

2 2 2
5e x

eh x C
k k
 

= − − + 
 

β µ µρα β µ β
ρ β

            (79) 

2
*

5
1

2 2e ep x C
k k k

 
 

 
= − − − − + 

  

µ µ ρµµ β µ β
ρ β ρ β

         (80) 
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2
2

5
1

2 2 2
m

e ep x C H
k k k

 
 

 
= − −

 
− − + − 

 

µµ µ ρµµ β µ β
ρ β ρ β

      (81) 

where 

( ) ( ) ( ) ( ),H x y Z x F y G y= +                  (82) 

( ) { }exp exp dm
e mZ x x B x

k
  

= − ⋅  
  

∫
µ σ µµ β µ σ
ρ β

         (83) 

and ( )F y  and ( )G y  satisfy 

( ) ( ) ( ) ( ) ( )1 1e e 0x x

m m

F y F y Z x G y G y
 

′ ′′ ′′ ′+ + + = 
 

β βαβ αβ
µ σ µ σ

  (84) 

If in the above solutions, k →∞ , we recover solution to flow through a 
free-space domain, that is a domain without the presence of a porous matrix. 

Case 3: If 4 0C ≠  and 2 0C =  
For fluid of infinite extent, coefficients of y and y2 must vanish in order for the 

pressure function to be bounded. We therefore take 1 2 0C C= =  and state the 
following observation. 

Observation (3). In the MHD flow at hand, if the fluid is of infinite extent 
and 4 0C ≠ , then the flow variables are given by 

( ) ( )4
1, e x

ex y y C y
k

 
= + − + + 

 
βµψ γ µ β α

ρ β
            (85) 

41 e x
eu C

k
 

= − + 
 

βµρ µ β
β

                    (86) 

[ ]4 e xv C y= − + ββ α                        (87) 

[ ]2
4 e xC y v= − + =βω β α β                     (88) 

( )22 2
4 4 5e ex x

e eh C y C x C
k k k

   
= + + − − − +   

   
β β µ µ µρβ α µ β µ β

β ρ β
  (89) 

2
* 22

4 5
1e

2 2 2
x

e ep C x C
k k k
   

= − − − − − +  
   

βρ µ µ ρµµ β µ β
ρ β ρ β

     (90) 

2
2 2

5
2
4

1e
2 2 2 2

x m
e ep C x C H

k k k
   

= − − − − − + −  
   

β µρ µ µ ρµµ β µ β
ρ β ρ β

  (91) 

( ) ( ) ( ) ( ),H x y Z x F y G y= +                   (92) 

{ }4( ) exp exp e exp dxm
e m m

CZ x x B x
k

    
= − ⋅ ⋅    

    
∫ βµ σ µµ β µ σ µ σ

ρ β β
 (93) 

and B is an arbitrary constant, and the functions ( )F y  and ( )G y  satisfy 

[ ]( ) ( ) ( )

( ) [ ]( ) ( )

d
4

4

1e e d

1 e 0

m f xx

m

x

m

C y F y F y x

G y C y G y

∫   ′ ′′+ +    

′′ ′+ + + =

∫ µ σβ

β

β α
µ σ

β α
µ σ

         (94) 
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If in the above solutions, k →∞ , we recover solution to flow through a 
free-space domain, that is a domain without the presence of a porous matrix. 

In all of the cases discussed above, all remaining arbitrary constants must be 
determined using physical conditions on the flow variables. 

7. Potential Flow 

Using the presented method of solution, if we choose ( )g x  as a linear function 
in the variable x, namely 

( )g x Cx D= +                          (95) 

where C and D are known parameters, Equations (31) and (32) yield 

( ) 2
8

1 Cf x x C
k C

 = + + 
 

µ
ρ

                    (96) 

and Equation (28) gives the following expression for the streamfunction: 

( ) 2
8

1,
Cx y y x C Cx D

k C
  

= + + + + 
 


 

µψ
ρ

             (97) 

Velocity components take the form: 

2
8

1 Cu x C
k C

 = + + 
 

µ
ρ

                    (98) 

21 Cv y C
k C

 = − + −  

µ
ρ

                    (99) 

and the vorticity vanishes since  
2 0yf g′′ ′′= −∇ = − − =ω ψ                   (100) 

If in the above solutions, k →∞ , we recover solution to flow through a 
free-space domain, that is a domain without the presence of a porous matrix. 

8. Conclusion 

In this work, we considered plane transverse MHD flow through a porous 
structure of contant permeability. In order to solve the governing equations, we 
assumed the streamfunction to be linear in one of the space variables, namely 

( ) ( )yf x g x= +ψ . We derived a compatibility equation that resulted in two 
coupled ordinary differential equations the solution to which comprises solution 
for the streamfunction of the flow. In order to avoid the presence of a large 
number of arbitrary constants, we implemented an inverse approach to obtain 
the solution. Advantage to this implemented approach is avoidance of Riabou-
chinsky assumption that ( )g x  must be taken as zero. We have obtained vari-
ous forms of the flow variables depending on three observations made about 
some of the arbitrary constants. Solutions obtained are for both cases of finitely 
conducting and infinitely conducting fluids, and produce same forms of solu-
tions obtained by Labropulu [1], when permeability goes to infinity. It is also 
worth noting that solutions for the streamfunction, velocity and viscosity are 
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dependent on permeability of the medium and are the same results obtained by 
Kamel and Hamdan [15]. 
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Nomenclature 

1 2 8, , , , , ,B C D C C C : arbitrary constants 
, ,f g Z : functions of x 
,F G : functions of y 

R: arbitrary function of the streamfunction ψ  
, ,α β γ : arbitrary parameters 

µ : base fluid viscosity coefficient  

eµ : effective viscosity  

mµ : magnetic permeability 
,x y : space variables 

v : velocity vector field  
u: tangential velocity component 
v: normal velocity component 
h: generalized pressure function 
H : magnetic field  
H: magnetic field third component 
p: pressure function  

*p : magnetic pressure function 
ρ : fluid density  
k: permeability  
σ : electrical conductivity  
ω : vorticity vector third component 
ψ : streamfunction 
∇ : gradient operator 

2∇ : Laplacian operator 
∇× : curl operator 
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