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Abstract 
Power electronic systems tend to be great contributors to faults in many ap-
plications especially wind turbines because they are exposed to harsh opera-
tion conditions in height. Thus, a great attention has been paid to fault diag-
nosis technologies. In this paper, the concept of an exact recovery under a 
sparse fault assumption is applied to the diagnosis of three-phase DC-AC 
power electronic inverter, this method is denoted as Sparse Recovery Diagno-
sis (SRD). This method has the advantage to reconstruct on-line a vector of 
numerous faults from a few system measurements and with finite-time con-
vergence. In this paper, the concept of an exact recovery under a sparse fault 
assumption is applied to the diagnosis of three-phase DC-AC power elec-
tronic inverter, this method is denoted as Sparse Recovery Diagnosis (SRD). 
In order to apply the proposed method, it is first necessary to have a dynami-
cal modeling without and with each considered fault. After that, roughly 
speaking, some assumptions (Sparsity, Restrictive Isometry Property) are ne-
cessary with respect to the influence of the fault on the measured signals, in 
order to apply an exact SRD method. The algorithm used in this paper is based 
on homogeneous observer. Moreover, in order to take into account the qual-
ity of the measured noisy signals, the homogeneity degree is variable. The pa-
per ends by some simulation results on a case study which highlight the well 
founded of the proposed algorithm with respect to previous algorithms that 
did not consider that the measurement is noisy. 
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1. Introduction 

Reliability and availability of power electronics system are major concerns in 
many applications; automotive, industrial automation, converters for voltage and 
power control and green energy as wind energy conversion system (WECS) … 
This later has paid considerable attention to fault diagnosis and maintenance 
because it is exposed to harsh operation conditions in height (e.g., [1] and [2]). 

Thus, fault detection and isolation (FDI) has taken a considerable attention in 
power electronics applications, e.g., active filters, inverters for variable speed 
drive, etc… More and more, power electronics tend to be a great contributor to 
faults in modern wind turbines (e.g., [3] and [4]). 

The FDI techniques in power electronics can be widely classified into three 
classes; 1) model-based in which the knowledge of system model is required in-
cluding the faults effect (e.g., [5] [6] and [7]); 2) signal processing-based in 
which the spectral analysis is used to identify fault signatures (e.g., [8] and [9]) 
and 3) artificial intelligence-based that uses fuzzy logic and neural networks [10]. 

In our work, we focus on the model-based class where a new method based on 
Sparse faults assumption is proposed. This method amounts to left-invertibility 
problem which is treated in many works (e.g., in case of linear system in [11] 
and [12] and in case of non-linear in [13]. This method, denoted as Sparse Re-
covery Diagnosis (SRD), consists of recovering the information of faults (un-
known inputs) from the system measurements (system outputs). This method is 
efficient when the number of unknown inputs is greater than the number of 
measurements. 

In recent works (e.g., [14] and [15]), the (SR) algorithm is improved. Besides, 
it is applied in sensor networks [16], image processing and wireless communica-
tion [17], cyber-attacks [18] and mechanical faults (e.g., [19] and [20]). 

The SRD technique requires a dynamic modeling in case of healthy and faulty 
operations. Hence, in this paper, a sparse representation of possible faults will be 
modeled and reconstructed on line. The considered faults are a variation of the 
DC-link voltage and a change in the filter output inductance value for each phase 
a, b and c. 

Some assumptions (Sparsity, Restricted Isometry Property (RIP)) are needed 
with respect to the influence of faults on the measured signal, in order to apply 
an exact SR technique. 

Therefore, the first contribution of this paper is the application of the SRD 
algorithm to detect and estimate electrical faults in hybrid dynamical system 
which has not been published yet. The second contribution consists on applying 

https://doi.org/10.4236/oalib.1106776


W. Torki et al. 
 

 

DOI: 10.4236/oalib.1106776 3 Open Access Library Journal 
 

a finite time algorithm with an adaptive exponent α  (applied in [21] as a fixed 
exponent) which takes into account the quality of the measured noisy signal. 

The remainder of the paper is structured as follows; healthy and faulty models 
of the studied system are detailed in section II. Section III presents some recalls 
on left invertibility and SR algorithm as well as the presentation of the proposed 
FDI method; followed by comments and analysis simulation results in section 
IV. Concluding remarks end the paper. 

