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Abstract 
In this paper, we consider the Neumann initial-boundary value problem for 
the Keller-Segel chemotaxis system with singular sensitivity 
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is considered in a bounded domain with smooth boundary, ( )1n nΩ ⊂ ≥ , 

where 1 20, 0d d> >  with parameter χ ∈ . When 1 2d d χ= + , satisfying 

for all initial data ( )0
00 u C≤ ∈ Ω  and ( )1,

00 v W ∞< ∈ Ω , we prove that the 

problem possesses a unique global classical solution which is uniformly 
bounded in ( )0,Ω× ∞ . 
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1. Introduction 

The Keller-Segel system is used to model chemotactic movement in biology [1]. 
The mathematical study of the system has attracted great interest in recent years 
[2]. In this paper, we consider the Neumann initial-boundary value problem for 
the chemotaxis system with singular sensitivity  
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           (1.2) 

in a bounded domain ( )1n nΩ ⊂ ≥  with smooth boundary, where 1 0d >  
and 2 0d >  are diffusion coefficients of cell density and chemical stimulus, re-
spectively. The Keller-Segel systems were introduced to describe the aggregation 
of cellular slime molds, u represents the density of the cells and v represents the 
concentration of a chemical substance secreted by themselves. The chemical 
substance is an attractant, they sense a gradient of the chemical substances and 
move towards higher concentrations. The function χ  is called a sensitivity 
function, and expresses the relation between the chemical concentration and the  

cells response, the symbol 
v
∂
∂

 denotes differentiation with respects to the outward  

normal ν  on ∂Ω  and the initial data 0u  and 0v  are sufficiently smooth 
functions. For system (1.2) with 1 2d d= , the global existence and boundedness of  

classical solution is proved under the assumption 20
n

χ< <  see [3] [4] [5].  

Lankeit [6] extended the range of χ  in the two-dimensional case. Also the ge-
neralized solutions with large χ  are constructed in [3] [7] [8]. More results on 
the related model with general sensitivity can be found in [9] [10] [11] [12]. In 
this present paper, we prove the existence of global bounded classical solutions 
for (1.2) without assumptions on the space dimensions or the smallness assump-
tion on the initial data in the case 1 2d d χ= + . Our main result reads as follows. 

2. Preliminaries  

Lemma 1.2. (Poincaré inequality) [13] Let nΩ ⊂   be a bounded domain, then 
there is exists a constant ( ), ,C C n p= Ω , such that for all ( )1, pu W∈ Ω  

1) ( ) ( ) ( )( )1, ,   1,  0.p p qW L Lu C u u p q
Ω Ω Ω
≤ ∇ + ∀ > >  

2) ( )
( )

( )
1 d ,    1 .p

p
L

L

u u x x C u p
ΩΩ

Ω

− ≤ ∇ ∀ ≤ ≤ +∞
Ω ∫  

Theorem 1.1. Let ( )1n nΩ ⊂ ≥  be a bounded domain with smooth boun-
dary and let the parameters 1 20, 0d d> >  and χ ∈  satisfy 1 2d d χ= + . Then 
for any nonnegative function ( )0

0u C∈ Ω  and positive function ( )1,
0 Wυ ∞∈ Ω , 

the problem (1.2) has a unique global classical solution which is bounded in 
( )0,Ω× ∞ . 

3. Proof of Theorem 1.1 

As a preparation to the proof, we first state one result concerning local-in-time 
classical solution of the problem (1.2), which can be proved by standard contrac-
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tion mapping arguments and parabolic regularity theory (see ([11], Proposition 
2.2) and the references therein). 

Lemma 3.1. Suppose that ( )0
0u C∈ Ω  is a nonnegative function and that 

( )1,
0 Wυ ∞∈ Ω  is a positive function in Ω . Then there exist the maximal exis-

tence time maxT ≤ ∞  and a uniquely determined pair ( ),u v  of positive func-
tions 

[ )( ) ( )( )0 2,1
max max0, 0, ,u C T C T∈ Ω× Ω×

 

[ )( ) ( )( ) [ ) ( )( )0 2,1 1,
max max log max0, 0, 0, ;v C T C T L T W∞ ∞∈ Ω× Ω× Ω 

 

that solves (1.2) classically in [ )max0,TΩ× . In additions, for the second compo-
nent v of the solution one can find 0η >  such that 

( ) ( )maxinf , for all 0,
x

v x t t Tη
∈Ω

≥ ∈  

Furthermore, if maxT < ∞ , Then 

( ) ( ) ( ) ( )1, max, , as .qL W
u t v t t T∞ Ω Ω
⋅ + ⋅ → ∞   

The following lemma is a generalization of the maximum principle, which plays 
a major role in the proof of the main result. 

