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Abstract 
This paper focuses on the modeling and estimation of tail loss distribution 
parameters from Egyptian’s commercial fire loss severities. Using theoretical 
extreme value, we use the generalized distribution of Pareto (GPD) and com-
pare it to standard parametric modeling based on exp, Weibull, gumbel, fre-
chet, lognormal and gamma distributions. The goodness-of-fit tests included 
Kolmogorov-Smirnov, Anderson and Cramer-von Mises test is carried out, 
and the calculation of the value-at-risk and expected shortfall are performed. 
We use the bootstrap approach to create confidence intervals for the esti-
mates. 
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1. Introduction 

In the case of a non-life insurance company, only a few individual claims made 
on a portfolio often constitute the majority of the allowances paid by the com-
pany. Among the largest insurance claims, commercial fire insurance is of the 
highest value. Gaining an understanding of the tail distribution of fire loss sever-
ity is therefore useful for the pricing and risk management of non-life insurance 
companies. Extreme events are occurrences which are rare, high in magnitude 
and lead to huge losses. Extreme event risk affects all aspects of risk assessment, 
modeling and management especially in the context of credit market, insurance 
market, and operational market. These extreme events are either naturally oc-
curring or man-made inflicted at the time they are least expected. Some of these 
extreme risks are insured under general insurance policies. In fact, 10% of ex-
treme claims paid out represent the largest share of the paid funds. This is 
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equivalent to significant percentage of the performances of companies. 

1.1. Problem Statement 

Over the last 25 years, there has been an increasingly large number of extreme 
events in the financial and insurance market in Egypt leading to huge losses and 
claims. These extreme events affect the day to day operation of the individuals or 
company, and hence the economy of the country at large making it unable to 
achieve its core business function. If such events are insured one indemnifica-
tion can lead to an insurance company going under-receivership if not properly 
reinsured. It can also lead to winding up a company if no business insurance was 
done. Therefore, there is a need to study those extreme risks and advise the in-
surance companies on how to cushion them in case of a risk covered happening. 

1.2. Objectives of This Paper 
1.2.1. Main Objective 
The main objective is to model extreme claims in Insurance Company. 

1.2.2. Specific Objectives 
To fit fire claims data using the family of generalized Pareto distribution. 

To estimate the measures of risk. 
Historical data on insurance loss severity is often modeled using lognormal. 

Distributions of exponential, weibull and gamma. However, these distributions 
appear to overestimate or underestimate the probability of tails. In terms of fit-
ting the tail of the loss function, the pioneering and well-known work of Hogg 
and Klugman (1984) focused on fitting the size of the loss distributions to the 
data. They used the truncated distribution of Pareto to fit the loss function. Boyd 
(1988) argued, however, that the tail region of the fitted loss distribution was se-
riously underestimated. Hogg and Klugman compared two estimation methods, 
namely the maximum probability estimation (MLE) and the moment method. 
The issue of whether Extreme Value Theory (EVT), and so, Generalized Pareto 
Distribution (GPD) is better for measuring loss severity was also discussed ex-
tensively in the literature. Several early studies argued that EVT could provide a 
number of sensible approaches to this issue. Bassi et al. (1998), McNeil (1997), 
McNeil and Saladin (1997) and Embrechts et al. (1997, 1999) suggested that it 
was preferable to use the GPD to calculate the tail loss data. Beirlant et al. (2004) 
pointed out that the data on insurance losses usually demonstrate heavy tailed-
ness, They tested the method for a variety of simulated heavy-tailed distributions 
to show what types of thresholds are required and what sample sizes are needed 
to provide accurate quantile estimates. As a result, it is key to many risk man-
agement issues related to insurance, reinsurance and finance, as demonstrated 
by Embrechts et al. (1999). 