2. Modeling Framework 
2.1. Healthy System Model 

The structure of the studied system is given in Figure 1. It is composed by a 
wind turbine connected to the grid under three-phase power electronics inver-
ter, A DC-link and a RL filter (with R small as possible). 

In this paper, we focused on the grid connected side which is modeled in 
(a,b,c) reference frame by the following electrical equations [22]: 

d
d

d
d

d
d

ga
an a ga a ga

gb
bn b gb b gb

gc
cn c gc c gc

i
v R i L v

t
i

v R i L v
t

i
v R i L v

t


= + +




= + +



= + +


                      (1) 

where, ,an bnv v  and cnv  are the inverter output voltages, ,ga gbi i  and gci  are 
the line currents, ,ga gbv v  and gcv  are the grid voltages and , ,a b cL  and , ,a b cR  
are respectively the inductance and the resistance of the filter. 

For the considered system, there are six switches that result 64 possible 
combinations. However, exactly eight operating modes are allowed because 
there is only one switch closed at any given time on each phase. Let the func-
tion [ ) { }: 0, 1, 2, ,8σ ∞ →   denotes the active mode at time t, and let is , 

1, 2, ,6i =  , be an indicator variable that is equal to 0 whenever the switch iT , 
1, 2, ,6i =   is open and equal to 1 whenever it is closed. The switches of the 

same phase are controlled to be in complementary states. Then, Table 1 presents 
the possible open/closed switch positions, where, ( )1 1 0i i is s s= = − =  if iT  is 
closed and ( )0 1 1i i is s s= = − =  if iT  is open. 
 

 
Figure 1. Structure of the grid side WECS. 
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Table 1. Possible switch positions. 

 1 2 3 4 5 6 7 8 

1 2s s  0 0 0 0 1 1 1 1 

3 4s s  0 0 1 1 0 0 1 1 

5 6s s  0 1 0 1 0 1 0 1 

 
Considering ideal power electronic switches, the relation between the inverter 

output voltages and the DC-link voltage dcV  is given by: 

( ) ( )( )

( ) ( )( )

( ) ( )( )

1 2 3 4

3 4 5 6

5 6 1 2

2

2

2

dc
an bn

dc
bn cn

dc
cn an

V
v v s s s s

V
v v s s s s

V
v v s s s s

 − = − − −

 − = − − −



− = − − −


                (2) 

Therefore, formalizing the above relations “Equation (1)” and “Equation (2)”, 
the dynamics of the system can be described by the linear switched model “Equ-
ation (3)”. 

( ) ( ) ( ) ( )
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2
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 − − −
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 − − −

= − 
 
 
 
  

 

Here, the three phases are assumed to be identical (balanced three-phase sys-
tem), i.e., a b cR R R R= = =  and a b cL L L L= = = . Then, by multiplying the 
both sides by 1M − in (\ref{eq3}), we obtain a state-space model with the form: 
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( ) ( ) ( ) ( )
( ) ( )

tx t Ax t B v t

y t Cx t
σ= +

=



                     (4) 

where: 
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C
 
 =  
  

 

2.2. Faulty System Model 

Several faults can affect the grid side wind energy conversion chain. Among 
them those refer to a continuous variation in certain parameters over the time 
which are occurred due to components degradation. For the switched system 
presented above, some faults are assumed to mainly happen. These main faults 
(one fault occurs at the same time) are the variation in output filter phases in-
ductance and the variation in the DC-link voltage. 
 Change in the DC-link voltage  

Consider the system of Figure 1, we assume the occurrence of a fault in the 
DC-link that could be an increase or decrease in the controlled DC-link voltage 

dcv . This fault can be modeled by dc dc dcv v v′ = + ∆  where dcv  represents the 
nominal DC-link voltage value and dcv∆  describes the unknown fault magni-
tude. Thus, this fault causes a disturbance in the state space dynamics. 

Without loss of generality, it is possible to write the system “Equation (4)” in 
two parts; one represents the healthy dynamics of the system and the other one 
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captures the effect of the DC-link fault. This is shown in the following represen-
tation “Equation (5)”. 