Lemma 3.2. Suppose that ( )1n nΩ ⊂ ≥  is a bounded domain with smooth 
boundary, 0d >  is a positive constant and is a positive continuous function sa-
tisfying ( )

0
da t t

∞
< ∞∫ . Let [ )( ) ( )( )0 2,10, 0,z C C∈ Ω× ∞ Ω× ∞

, 0z ≥  in 
[ )0,Ω× ∞ . If 

( )

( ) ( )0

 , , 0

 0, , 0

,0 ,

tz d z a t z x t
z x t

z x z x x
ν

≤ ∆ + ∈Ω >
 ∂ = ∈∂Ω >
∂

= ∈Ω

               (1.3) 

then z is bounded in ( )0,Ω× ∞ . 
Proof. Set 

( ) ( ) ( )0 d
0: max  e for all 0.

t a s s
xy t z x t∈Ω

∫= ⋅ ≥  

By simple calculations we can show that y is the solution of 

( ) ( )
( ) ( )0

,   0,

0 : max  ,x

y a t y t t

y z x∈Ω

′ = >


=
                   (1.4) 

and it is bounded in ( )0,∞  by our supposition. Therefore, by the comparison 
principle, we see that z is bounded in ( )0,Ω× ∞ .  

We are now in the position to prove global boundedness of solutions for (1.2). 

4. Proof of the Main Result  

Motivated by [14], let us introduce the function 
uw
v

= . by using this assump-

tion 1 2d dχ= + , we shall transform the system (1.2) into 
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   (1.5) 

and then, by the comparison principle we will obtain  

( ) ( ) ( )0
max

0 0

e
, ,  , 0,

e 1

t

t

y
w x t x t T

y y
≤ ∈Ω×

− +
 

where ( )
( )

0
0

0

: max x

u x
y

v x∈Ω= . Hence, the second equation in (1.5) implies that 

( ) ( )0
2 max

0 0

1
,  , 0,

e 1t t

y
v d v v x t T

y y
−

≤ ∆ + ∈Ω×
− +

         (1.6) 

If 0 1y ≤ , we deduce that  

( ) ( ) ( )0 max, max ,  , 0,xv x t v x x t T∈Ω≤ ∈Ω×  

by using the maximum principle. For 0 1y > , Let ( )0 1e y tv v− −= . Through direct 
computation we establish that 

( )( )
( ) ( )0 0

2 max
0 0

1 e 1
,   , 0, .

e 1

t

t t

y y
v d v v x t T

y y

− −
≤ ∆ − ∈Ω×

− +
 

We shall also use the maximum principle for the second time, it follows that 

( ) ( ) ( )0 max, max  ,   , 0, ,xv x t v x x t T∈Ω≤ ∈Ω×  

which implies that 

( ) ( ) ( ) ( )0 1
0 max, e max  ,   , 0, .y

xv x t v x x t T−
∈Ω≤ ∈Ω×  

Along with this, the Lemma 3.1 guarantees that ( ),v x t  is global in time. Then 
the integral 

0
0

0 0

1
d ,

e 1t

y
t

y y
∞ −

< ∞
− +∫  

we apply the Lemma 3.2 to (1.6), it follows that v is bounded in ( )0,Ω× ∞ , and 
hence u vw=  is bounded in ( )0,Ω× ∞  with smooth boundary, ( )1n nΩ ⊂ ≥ , 
Thus we complete the proof. 

5. Conclusion and Remarks 

In the paper, we presented that the Neumann initial-boundary value problem for 
the chemotaxis system with singular sensitivity in problem (0.1) is bounded in 

( )0,Ω× ∞  with smooth boundary, ( )1n nΩ ⊂ ≥ . Then we established that 
the problem (1.2) has a unique global classical solution which is bounded in 

( )0,Ω× ∞ . And we showed that ( )1n nΩ ⊂ ≥  is a bounded domain with 
smooth boundary, 0d >  is a positive constant and a is a positive continuous 
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