Furthermore, many early researchers experimented with operational loss data 
on insurance. Beirlant and Teugels (1992) modeled large claims in non-life in-
surance using an extreme value model. Dahen et al. (2010) used extreme values 
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in business interruption insurance. Rootzen and Tajvidi (2000) used extreme 
value statistics to fit wind-storm losses. Moscadelli (2004) showed that the tails 
of loss distribution functions are, in the first approximation, of heavy-tailed Pa-
reto type. Patrick et al. (2004) examined the empirical regularities in operational 
loss data and found that loss data by event type is quite similar across institu-
tions. Nešlehová et al. (2006) used EVT and the overall quantitative risk man-
agement consequences of extremely heavy-tailed data. Chava et al. (2008) fo-
cused on modeling and predicting the loss distribution for credit-risky assets 
such as bonds or loans. They also analyzed the dependence between the default 
probabilities and recovery rates and showed that they are negatively correlated. 
Dahen et al. (2010) analyzed US bank data and showed that US banks could suf-
fer, on average, more than four major losses a year. They also used the extreme 
distribution to fit the operational losses and estimated annual insurance pre-
miums. Lee and Fang (2010) focused on modeling and estimating the tail para-
meters of Taiwan’s commercial bank operation loss severity. They also measured 
the capital for operational risk. In an early work on fire loss, Mandelbrot (1964) 
used the random walks concept and some tail distributions to model and discuss 
fire damage and related phenomena. Furman, Kuznetsov, & Miles (2020). Risk 
aggregation: A general approach via the class of Generalized Gamma Convolu-
tions. Variance, in press considers exactly these distributions in the context of 
the P & C insurance to measure the loss severity of commercial fire insurance 
loss, we attempt to answer the following questions. Which techniques fit the loss 
data statistically and also result in meaningful capital estimates? How well does 
the method accommodate a wide variety of empirical loss data? 

For the purposes of our empirical study, we measure commercial fire insur-
ance loss using a data-driven loss distribution approach (LDA). By estimating 
commercial fire loss insurance risk on business-line and event-type levels, we are 
able to present the estimates in a more balanced fashion. The LDA framework 
has three essential components: a distribution of the annual number of losses, a 
distribution of the Egyptian pound amount of loss severity and an aggregate loss 
distribution that combines the two. Strictly speaking, we utilize EVT to analyze 
the tail behavior of commercial fire insurance loss. The results may help non-life 
insurance companies to manage their risk. For the purposes of comparison, we 
consider the following one- and two-parameter distributions to model the loss 
severity: exp, Weibull, gumbel, frechet, lognormal and gamma distributions. 
These were chosen due to their simplicity and applicability to other areas of 
economics and finance. Distributions such as the exponential, Weibull and 
gamma are unlikely to fit heavy-tailed data, but provide a nice comparison to 
heavier-tailed distributions such as the GPD and generalized extreme value 
(GEV) distribution. 

We show that the GPD can be fitted to commercial fire insurance loss severi-
ty. When the loss data, the GPD is a useful method for estimating the tails of loss 
severity distributions. This means that the GPD is a theoretically well-supported 
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technique for fitting a parametric distribution to the tail of an unknown under-
lying distribution. 

The remainder of the paper is organized as follows. Section 2 introduces EVT 
and goodness of fit. Section 3 gives some empirical results and analysis. Section 4 
gives a few concluding remarks and ideas for future work. 

2. Extreme Value Theory 

We now proceed to use EVT to estimate the tail of a loss severity distribution. 
Extreme event risk is present in all areas of risk management. Whether we are 
concerned with market, credit, operational or insurance risk, one of the greatest 
challenges for a risk manager is to implement risk management models that al-
low for rare but damaging events and permit the measurement of their conse-
quences. The oldest group of extreme value models is block maxima models. 
These are models for the largest observations collected from large samples of 
identically distributed observations. The asymptotic distribution of a series of 
maxima is modeled, and under certain conditions, the distribution of the stan-
dardized maximum of the series is shown to converge to the Gumbel, Frechet or 
Weibull distribution. The GEV distribution is a standard form of these three 
distributions. 

The GPD was developed as a distribution for modeling tails of a wide variety 
of distributions. Suppose that ( )XF x  is the cumulative distribution function 
for a random variable X and that threshold µ  is a value of X on the right tail of 
the distribution, x\geq\mu (small x is not random variable). 

The probability that X lies between u and u y+ , 0y > , is ( ) ( )F u y F u+ − . 
the probability of X being greater than u is ( )1 F u− . Define ( )uF y  as the 
probability that x is between u and u y+ , conditional on x u> . We have: 

( ) { } ( ) ( )
( )

|
1u

F u y F u
F y pr x u y x u

F u
+ −

= − ≤ > =
−

           (1) 

Once the threshold is estimated, the conditional distribution uF  converges to 
the GPD. We can find a (This is Pickands (1975)) 

( ) ( ) ( )

1

,

1 1 , if 0

1 e , if

l m

0

i it u u
y

y
F y G y

−
ξ

ξ σ

−
σ


  − + ξ ξ ≠  σ≈ =  


 − ξ =

          (2) 

where ξ  is the shape parameter and determines the heaviness of the tail of the 
distribution, and \sigma is a scale parameter. When 0ξ = , the random variable 
X has a standard exponential distribution. As the tails of the distribution become 
heavier (or longer tailed), the value of ξ  increases. The parameters can be es-
timated using MLE (for a more detailed description of the model, see Neftci 
(2000)). 