( ) ( ) ( ) ( ) ( )1 1tx t Ax t B v t t Fσ φ= + +                   (5) 

where, ( ) [ ]1 1 2 3
tt p p pφ =  and 1 dcF V= ∆ . 

 Change in the output filter phase inductance 
This fault is assumed due to a variation of one inductance (i.e., i iL L L= + ∆ ;
{ }, ,i a b c∈ ) where L is the healthy inductance. For this type of fault we need to  

manipulate terms of the form ( )d
d aL L

t
+ ∆  in “Equation (1)” for the phase a.  

Assuming a constant inductance variation, this leads to a change in the matrix M 
in “Equation (3)” that becomes  

0
0
1 1 1

aL L L
M L L

+ ∆ − 
 = − 
  

  

This matrix is invertible, thus, the system dynamics given by (4) can be re-
written as follow: 

( ) ( ) ( ) ( ) ( )2 2tx t Ax t B v t t Fσ φ= + +                  (6) 

where, ( ) [ ]2 1 1 12 tt K K Kφ = −  and 
( )2 3 3 2

a

a

L
F

L L L
∆

=
+ ∆

, 

With, ( )1 11 223 3 2ga a dcK Ri v p p v= − − + + ; 
( ) ( )1 2 3 4

11 2
s s s s

p
− − −

=  and 

( ) ( )3 4 5 6
22 2

s s s s
p

− − −
= . 

The same procedure will be followed for fault of the same type in phase b or c. 
Thus, for the four considered faults with measurement noise, we have: 

( ) ( ) ( ) ( )
4

1
i it

i
x t Ax t B v t Fσ φ

=

= + +∑                  (7) 

( ) ( ) ( )Y t Cx t N t= +                       (8) 

where, ( )3 3t Fφ  and ( )4 4t Fφ  represent respectively the quantities related to 
the change of the inductance value in phase b and c and they are described by:  

( ) [ ]3 2 2 22 tt K K Kφ = −  and 
( )3 3 3 2

b

b

L
F

L L L
∆

=
+ ∆

; 

( ) [ ]4 3 3 32 tt K K Kφ = −  and 
( )4 3 3 2

c

c

L
F

L L L
∆

=
+ ∆

, 

With,  

( )2 22 113 3gb b dcK Ri v p p v= − − + − ;\\ 

( )3 11 223 3gc c dcK Ri v p p v= − − − + .\\ 

( ) ( ) ( ) ( ) T
1 2 3, ,N t n t n t n t=    , where ( )in t , 1, 2,3i = , are the uncorrelated 

white noises. 
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Due to the fact that all the relative degree with respect to faults iF  is equal to 
one, the following algebraic equation is obtained  

( ) ( ) ( )
( )

ˆ

,
tY Y Ax t B v t

F E N
σ

δ

= − −

= Φ +



                      (9) 

where [ ] 3 4
1 2 3 4, , ,φ φ φ φ ×Φ = ∈ℜ  and [ ]T1 2 3 4, , ,F F F F F= . The vector ( ),E N δ

represents the error due to the measurement noise (N) and numerical approxi-
mations (δ ) (quantification, discretization …). 

Ŷ  refers to the estimation of the derivative of Y (measurement with noise) 
and it is given by the following differentiator [23]: 

( )
( )

1

2 12
2

ˆ ˆ ˆ

ˆ ˆ ˆ

Y Z Y Y sign Y Y

Z Y Y sign Y Y

θ

θ

κ µ

κ µ
−

 = + − −

 = − −





                 (10) 

where ( )ˆ ,Z Y E N δ= +  is the estimate of the derivative of Y,  
T

1 1 2 2 3 3
ˆ ˆ ˆ ˆ, ,Y Y y y y y y y
θ θθ θ − = − − −  ,  

( ) ( ) ( ) ( ) T
1 1 2 2 3 3

ˆ ˆ ˆ ˆ, ,sign Y Y sign y y sign y y sign y y − = − − −  , 1κ  and 2κ  are 
positive constants and µ  is the parameter in order to reject the perturbation. 

From (10), setting 

( ) ( ) ( )tY Z Ax t B v tσ= − −                     (11) 

Equation (9) is obtained. 

