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Abstract 
Current insurance models, assuming that inter-arrival time of claims, are dis-
tributed randomly and thus well approximated by Poisson processes. Here we 
provide clear proof that the timing of inter-claims fits by non-Poisson pat-
terns, marked by rapid events, separated by long periods of inactivity. The 
time of inter-arrival claims will be heavy tailed, most claims will be executed 
quickly, while a few will have very long waiting times. We will model and 
analysis of insurance based on claim inter-arrival time, the time interval be-
tween two successive claims and the ability to carry out such modeling was 
limited by a lack of ecologically relevant data collected on claims inter-arrival. 
We propose a structured process behavior model based on data from Egyp-
tian fire insurance company. Our analysis shows that claim activities can be 
represented by non-Poisson processes and that the subsequent distribution of 
inter-arrival activity times follows the Pareto distribution. These results will 
help researchers understand daily behavioral trends and create more sophis-
ticated predictive models of claims. 
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1. Introduction 

It is becoming increasingly important to understand the nature of the claims 
acts. Indeed, the quantitative discovery of the laws governing the probability of 
ruin is of major scientific importance, and requires us to tackle the factors that 
determine the timing of claims. Certainly, the interest in addressing the timing 
of statements in ruin probability is not new: it has a long history in mathematical 
literature, contributing to the emergence of some of the core principles in prob-
ability theory, Feller (1971). But most existing ruin probability models presume 
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that claim inter-arrival time is measured at a constant rate. Anderson (2003), 
meaning a claim has a fixed probability of engaging in a particular action within 
a given time interval. These models estimate the timing of claims by the Poisson 
method, in which there is a time interval between two consecutive claims. Called 
the time to wait or to interevent fits the exponential distribution, Haight (1967). 

Poisson processes are at the root of the famous Erlang method, Erlang (1917). 
Nevertheless, a growing number of recent studies suggest that the timing of 
many acts is systematically deviating from the Poisson predictions. See Vazquez 
(2005), Grais et al. (2003), Pieropan et al. (2013) and Kwon et al. (2016). 

We find that waiting or inter-event claims are best matched with heavy tails or 
distribution of pareto, Bees et al. (2005), There’s a striking contrast between a 
Poisson and heavy tailed activity: The exponential decay of the Poisson distribu-
tion forces successive events to match each other at relatively frequent time in-
tervals and prevents very long waiting periods. Oliveira & Barabási (2005), on 
the other hand, the slowly decaying heavy tailed processes allow for very long 
periods of inactivity, which distinguish the bursts of intense activity. 

In this paper, we propose formal models of (arrival process) inter-arrival 
claims. Specifically, we study and model the sequences and pacing of the Egyp-
tian insurance company’s claims time inter-arrival. The availability of these mod-
els offers a basis for allegations related to fire claims. Due to constraints on real 
world data collection techniques, previous ruin probability models did not pro-
vide adequate details on the complex properties of inter-arrival claims. Usually, 
they believed that inter-arrival claims could be based on Poisson processes and 
that inter-arrival time, or time interval between two successive claims, follows an 
exponential distribution. This statement indicates that claims take place at a 
constant rate. Nevertheless, this model does not capture the variations that occur 
in the arrival rate of the operation. Recently, researchers proposed using heavy 
tailed distributions to explain the many dynamics our approach in this paper is 
to create a general model of the arrival process involving the collection of real-
time data in daily environments based on Egyptian fire insurance companies. To 
investigate that behavior, we use a case study with 10 years of data from one 
Egyptian insurance company. This behavior-driven by the company shows that 
Claims inter-arrival time routines can be modeled by non-Poisson processes. 
The time of inter-arrival operation is accompanied by a heavy tailed distribution, 
precisely the Pareto distribution. Our analysis offers evidence to support an in-
ter-arrival claims hypothesis, the Pareto model and its properties, such as the 
80/20 law, may be useful for the analysis of inter-arrival claims. The results of 
this study will provide the ability to simplify the treatment and design of claims 
behavioral interventions. 