One of the most difficult problems in the practical application of EVT is 
choosing the appropriate threshold for where the tail begins. The most widely 
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used methods for exploring the data are graphical methods, i.e., quan-
tile-quantile (Q-Q) plots, Hill plots and the distribution of mean excess. These 
methods involve creating several plots of the data and using heuristics to choose 
the appropriate threshold. 

In EVT and its applications, the Q-Q plot is typically plotted against the ex-
ponential distribution to measure the fat-tailedness of a distribution (e.g., an 
exponential distribution with a medium-sized tail). If the data is taken from an 
exponential distribution, the points on the graph would lie along a straight line. 
If the graph is concave, this indicates a fat-tailed distribution, whereas a convex 
shape is an indication of a short-tailed distribution. In addition, if the Q-Q plot 
deviates significantly from a straight line, then either the estimate of the shape 
parameter is inaccurate or the model selection is untenable. 

Selecting an appropriate threshold is a critical problem with the peaks-over 
threshold method. There are two graphical tools used to choose the threshold: 
the Hill plot and mean excess plot. The Hill plot displays an estimate of ξ  for 
different exceedance levels and is the maximum likelihood estimator for a GPD. 
Hill (1975) proposed the following estimator for ξ . The Hill estimator is the 
maximum likelihood estimator for a GPD since the extreme distribution con-
verges to a GPD over a high threshold u. 

Let 1 nx x> >  be the ordered statistics of independent and identically dis-
tributed random variables. We set <n and define the Hill estimator of the tail 
index 1 ξ  based on upper-order statistics as: 

,
, 1

1,

1 lnk i n
k n i

k n

X
H

k X=
+

 
=   

 
∑                     (3) 

1
, when , 0k nH n k n−ξ ≅ → ∞ →

 
The number of upper-order statistics used in the estimation is 1k +  and n is 

the sample size. A Hill plot is constructed such that the estimated ξ  is plotted 
as a function either of k upper-order statistics or of the threshold. More precise-
ly, the Hill graph is defined by the set of points, and hopefully the graph is stable 
so that a value of ξ  can be chosen. The Hill plot also helps us to choose the da-
ta threshold and the parameter value. The parameter should be chosen where the 
plot looks stable: 

( ){ }1
,, ,1k nk H k n− ≤ ≤                       (4) 

The mean excess plot introduced by Davidson and Smith (1990) graphs the 
conditional mean of the data above different thresholds. The sample mean 
excess function (MEF) is defined as 

( ) ( )
( )

1

1

u

u

n
ii

u n
u ii

x u
en u

I x u
=

=

−
=

>
∑
∑

                    (5) 

where 1I =  if uξ > , and 0 otherwise, and where un  denotes the number of 
data points that exceed the threshold u. The MEF is the sum of the excesses over 
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the threshold u divided by un . It is an estimate of the MEF that describes the 
expected overshoot of a threshold once an exceedance occurs. If the empirical 
MEF has a positive gradient above a certain threshold u, it is an indication that 
the data follows the GPD with a positive shape parameter. On the other hand, 
exponentially distributed data would show a horizontal MEF, while short-tailed 
data would have a negatively sloped line. 

Following Equation (2.2), the probability pound amount that X u y> +  
conditional on X u>  is ( ) ( ),1 uG yξ σ− , while the probability that x u>  is 

( )1 F u− , and the unconditional probability that x u y> +  is therefore: 

( ) ( ) ( ) ( ),1 1 uP X u y F u G yξ σ
 > + = − −                  (6) 

If n is the total number of observations, calculated from the empirical data is 

un n= . The unconditional probability that x u y> +  is therefore: 

( ) ( )
ˆ1

,
ˆ1 1u u

u
n n yG y
n n

− ξ

ξ σ
  − = + ξ   σ 

                (7) 

which means that our estimator of the tail for the cumulative probability distri-
bution is: 

( )
ˆ1

ˆ1 1un x uF x
n

− ξ− = − + ξ σ 
                   (8) 

RISK MEASURE 
Some of the most frequently used measure of risk in extreme quantile estima-

tion includes value at risk (VaR) and Expected shortfall (ES) and return level. 
This corresponds to the determination of the value at a given variable exceed 
with a given probability. This risk measure will be discussed into detail. 