3. Faults Detection, Isolation and Estimations 

In this section, the main objectives are to detect, isolate and estimate the faults F 
in (9). Note that in “Equation (9)”, there are more unknown faults than “Equa-
tion (3)”. However, in such considered filters, generally only one fault occurs at 
the same time. This assumption is necessary for faults estimation but not for 
faults detection. To achieve the objectives, the following criterion (12) is used 
[24] 

2*
02

1arg min
2

F Y F Fλ= −Φ + 
 
 

              (12) 

where 0F  is the pseudo norm-zero (the number of non-zero elements). 
Roughly speaking, the constraint 0Fλ  allows to obtain a solution of (12) 

with a maximum of zero elements in F. Moreover, λ  is used as a threshold in 
order to avoid false alarms. 

Unfortunately, (12) is difficult to solve with high dimension of F containing 
many non-zero elements. In this case, in order to have an exact recovery of F, 
two assumptions are necessary. The first one is linked to verify that the number 
of equations is greater than two-times of non-zero elements of F plus one. In our 
considered case, the non-zero elements of F is one and the number of equations 
is three according to (9). Thus this first assumption is verified. The second one is 
the well-known Restricted Isometry Property (RIP) [25] for the matrix Φ  
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( )T1 1q i i qeigγ φ φ γ− ≤ ≤ +                     (13) 

where ] [0,1qγ ∈  and each sub-matrix of dimension 3 3×  of Φ  must be reg-
ular.  

In our considered case, this assumption is numerically and generically veri-
fied. Obviously, without current and voltage, the faults cannot be detected, iso-
lated and estimated. Under these assumptions, optimization problem (12) is 
equivalent to the following optimization problem [25] 

2*
12

1arg min
2

F Y F Fλ= −Φ + 
 
 

               (14) 

where, 
1 i

i
F F= ∑ .  

Then, a solution of the optimization problem of (14), providing that the ma-
trix Φ satisfies the RIP condition (13), is given by the following algorithm (see 
[24] for linear version 1α = , [26] for homogeneous version ] [0,1α =  and [27] 
for homogeneous solution with variable exponent α ). 

( ) ( )
( )

( )

T T
4 4

ˆ

ˆ

. . sgn .

u u t I F Y

F a u

α

λ

α

τ ×





  

 = − + Φ Φ − −Φ 

=







            (15) 

where, 4u∈R  represents the internal state vector, F̂  refers to the estimated 
sparse signal F, 4 4I ×  is the identity matrix in 4 4×R , τ  represents a constant 
that depends on the physical properties of the implementing system, [ ]0,1α ∈  
is a variable exponential coefficient defined later and ( )a uλ  is a continuous 
soft thresholding function defined by: 

( )
( )

0                      if

sgn     if

u
a u

u u uλ

λ

λ λ

 ≤= 
− >

                (16) 

The originalities of the paper are first to use the algorithm proposed in [21] in 
the context of diagnosis instead of the signal processing context (see (15)) se-
condly to adapt the α  variable exponent method proposed in [27] at our prob-
lem. Doing so, the proposed fault detection algorithm is less sensible to noises 
(noise measurement, noises due to the differentiators’ computation…). The pro-
posed diagnosis algorithm with α  variable is then given as 

( ) ( )
( )

ˆ

ˆ

t t
l

hf

u u t I F Y

F a u

Y

α

λ

τ

ζα
ζ ε

ζ τζ τ

  = − + Φ Φ − −Φ 
 =


=
+

 = − +





               (17) 

where the information, with respect to ( ),E N δ , is obtained by the following 
high past filter: 
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2

2 1.4142 1hf

c

sY Y
s s
ss

w

 ′
= ′ ′ + +


 ′ =


                    (18) 

where, hfY  is the high frequency component of Y  and for a well-chosen cut-
ting frequency cw , it is only function of ( ),E N δ . Note that in the systems (17) 
and (18), two filters are introduced. The first one (18) is a high pass second or-
der filter (HF) which is the Butterworth Filter. The second one (ζ  dynamics) is 
a low pass first order filter (LF) with a nonlinear input that corresponds to the 
absolute value of hfY . 