1.1. Problem Statement 

After a detailed study of research papers, articles and books related to reliability 
and other statistical analysis it has been found that in maximum of researches 
show that Current ruin probability models, assuming that inter-arrival time of 
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claims, is distributed randomly and thus well approximated by Poisson processes. 
Here we provide clear proof that the timing of claims fits by non-Poisson pat-
terns, our analysis shows that claims activities can be represented by non-Poisson 
processes and that the subsequent distribution of inter-arrival activity times fol-
lows the Pareto, distribution. These results will help researchers understand dai-
ly behavioral trends and create more sophisticated predictive models of claims 
and their timing. 

1.2. Objectives of Study 

The main objective is to model inter-arrival time of claims in Insurance Com-
pany. 

1.3. Justification of the Study 

These results will help researchers understand daily behavioral trends and create 
more sophisticated predictive models of claims. 

By estimating commercial fire loss insurance risk on business-line and 
event-type levels, we are able to present the estimates in a more balanced fashion 
and the results may help non-life insurance companies to manage their risk. 

1.4. Research Structure 

• Test if inter-arrival time of claims be heavy tailed and follow pareto distribu-
tion. 

• I used “easy-fit” software for: 
1) Exploratory data analysis; 
2) Goodness of fit tests included KS-test, AD test, chi-squared test. 

• I find that show that the pareto distribution is the best one among 56 con-
tinous distribution according to KS test, and also chi-squared test. 

The remainder of the paper is organized as follows, in Section 2, the Poisson 
process for inter-arrival claims, which predicts an exponential distribution of 
interevent times. In Section 3, related works. In Section 4, pareto distribution, in 
Section 5, we present proof that the power law tail characterizes the interevent 
time probability density function of claims. In Section 6, the conclusion. 

2. Poisson Process 

Inter-arrival and waiting time distributions 
Let ( ){ }: 0N t t ≥  be a Poisson process with arrival rate 0λ > . Set 0 0T ≡ . 

For 1,2,n =   define ( ){ }inf 0 :nT t N t n= ≥ = =  time of arrival of n-th claim 
(or waiting time until the n-th claim arrival). Put 1, 1, 2,n n nA T T n−= − =   so 
that nA  time between (n − 1)-th and n-th claim arrivals. Recall from our initial 
comments that we had in fact defined the process, see Rolski et al. (1999). 

( ){ }N t  starting from { }iT . The random variables 0 1 2, , ,T T T   are called 
claim arrival times (or waiting times); the sequence { }: 1, 2,nA n =   is called 
the sequence of inter-arrival times. See Bingham et al. (1987). 
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For any 0s >  note that { } ( ){ }1 0T s N s> = = ; hence 

( ) ( ) ( )( ) ( )1 1 0 exp .P A s P T s P N s s> = > = = = −λ           (1) 

So ( )1 1 e , 0sP A s s−λ≤ = − ≥ . Therefore the random variable 1A  has an EXP 
(λ) distribution (= exponential distribution with parameter 0λ > ); that is,  

( )( )1 , e d , 0
b s
a

P A a b s a b−λ∈ = λ ≤ ≤ < ∞∫               (2) 

Next let us consider the joint distribution of ( )1 2,T T  let ( )1 2,T TF  denote the 
joint distribution function of ( )1 2,T T ; that is, ( ) ( ) ( )

1 2 1 2 1 1 2 2, , ,T TF t t P T t T t= ≤ ≤ . 
as 1 20 T T≤ ≤  it is enough to look at ( ) ( )

1 2 1 2, ,T TF t t  for 1 20 t t≤ ≤ . It is clear 
that for 1 20 t t≤ ≤ ,  

{ } ( ) ( ){ }
( ) ( ) ( ){ } ( ){ }

1 1 2 2 1 2

1 2 1 1

, 1, 2

1, 1 2

T t T t N t N t

t N t N t tN N

≤ ≤ = ≥ ≥

= = − ≥ ≥

      (3) 

where the r.h.s. is a disjoint union. 

( ) ( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( )
( )

1 2

2 11 1 1

2

1 2 1 2 1 1,

1 1

1 1

, 1, 1 2

e 1 e 1 e e

e

T T

t tt t t

t

F t t P N t N t N t P N t

t t

t H t

−λ −−λ −λ −λ

−λ

= = − ≥ + ≥

 = λ − + − + λ 
= −λ +

      (4) 

where H is a function depending only on 1t : Consequently the joint probability 
density function ( )1 2,T TF  of ( )1 2,T T  is given by 

( ) ( ) ( ) ( )
1 2 1 2

2

2

1 2 1 2, ,
2 1

2
1 2

, ,

e , if 0
0, otherwise

T T T T

t

F t t F t t
t t

t t−λ

∂
∂ ∂

λ < < < ∞= 




              (5) 

To find the joint distribution of ( )1 2,A A  from the above, note that 

1 1 1

2 2 1 2

1 0
1 0

A T T
A T T T

      
= =      − −      

                 (6) 

The linear transformation given by the (2 × 2) matrix in (13) has determinant 
1, and transforms the region ( ){ }1 2 1 2, : 0t t t t< < < ∞  in 1-1 fashion onto 
( ){ }1 2 1 2, : 0, 0a a a a> >  So the joint probability density function ( )1 2,A Af  of 
( )1 2,A A  is given by 

( ) ( ) ( ) ( )

( )( )
1 2 1 2

1 2

1 2 1 1 2, ,

1 2

, ,

e e , if 0, 0

0, otherwise

A A T T

a a

f a a F a a a

a a−λ −λ

= +

 λ λ > >= 


          (7) 

Thus 1 2,A A  are independent random variables each having an exponential 
distribution with parameter λ . See Billingsley (1968). 

With more effort, one can prove 
Theorem 1 Let ( ){ }: 0N t t ≥  be a time homogeneous Poisson process with 

arrival rate 0λ >  Let 1 2, ,A A   denote the inter-arrival times. Then  
{ }: 1, 2,nA n =   is a sequence of independent, identically distributed random 
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variables (or in other words an i.i.d. sequence) having Exp (λ) distribution. See 
Feller (1969). 

In view of the argument above for the case 2n = , the general idea of the 
proof is clear. One proves rst that the joint distribution function of 1 2 , ,, nT T T  
is given by 

( ) ( ) ( ) ( )
1 2

1
1, 1,

1
, 2, , , e n

n

n tn
n iT T T it t t t H tF − −λ−

=
= − +λ ∏



           (8) 

If 1 20 nt t t≤ < < < < ∞ , where ( ).H  is a function such that  
( )1 2 0n

nH t t t∂ ∂ ∂ ∂ = . In fact ( ).H  is a sum of a nite number of terms; each 
term is a product of powers of it  and e jt−λ  with at least one , 2kt k ≥  miss-
ing! Establishing this is the tedious part of the proof. Once this is done the joint 
probability density function of 1 2 , ,, nT T T  is given by 

( ) ( ) ( )
1 2 , ,

1 2
1 2,

exp , if 0
, , ,

0, otherwisen

n
n n

nT T T

t t t
F

t
t t t

λ λ < < < < < ∞= 






     (9) 

Note that the analogue is see Delampady et al. (2001) 

1 1
1

2 1 2
2

3 2 3

1

1 0 0 0 0 0
1 1 0 0 0 0

0 1 1 0 0 0

0 0 0 0 1 1n
n n n

T T
A

T T T
A

T T T

A
T T T−

   
     −     
     = −
     

 
 − 
 = −
 
      

     −  −   



   



 






        (10) 

One can now proceed exactly as in the earlier case to obtain the theorem. The 
reader is invited to work out the details at least when 3,4n = . 

Note: As 1A  has Exp (λ) distribution, its expectation is given by ( )1
1E A =
λ

; 

so 1
λ

 is the mean arrival time. Thus the arrival rate being λ  is consistent with 

this conclusion. See Bingham et al. (1987). 
Note: It is an easy corollary of the theorem that 1 2n nT A A A= + + +  has the 

gamma distribution ( ),nΓ λ . 
Remark 4: One can also go in the other direction. That is, let  

0 1 20 T T T= ≤ ≤ ≤  be the claim arrival times; let 1, 1n n nA T T n−= − ≥ . Suppose 
{ }nA  is an i.i.d. sequence having EXP (λ) distribution. Define ( ){ }N t  by (1). 
See Ethier & Kurtz (1986), Then the stochastic process ( ){ }: 0N t t ≥  can be 
shown to be time homogeneous Poisson process with rate λ . In the jargon of 
the theory of stochastic processes, Poisson process is the renewal process with 
i.i.d. exponential arrival rates. 