VALUE AT RISK VaR 
Is generally defined as the risk capital sufficient, in most instances to cover 

losses from portfolio over a holding period of a fixed number of days. Suppose a 
random variable X with a distribution function F describes negative returns on a 
certain financial instrument over a certain time horizon. Then VaR can be de-
fined as the qth quantile of the distribution F. 

To calculate value-at-risk (VaR) with a confidence level q it is necessary to 
solve the equation 

( )varF q=                           (9) 

For risk management q is usually taken to be greater than 0.95 and quantile in 
this case is referred to us Value at risk. 

From Equation (8), we have: 
ˆ1Varˆ1 1un uq

n

− ξ− = − + ξ σ 
                  (10) 

The VaR is therefore 

( )
ˆ

var 1 1ˆ
un

u q
n

−ξσ  = + − − ξ  
                  (11) 
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EXPECTED SHORTFALL 
Another informative measure of risk is the expected shortfall (ES) or the tail con-

ditional expectation which estimates the potential size of loss that exceed VaRq. 
Artzner et al. (1999) argue that VaR is not a coherent risk measure, but proved 

that ES is a coherent measure. Once we know the values of the parameter of the 
generalized Pareto distribution. We can use them to calculate the value at risk 
and expected shortfall. 

Expected shortfall (ES) is a concept used in finance and, more specifically, in 
the field of financial risk measurement to evaluate the market risk of a portfolio. 
It is an alternative to VaR. The expected shortfall at the q% level is the expected 
return on the portfolio in the worst q% of the cases. For example, ES (0.05) is the 
expectation of the worst 5 out of 100 events. Expected shortfall is also called 
conditional value-at-risk and expected tail loss. 

In our case, we define the excess shortfall as the expected loss size, given that 
VaR is exceeded 

( )ES | varq qE L L= >                      (12) 

where ( )1q p= −  is the confidence level. Furthermore, we obtain the following 
ES estimator 

var
ES

1 1
q

q
uσ− ξ

= +
− ξ − ξ

                     (13) 

One can attempt to fit any particular parametric distribution to data; however, 
only certain distributions will have a good fit. There are two ways of assessing 
this goodness of fit: either by using graphical methods or by using formal statis-
tical goodness-of-fit tests. The former method (a Q-Q plot or a normalized 
probability-probability (P-P) plot, for example) helps an individual to determine 
whether a fit is very poor, but may not reveal whether a fit is good in the formal 
sense of statistical fit. Examples of the latter method are the Kolmogo-
rov-Smirnov (KS) test or the likelihood ratio (LR) test. The Q-Q plot depicts the 
match or mismatch between the observed values in the data and the estimated 
value given by the hypothesized fitted distribution. The KS test is a nonparame-
tric supremum test based on the empirical cumulative distribution. 

3. Application 

This section presents the procedure which was used in the paper. It explains in 
the steps that were encountered in the modeling process which includes the data 
processing and analysis. 

There are 939 observations in the data set. All commercial fire insurance loss 
data sets used in this study were obtained from a non-life insurance company in 
Egypt. 

3.1. Scope of the Data 

Secondary data from E.G. insurance company regarding fire industrial claims for 
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the period 2000-2011 was used in this study. 

3.2. Actuarial Modeling Process 

This section will describe the steps that were followed in fitting a statistical dis-
tribution to the extreme claim severity. These steps include: 

1) Selecting the model family of distributions. 
2) Exploratory data analysis. 
3) Estimating the parameters. 
4) Goodness of fit test. 

3.3. Selecting the Model Family 

Here considerations were made of a number of parametric probability distribu-
tions as potential candidates for the data generating mechanism for extreme 
claims. Most data in general insurance is skewed to the right and therefore most 
distributions that exhibit these characteristics can be used to model the extreme 
claims. However, the list of potential probability distributions is enormous and it 
is worth noting that the choice of distributions is to some extent subjective. 

For this study, the choice of the sample distributions was with regard to: 
• Prior knowledge and experience in curve fitting. 
• Time constraint. 
• Availability of computer software to facilitate the study. 
• The volume and quality of data. 

Therefore seven distributions were used including: genpareto, exp, Weibull, 
gumbel, lognormal gamma and frechet. 