Hence, the output of the (LF) generates the parameter α  that is conse-
quently variable with respect to the magnitude of the high frequency signal hfY . 
The structure of the filters is implemented in Figure 2. Moreover, for 0α = , 
the system dynamic (17) becomes a first order sliding mode and the phenome-
non of chattering occurs at equilibrium point but converges in finite time. For 

1α = , the dynamic system (17) becomes the Locally Competitive Algorithm that 
is proposed in [24] and it converges exponentially to the equilibrium point. 

Referring to the systems (17) and (18): 
- 0ε >  is a constant parameter which is chosen in the sequel to guarantee α  

in [ [0,1 . More accurately, when Y tends to 0, i.e., noise-free signal (respec-
tively tends to, i.e., very noisy signal) α  tends to 0, i.e., Levant differentia-
tor(respectively tends to 1, i.e., linear differentiator). 

- τ  is a positive constant parameter. It will be chosen sufficiently small in or-
der to have a low frequency range. 

- cw  is the cut-off frequency of the HF. 
- 14,142 is the damping ratio of HF that is obtained from the factors of the 

Butterworth Polynomial. 

4. Comparison with Some Others Existing Methods 

In the literature, it exists many diagnosis methods to resolve the considered 
problem. For example by hardware redundancy [28], if a sensor of DC voltage 
measurement is added, the problem becomes square and very easy to solve. 
 

 
Figure 2. Deection of an inductance variation in the line phase a 2F  with 0.5α = . 
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Another method based on a very well-known parity space analysis [28] can be 
used. In this case, one can define three residuals in order to detect and isolate the 
faults. The inputs of the residual are: 

1 1 2

2 2 3

3 3 1

2
2
2

r y y
r y y
r y y

= +
= +

= +






                          (19) 

These residual inputs ir  are defined as linear combinations of Y  compo-
nents, in order to generate predefined residual input invariant with respect to 
predefined fault. More precisely the ir  are defined such that: 

1 1 1

2 2 2

3 3 3

0
0
0

r H F
r H F
r H F

= Φ =
 = Φ =
 = Φ =

                        (20) 

With [ ]1 1, 2,0H = , [ ]2 0,1, 2H = , [ ]3 2,0,1H = . 
And 

1 1 2 3

2 1 2 3

3 1 2 3

2
2

2

p K K K
p K K K
p K K K

− 
 Φ = − 
 − 

 

As it is usual , 1, 2,3ir i = , are the inputs of a low pass filter, the outputs resi-
dual are denoted ir . The alarm , 1, 2,3ia i =  is activated 1ia =  when the ab-
solute value of ir  is greater than a threshold and off 0ia =  when the absolute 
value of ir  is smaller than the threshold. This threshold plays a role that is sim-
ilar to the parameter λ  used in “Equation (16)”. Now by applying the parity 
space method, one has the following signature Table 2. 

This comparison highlights the fact that they exist lot of competitive diagnosis 
methods and the presented method is only one of them. 

This method is more competitive for a huge number of considered faults and 
in the case where more than one simultaneous fault is considered. 

For example, the case of power network under cyber-attacks [18] highlights 
perfectly the well founded of the method.  

Here the purpose is only to show this method can be useful in the diagnosis of 
hybrid dynamical system particularly to power electronic system. 

5. Simulations Results 

The system model and the designed diagnosis algorithm are implemented in 
Matlab/Simulink. Using an Euler solver with a fixed step equal to 5 × 10−6, si-
mulation results are obtained and presented below. The operated system para-
meters are given in Table 3. While, the algorithm parameters are 0.1 sτ =  (it is 
chosen sufficiently small in order to have a low frequency range), 210λ −=  
(according to the maximum variation that is tolerated before considering that 
there is a fault), 1 2κ =  and 2 1κ =  (using the pole placement) and 410µ =  
( it is chosen greater than the maximum considered disturbance). 
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Table 2. Signature table of parity space method. 

 1a  2a  3a  

No fault 0 0 0 

1F  1 1 1 

2F  0 1 1 

3F  1 0 1 

4F  1 1 0 

 
Table 3. System parameters. 