3. Related Work 

Maturing pervasive computing technologies have sparked a new wave of human 
behavior analysis and resulted in new theories regarding human behavior pat-
terns. Barabasi’s study of the timing of consecutive electronic and physical mail 
messages sparked a model of human dynamics as a heavy-tailed distribution see 
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Oliveira & Barabási (2005) and Bees et al. (2005). A queuing model and 
heavy-tailed distribution were introduced in Barabasi’s study to explain the large 
time gap between sent messages after a burst of responses. 

After Barabasi’s discovery, scientists use heavy tailed distributions to explain 
human behavior in diverse domains, ranging from social science to health care, 
see Andriani & McKelvey (2009). In the social network field, heavy-tailed dis-
tributions are used to characterize the dynamics of popularity based on diverse 
digital platforms, such as Wikipedia, blog posts, Android applications, Web 
pages, and Twitter see Leskovec et al. (2007) and Yu et al. (2017). As an example, 
Li et al. (2015) show that the behavior-based popularity of Android applications 
follows the Pareto principle. Tsompanidis et al. (2014) also discover that web 
traffic flow size can be explained by the Pareto distribution. Similarly, research-
ers presented a list of social and organizational power laws, one kind of 
heavy-tailed distribution, to describe human behavior see Scholz (2015) and 
Andriani & McKelvey (2009). Specifically, the power law distribution identi-
fies the number of inter-firm relationships observed from linkages between 
firms: suppliers, customers, and owners see Dewes et al. (2003) and Saito et al. 
(2007). 

Further, scientists use heavy-tailed distributions to model and predict human 
mobility see Mainardi et al. (2000) and Gallotti et al. (2016). For example, 
GPS-based human movement patterns can be captured by heavy-tailed flights 
for different transportation modes, including walking/running and car/taxi see 
Hong (2010) Regardless of transportation modes, the distribution of user’s 
moving distances, from visited locations to the target location, can be modelled 
by the Pareto distribution see Zhu et al. (2015). 

Evidence that non-Poisson activity patterns characterize human activity has 
first emerged in computer communications, where the timing of many human 
driven events is automatically recorded, see Gonzalez et al. (2008). For example, 
measurements identifying the distribution of the time differences between con-
secutive instant messages sent by individuals during online chats see Dewes et al. 
(2003) have found evidence of heavy tailed statistics. Professional tasks, such as 
the timing of job submissions on a supercomputer, directory listings and file 
transfers [FTP requests] initiated by individual users see Mainardi et al. (2000) 
were also reported to display non-Poisson features. Similar patterns emerge in 
economic transactions see Reberto et al., in the number of hourly trades in a 
given security see Plerou et al. (2000) or the time interval distribution between 
individual trades in currency futures see Masoliver et al. (2003). Finally, heavy 
tailed distributions characterize entertainment related events, such as the time 
intervals between consecutive online games played by users see Henderson & 
Henderson (2001). Note, however, that while these datasets provide clear evi-
dence for non-Poisson human activity patterns, most of them do not resolve in-
dividual human behavior, but capture only the aggregated behavior of a large 
number of users. For example, the dataset recording the timing of the job sub-
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missions looks at the timing of all jobs submitted to a computer, by any user. 
Thus for these measurements the interevent time does not characterize a single 
user but rather a population of users. Given the extensive evidence that the ac-
tivity distribution of the individuals in a population is heavy tailed, these mea-
surements have difficulty capturing the origin of the observed heavy tailed pat-
terns. For example, while most people send only a few emails per day, a few send 
a very large number on a daily basis see Eckmann et al. (2004) and Ebel et al. 
(2002). 