3.4. Exploratory Data Analysis 

It was necessary to do some descriptive analysis of the data to obtain the salient 
features. This involves the Mean, Median, Mode, Standard Deviation, Skewness 
and Kurtosis. This was done using R programming language and also manual 
calculation. 

3.5. Computation and Interpretations 
3.5.1. Specific Objectives 
Testing for the appropriate statistical distribution for the claim amount test the 
goodness of fit of the chosen distribution. 

3.5.2. Variable 
The random variables used in the study were the fire claim amount reported and 
claimed at EG Insurance. 

Descriptive statistics may help to choose candidates to describe a distribution 
among a set of parametric distributions. 

3.5.3. Descriptive Data Analysis (e.g. Pound) 
4Min 0.7951386 10= ×  
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4Min 0.7951386 10= ×  
4Max 47.9656 10= ×  

4Mean 5.627495 10= ×  
4Median 4.202978 10= ×  

Skewness 3.055893=  

Kurtosis 17.95521=  

Number of observations 939=  

The data according to descriptive statistics shown above indicates that the da-
ta is skewed to the right (skewedness coefficient of 3.055893) Right-skewedness 
means that the right tail is long relative to the left tail. 

Kurtosis is a measure of whether the data is peaked or flat relative to a normal 
distribution. The loss data set with high kurtosis tend to have a distinct peak 
near the mean, decline rather rapidly and have heavy tails. 

3.6. Fit of Distributions by Maximum Likelihood Estimation. 

Once selected, one or more parametric distributions ( ). |f θ  (with parameter 
dθ∈ ) d is a natural number may be fitted to the data set, one at a time Under 

the i.i.d. sample assumption, distribution parameters θ are by default estimated 
by maximizing the likelihood function defined as: 

( ) ( )
1

|
n

i
i

L f x
=

θ = θ∏
 

with ix  the n observations of variable X and ( ). |f θ  the density function of 
the parametric distribution. 

Estimated parameters of distributions by maximum likelihood estimation 
(MLE) 

Table 2 shows that the estimation parameters seven distribution by perform-
ing maximum likelihood estimate method. 

Model checking 
I will provide four classical goodness-of-fit plots for each distribution to 

check the model 
• a density plot representing the density function of the fitted distribution 

along with the histogram of the empirical distribution;  
• a CDF plot of both the empirical distribution and the fitted distribution;  
• a Q-Q plot representing the empirical quantiles (y-axis) against the theoreti-

cal quantiles (x-axis); 
• a P-P plot representing the empirical distribution function evaluated at each 

data point (y-axis) against the fitted distribution function (x-axis). 
The CDF plot may be considered as the basic classical goodness-of-fit plots. 

The two other plots are complementary and can be very informative in some 
cases. The Q-Q plot emphasizes the lack-of-fit at the distribution tails while the 
P-P plot emphasizes the lack-of-fit at the distribution center. 
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Table 1. Show properties of distributions. 

Distributions parameters PDF CDF 

genpareto 

( ),µ∈ −∞ ∞  location 

( )0,σ∈ ∞  scale 

( ),ξ∈ −∞ ∞  shape 

( ) ( )1 11 1 z − ξ+
+ ξ

σ  

Where xz −µ
=

σ
 

( )
1

1 1 z −
ξ− + ξ

 

Exponential 0λ > , rate, or inverse scale e x−λλ  1 e x−λ−  

Weibull 
( )0,λ∈ +∞  scale 

( )0,k∈ +∞  shape 
( )

( )
1

e 0

0 0

k
k

xk x x
f x

x

−
− λ   ≥  = λ λ  

 <  

( )1 e 0
0 0

kx x
x

− λ − ≥


<  

Gumbel 
µ  location 

0β >  scale 

( )e e1 e
xz −− +

β  

Where xz −µ
=

β
 

( )ee x− −µ β

 

Log-normal 
( ),µ∈ −∞ +∞  

0σ >  

( )2

2

ln1 exp
22
x

x

 −µ
−  σσ π    

1 1 lnerf
2 2 2

x −µ +  σ   

Gamma 0k >  scale 
0θ >  shape ( )

11 e
x

k
k x

k
−− θ

Γ θ  ( )
1 , xk
k

 γ  Γ θ   

Fréchet 
( )0,s∈ ∞  scale 

( )0,m∈ ∞  location 

1α e
x m

sx m
s s

−α− −α − − 
 − 

 
   

e
x m

s

−α− − 
 

 

 
Table 2. Result of estimated parameters of distributions by maximum likelihood estimation. 