DC-link nominal voltage dcv  800 V 

DC-link capacitor C 2500 μF 

Switching frequency 3 kHz 

Output filter inductance L 0.02 H 

Output filter resistance R 0.012 Ω 

Grid voltage effV  220 V 

 
The application of the framework introduced in section III is implemented by 

analyzing four fault scenarios, i.e., in case of DC-link voltage variation and phase 
filter inductance variation. 

In general the voltage sensor is less affected by noise and perturbation than 
current sensors. Then, the line currents ,ga gbi i  and gci  are assumed to be 
measured. To these currents a white noise ( )N t  of power 0.01 and sample time 
equal to 5 × 10−6 (the simulation fixed step), is added. Thus Y used in “Equation 
(10)” is obtained. 

It is considered that only one fault can occur. Thus, algorithms (15) and (17) 
can be applied to estimate the occurred fault. The estimated value of Y  (11) that 
is needed by both algorithms is given by “Equation (10)” where θ  is fixed to 0.75. 

At first, we consider a fault causes an inductance to change at 0.03 st = . Set-
ting aL∆  equal to 30% of the nominal inductance value L. Then, two simula-
tion results are illustrated in Figure 2 and Figure 3, respectively, in cases when 
the algorithm in (15) (exponent α  is fixed to 0.5) and when the algorithm in 
(17) (the exponent α  is variable) is used. The results show that the estimated 
fault is recovered and converged in finite time to its value. The non-zero estimated 
fault 2̂F  related to the phase an inductance fault, converges to its corresponding 

value (
( )3 3 2

a

a

L
L L L

∆
+ ∆

) while others estimated zero faults converged to zero 

in finite time. The difference between the estimated values in both cases is clear-
ly shown; by using “Equation (17)” with α  variable the results are much better 
than the case where “Equation (15)” is applied for 0.5α = . 

Then, we assume the occurrence of a fault in the DC-link that causes a var-
iation of dcv  at 0.03 st = . The simulation results, given by Figure 4, show 
that the estimated non-zero fault 1̂F  converges to its value ( 50 Vdcv∆ = ) in 
finite time. The estimation of the recovered fault 1̂F  in different cases of 
chosen exponent α  (using “Equations (15) or (17)”) is given by Figure 4. 
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Taking the case when a fault occurs on the output filter inductance in the 
phase b (i.e., 3F ) where 50%aL L∆ =  at 0.3 st = , the simulation results are 
given by Figure 5. The estimated fault 3̂F  linked to the activated fault con-
verges in finite time to its value. As it is clearly shown, the variable exponent 
α  has a positive effect in fault estimation. In fact, the estimated fault for α  
variable (using “Equation (17)”) is close to its desired value than the fault recov-
ered using “Equation (15)” where α  is fixed. 

 

 
Figure 3. Detecion of an inductance variation in the line phase a 2F  with α  variable. 

 

 
Figure 4. Detecion of a DC-link voltage variation 1F  with 0.25α = , 0.5α =  and α  
variable. 
 

 
Figure 5. Detecion of an inductance variation in the phase b 3F  with α  variable and 
fixed to 0.5α = . 
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The above results have proven that the algorithm “Equation (17)” with α  
variable performs well in presence of noise and then the performance of the 
proposed optimization system is improved. 

6. Conclusion 

In this work, healthy and faulty dynamical models of grid side WECS were pre-
sented and the results were carried out via Matlab/Simulink environment. A 
Sparse Recovery (SR) algorithm was applied to detect and estimate a fault af-
fecting the output filter phases inductance and the DC-link voltage. The expo-
nent of this algorithm α  may be chosen between 0 and 1. When 0α =  this 
corresponds to a sliding mode solution and cancels the perturbation and when 

1α =  this corresponds to linear solution less sensible to noise. Then, it was 
proposed a solution with α  variable in order to take into account the noise 
evolution. Therefore, the dynamic of α  was designed with respect to the high 
frequency magnitude of the signal. For the considered cases, the comparison of 
the simulation results highlights the well-founded of the SR algorithm with α  
variable. As a future work, we will focus on the stability analysis of the proposed 
SR algorithm with a varying exponent gain α  and on an experimental valida-
tion of the proposed algorithm to recover faults in finite time. 
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