4. Pareto Distribution 

The Pareto distribution is the classic heavy-tailed distribution. In comparison 
with the exponential, it has a much higher probability of generating extreme 
values. This means that jobs with very long service times account for a signifi-
cant fraction of the queue’s total work. The Pareto distribution is often asso-
ciated with the famous 80 - 20 rule, which holds that 80% of outputs are attri-
butable to only 20% of inputs in applications with heavy-tailed behavior. For 
example, it’s been observed that 20% of a population tends to hold about 80% of 
total wealth, or that 80% of business sales revenue tends to come from only 20% 
of customers. An extension of this rule holds that the top 1% of inputs account 
for 50% of outputs. If a system’s jobs are Pareto distributed, then half of the 
total system running time will be dedicated to serving only 1% of jobs! It’s 
important to remember that the numbers 80 and 20 are not magical. The ac-
tual values will vary for different applications. They don’t even need to sum to 
one, since they’re measures of two different quantities. The significant part of 
the “law of the vital few,” as it’s sometimes called, is the relative importance 
of a surprisingly small portion of the population, see (Amoroso, 1938 & Pareto, 
1898). 

A power-law probability distribution that is used in description of social, 
scientific, geophysical, actuarial, and many other types of observable phenome-
na. Originally applied to describing the distribution of wealth in a society, fitting 
the trend that a large portion of wealth is held by a small fraction of the popula-
tion see Amoroso (1938), the Pareto distribution has colloquially become known 
and referred to as the Pareto principle, or “80 - 20 rule”, and is sometimes called 
the “Matthew principle”. This rule states that, for example, 80% of the wealth of 
a society is held by 20% of its population. However, one should not conflate the 
Pareto distribution with the Pareto Principle as the former only produces this 
result for a particular power value, (α = log45 ≈ 1.16). While is variable, empiri-
cal observation has found the 80 - 20 distribution to fit a wide range of cases, in-
cluding natural see Van Montfort (1986) phenomena and human activities. See 
Oancea (2017). 

If X is a random variable with a Pareto (Type I) distribution see Arnold 
(1983), then the probability that X is greater than some number x, i.e. the sur-
vival function (also called tail function), is given by 
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( ) ( )
1

m
m

m

x
x x

F x pr X x x
x x

α
 
 
 


≥= > = 

 <  
where mx  is the (necessarily positive) minimum possible value of X, and α is a 
positive parameter. The Pareto Type I distribution is characterized by a scale 
parameter mx  and a shape parameter α, which is known as the tail index. When 
this distribution is used to model the distribution of wealth, then the parameter 
α is called the Pareto index. 

Cumulative distribution function 
From the definition, the cumulative distribution function of a Pareto random 

variable with parameters α and mx  is 

( ) 1

0

m
m

m

x
x xFX x x
x x

α  − ≥  =   
 <  

Probability density function 
It follows (by differentiation) that the probability density function is 

( ) 1

0

m
m

m

x
x xFX x x
x x

α

α+

α
≥= 

 <

 

When plotted on linear axes, the distribution assumes the familiar J-shaped 
curve which approaches each of the orthogonal axes asymptotically. All seg-
ments of the curve are self-similar (subject to appropriate scaling factors). 
When plotted in a log-log plot, the distribution is represented by a straight 
line. 

Properties 
Moments and characteristic function 
The expected value of a random variable following a Pareto distribution is 

( )
1

1
n
m

E x x
n

∞ α ≤
=  α

α >α −  
The variance of a random variable following a Pareto distribution is 

( )
( ]

22

1, 2

2
2

mx
n

Var x

∞ α∈

 α α
α > 

α − α − 

=

 
(If 1α ≤ , the variance does not exist). 
Figure 1, Figure 2 show pdf and cdf of pareto distribution for various α (1, 2, 

3, ∞). 

5. Methodology 

This section presents the procedure which was used in the study. It explains in  
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Figure 1. Pareto Type I probability density functions for various α with 1mx = . As 
α→∞  the distribution approaches ( )mx xδ −  where δ  is the Dirac delta function. 