Distributions the parameter estimates 

1-Gen pareto 

shape 1  2.9753648 

shape 2  13.4914804 

scale  0.8390074 

2-exponential rate  0.177699 

3-Weibull 
shape  1.372363 

scale  6.225291 

4-gumbel 
location  3.593531 

scale  2.437994 

5-lognormal 
Location  1.4759611 

scale  0.6850889 

6-gamma 
Shape  2.1385816 

Rate  0.3800284 

7-frechet 
Shape  7.413944 

Scale  1.300028 

 

Table 1: Show the properties of seven distributions used in this study includ-
ing: genpareto, exp, Weibull, gumbel, log-normal gamma and frechet. 

Figure 1: The gen Pareto plots displayed succeeds in measure the tails of the 
distribution. Based on the good linear relationship in the plots, the gen Pareto 
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distribution is preferred over the gamma distribution. 
Figure 2: Plot shows that the exponential distribution is not as heavy in the 

right tail as the data. The plots display a poor fit and suggest that data is not ex-
ponential distributed. 

Figure 3: The weibull plots indicate a slightly better fit than the gumbel dis-
tribution as the points are even closer to a 45-degree line. 

Figure 5: The gumbel plots indicate that the gumbel distribution fails to 
measure the extreme right tail of the data. Comparing the gumbel to the gamma 
plots, the gamma distribution seems to be a better choice of claim size distribu-
tion. However, the gumbel plots display a better fit than the plots for the frechet 
and log-normal distributions as shown in Figure 4 and Figure 6. 

 

 
Figure 1. Four goodness of fit for gen pareto distribution. 

 

 
Figure 2. Four goodness of fit for exponential distribution. 
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Figure 3. Four goodness of fit for Weibull distribution. 

 

 
Figure 4. Four goodness of fit for gumbel distribution. 

 
The relationship between the theoretical and the sample quantiles in the 

gamma plot implies a good fit and suggests that the gamma distribution is a 
good choice of claim size distribution as is shown in Figure 7. 

I will report CDF values in a logscale so as to emphasize discrepancies on the 
tail as shown in Figure 8, the left-tail seems to be better described by the genpa-
reto distribution. 

The computation of different goodness-of-fit statistics in order to further 
compare fitted distributions. The purpose of goodness-of-fit statistics aims to 
measure the distance between the fitted parametric distribution and the empiri-
cal distribution: e.g., the distance between the fitted cumulative distribution 
function F and the empirical distribution function Fn. When fitting continuous  
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Figure 5. Four goodness of fit for frechet distribution. 

 

 
Figure 6. Four goodness of fit for lognormal distribution. 

 
distributions, three goodness-of-fit statistics are classically considered: Cra-
mer-von Mises, Kolmogorov-Smirnov and Anderson-Darling statistics. 

The model with the lowest AIC or BIC is selected because both methods are 
based on a trade-off between goodness of fit and the complexity of the model. 
And as shown in Table 3, genpareto has the lowest AIC and BIC, so genpareto is 
the best distribution for claim size. 

As giving more weight to distribution tails, the Anderson-Darling statistic is 
of special interest when it matters to equally emphasize the tails as well as the 
main body of a distribution. This is often the case in risk assessment (Cullen and 
Frey, 1999; Vose, 2010). For this reason, these statistics are often used to select the 
best distribution among those fitted. Nevertheless, these statistics should be used  
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Figure 7. Four goodness of fit for gamma distribution. 

 

 
Figure 8. CDF plot to compare the fit of seven distributions data set, with CDF values in 
a logscale to emphasize discrepancies on the left tail. 

 
Table 3. Goodness of fit for distributions. 

Distributions 
Akaike 

information 
criteria (AIC) 

Bayesian 
information 

criteria (BIC) 

Kolmogorov- 
Smirnov 
statistic 

Cramer-von 
Mises statistic 

Anderson-Darling 
statistic 

1-Gen pareto 4714.542 4729.076 0.02229017 0.06304588 0.39154346 

2-exponential 5124.554 5129.399 0.1966317 8.7821182 53.3074780 

3-Weibull 4967.909 4977.599 0.09131398 2.90888129 19.45479034 

4-gumbel 4982.206 4991.895 0.05571758 1.12757030 14.67465690 

5-frechet 4730.349 4788.232 0.03063316 0.27309075 3.25132752 

6-lognormal 4730.349 4740.039 0.03805363 0.27265821 1.76719310 

7-gamma 4871.427 4881.117 0.08125536 2.07998426 12.32869779 
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cautiously when comparing fits of various distributions. Keeping in mind that 
the weighting of each CDF quadratic difference depends on the parametric dis-
tribution in its definition, Anderson-Darling statistics computed for several dis-
tributions fitted on a same data set are theoretically difficult to compare. More-
over, such a statistic, as Cramer-von Mises and Kolmogorov-Smirnov ones, does 
not take into account the complexity of the model (i.e., parameter number). It is 
not a problem when compared distributions are characterized by the same 
number of parameters, but it could systematically promote the selection of the 
more complex distributions in the other case. Looking at classical penalized cri-
teria based on the loglikehood (AIC, BIC) seems thus also interesting, especially 
to discourage overfitting. In the previous goodness of fit tests, all the good-
ness-of-fit statistics based on the CDF distance are in favor of the genpareto dis-
tribution, also AIC and BIC values respectively give the preference to the genpa-
reto distribution. 

Hypothesis Testing 
The null and the alternative hypotheses are: 

• H0: the data follow the genpareto distribution. 
• HA: the data do not follow the gen pareto distribution. 

Table 4 shows that p-value > 0.05 so we will accept the null hypothesis (the 
data follow the genpareto distribution). 

3.7. Bootstrap Confidence Estimates 

The papergoes ahead to find the confidence intervals of the genPareto distribu-
tion estimates. Bootstrapping is the practice of estimating properties of estima-
tors (such as the variance) by measuring those properties when sampling from 
an approximating distribution. This can be implemented by constructing hypo-
thesis test. The bootstrap method involves taking the original set of N heights 
and using a computer sampling from it to form a new sample called a resample 
or bootstrap sample that is also of size N. The bootstrap sample is taken from the 
original using sampling with replacement so it is not identical with original. This 
process is repeated a large number of times typically 1000 times. Then for each 
of the bootstrap sample we compute the mean and standard deviation. Using the 
estimated parameters we fit the parameters. We therefore obtain the histogram 
of genPareto distribution parameters which gives us the confidence intervals of 
those parameters. The uncertainty in the parameters of the fitted distribution 
can be estimated by parametric or nonparametric bootstraps. The bootstrapped  

 
Table 4. Goodness of fit for the GPD model. 

Test 

distribution 

Kolmogorov-Smirnov 
statistic 

Cramer-von Mises 
statistic 

Anderson-Darling statistic 

statstic p-value statistic p-value statstic p-value 

Genpareto 0.018648 0.8997 0.038208 0.9422 0.29662 0.9407 
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values of parameters which can be plotted to visualize the bootstrap region. The 
medians and the 95 percent confidence intervals of parameters (2.5 and 97.5 
percentiles). When inferior to the whole number of iterations (due to lack of 
convergence of the optimization algorithm for some bootstrapped data sets), the 
number of iterations for which the estimation converges. The plot of “bootdist” 
consists in a scatterplot or a matrix of scatterplots of the bootstrapped values of 
parameters providing a representation of the joint uncertainty distribution of the 
fitted parameters. Below is the bootdist with the previous fit of the genpareto 
distribution to data set (see Figure 9). 

 
Parametric bootstrap medians and 95% percentile CI 

Median   2.5%   97.5% 
shape 1  2.7924641  2.4095885  3.468161 
shape 2  14.6077155  7.4036814  36.273665 
scale   0.7200331  0.2486015  1.856251 

 
The estimation method converged only for 734 among 1001 iterations. 
Bootstrap samples of parameter estimates are useful especially to calculate 

confidence intervals on each parameter of the fitted distribution from the mar-
ginal distribution of the bootstraped values. It is also interesting to look at the 
joint distribution of the bootstraped values in a scatterplot (or a matrix of scat-
terplots if the number of parameters exceeds two) in order to understand the 
potential structural correlation between parameters as shown in (Figure 9). The  

 

 
Figure 9. Bootstrappped values of parameters for a fit of the genpareto distribution cha-
racterized by three parameters. 
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bootstrap method can also be used to calculate confidence intervals on quantiles 
of the fitted distribution to the data set. 

 
(original) estimated quantiles for each specified probability (non-censored data) 

p = 0.05 
estimate 1.526787 
Median of bootstrap estimates 

p = 0.05 
estimate 1.526108 

 
two-sided 95% CI of each quantile 

p = 0.05 
2.5%   1.422547 
97.5%   1.630237 

 
The estimation method converged only for 734 among 1001 bootstrap itera-

tions. 

3.8. Value at Risk and Expected Shortfall 

We have calculated for the Value at risk and expected shortfall of 939 claims re-
ported in an insurance company. 

Table 5 shows that an increase in the quantile results to a decrease in the val-
ue at risk. Meaning that huge number of the claims if occurred will be borne by 
insurer himself. It also leads to a decrease in the expected shortfall. This is the 
probable loss that would result in case a risk happens at a certain quantile. 

Figures in parentheses are standard deviation. VaR (90%), VaR (95%) and 
VaR (99%) denotes the value-at-risk at the 95%, 95% and 99% confidence levels, 
respectively. ES (95%) denotes the expected shortfall at the 95% level, and so on. 

4. Summary and Conclusion 

4.1. Summary 

There are 939 observations in the data set. All commercial fire insurance loss 
data sets used in this study were obtained from a non-life insurance company in 
Egypt. The data is from 2000-2011 worth of fire losses. The major objective is to 
come up with one statistical distribution that fits the extreme claims data well 
and to test how well this statistical distribution fits those extreme claims so that 
this distribution can be used for modeling the extreme claims. 

 
Table 5. Value at risk and expected shortfall of data. 

Quntile VaR ES 

0.90 0.06314551 2.122615 

0.95 0.03126213 2.013327 

0.99 0.008028979 1.933929 
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The data that was analyzed came from an Insurance company which were fire 
claims from 2000 to 2011. The data had 939 claims. I carried out the descriptive 
analysis of the data where the mean was found to be 5.627495, Skewnessis 
3.055893 and kurtosis 17.95521. From the descriptive statistics it shows the data 
is heavy tailed hence extreme value theory was applicable. 

The parameter estimates of the seven distributions were compared and gen-
Pareto distribution came up to be the best fitting distribution. The Q-Q plots in-
dicate that most points of the genPareto distribution are lying along the refer-
ence line thus making it the best distribution family in preliminary stage. A his-
togram of claims and goodness of fit with loglikelihood value, AIC and BIC also 
pointed that genPareto distribution was the best fitting distribution among the 
three distributions, followed by frechet. The exponential function has the lowest 
value. 

Bootstrap method was carried out where I got another sample with replace-
ment then estimated the parameters of the genPareto distribution, plotted the 
QQ plots of the sample then estimated the confidence intervals of the parame-
ters to be for shapes parameter and scale parameter. 

It is practically impossible to experiment with every possible parametric dis-
tribution that we know of. An alternative way of conducting such an exhaustive 
search could be to fit general class distributions to the loss data in the hope that 
the distributions will be flexible enough to conform to the underlying data in a 
reasonable way. For the purposes of comparison, we have used genpareto, exp, 
Weibull, gumbel, frechet, lognormal, and gamma distribution as a benchmark. 
preceding page shows the poor fit of the exponential, Weibull, and shows that 
other distributions fit the loss data much better, especially the genpareto distri-
bution. The goodness-of-fit loglikelihood value, AIC and BIC show that the 
genpareto model is highest, followed by frechet. The exponential function has 
the lowest value. 

4.2. Conclusion 

In many applications of loss data distributions, a key concern is fitting the loss 
data in the tail. As mentioned above, good estimates of the tails of fire loss sever-
ity distributions are essential for pricing and risk management of commercial 
fire insurance loss. We first execute an exploratory loss data analysis using four 
classical goodness-of-fit plots densiplot, CDF, Q-Q plot and P-P plot of genpa-
reto, exp, Weibull, gumbel, frechet, lognormal, and gamma distributions. The 
goodness of fit, loglikelihood function value, AIC and BIC revealed the genPa-
reto distribution came up to be the best fitting distribution. 

Last but not least, we showed that the genpareto can be fitted to commercial 
fire insurance loss severity. When the loss data exceeds high thresholds, the 
genpareto is a useful method for estimating the tails of loss severity distributions. 
It also means that the genpareto is a theoretically well-supported technique for 
fitting a parametric distribution to the tail of an unknown underlying distribu-
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tion. 

4.3. Recommendation 

I would like to recommend future researchers to model the tail forms of other 
forms of insurance. Secondly, from a risk management view point, constructing 
a useful management technique for avoiding large claims would be an interest-
ing line of further research. In addition, I would like to recommend a similar re-
search using the extreme value distributions family come up with other methods 
of estimation. 
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