 

 
Figure 2. Pareto Type I cumulative distribution functions for various α with 1mx = . 

 
detail the steps that were encountered in the modeling process which includes 
the data processing and analysis. There are 939 observations in the data set. All 
commercial fire insurance loss data sets used in this study were obtained from a 
non-life insurance company in Egypt. 

5.1. Scope of the Data 

Secondary data from E.G. insurance company regarding fire industrial claims for 
the period 2000-2011 was used in this study. 

5.2. Actuarial Modeling Process 

This section will describe the steps that were followed in fitting a statistical dis-
tribution to the extreme claim severity. These steps include 

1) Exploratory data analysis. 
2) Goodness of fit test. 

5.3. Exploratory Data Analysis 

It was necessary to do some descriptive analysis of the data to obtain the salient 
features. This involves the Mean, Median, Mode, Standard Deviation, Skewness 
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and Kurtosis. This was done using easy fit programming language and also ma-
nual calculation. 

5.4. Specific Objectives 

Testing for the appropriate statistical distribution for the claim inter-arrival time. 
Test the goodness of fit of the chosen distribution. 

5.5. Variable 

The random variables used in the study were the fire claim inter-arrival time 
reported and claimed at EG Insurance. 

5.6. Descriptive Data Analysis 

Table 1 represents the summary statistics of fire insurance claims in years (2000- 
2011). The mean of claims is 9.539, the Variance 409.28 and the Range 266.63. 

Data Fitting process involves the use of certain statistical techniques which 
enable us to estimate fitness parameters according to the data sample. One bene-
fit of using software to fit the data and interpret probability data is that they can 
automatically fit data simultaneously with a number of known distribution pat-
terns. Easy Fit is a data analyzer and simulation program that helps us to fit 
probabilistic distributions to define data samples, to simulate them, to pick the 
best fit sample and to apply the analytical results to make better decisions. 
Goodness of fit Test is a technique used to determine the appropriate distribu-
tion to be fitted for the given data. The theoretical history of this test is clarified 
initially and then the whole test is applied to live data collected from Egyptian 
insurance company. The traditional assessment of fitness test goodness in statis-
tics is interested in testing precision for the sample produced from the supposed 
PDF. Moreover, it is also worth emphasizing the opportunity to reject the hypo-
theses when the supposed PDF is different from actual PDF. Furthermore, the 
opportunity to reject the hypotheses is also worth highlighting when the supposed  

 
Table 1. Descriptive analysis of data set. 

Statistic Value 

Sample Size 939 

Range 266.63 

Mean 9.539 

Variance 409.28 

Std. Deviation 20.231 

Coef. of Variation 2.1208 

Std. Error 0.6602 

Skewness 7.7114 

Excess Kurtosis 72.484 
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PDF is different from the actual PDF. This study applies three methods of fitness 
testing which include tests for Chi-Square (C-S), Kolmogorov-Smirnov (K-S), 
and Anderson-Darling (A-D). 

The results indicate that the distribution of pareto is one of the best distribu-
tions for the inter-arrival time claims.  

5.7. Goodness-of-Fit Tests 

As their very name implies, can be used to assess whether or not a particular 
distribution is properly fit to the data. The measurement of goodness-of-fit sta-
tistics also helps to rank the fitted distributions over the raw data according to fit 
consistency. This particular function of the app is very useful when comparing 
fitted models. The most widely used tests for goodness-of-fit include Kolmogo-
rov-Smirinov, Anderson-Darling and Chi-squared tests. For these tests, the 
principle of use is identical. They differ in functional method (and use type) 
however. Could be called the Kolmogorov-Smirinov test as the most used 
Goodness-of-Fit test. 

5.8. Easy Fit Software 

Easy Fit is a data analysis and simulation software which enables us to fit and 
simulate statistical distributions with sample data, choose the best model, and 
use the obtained result of analysis to take better decisions. This software can 
function as a stand-alone windows application or as an add-on for Excel spread 
sheet. 

Prominent features of this program are: 
• Supports more than 50 discrete and continuous distributions. 
• Automatic and manual settings. 
• Ability to test performed operations. 

Easy Fit supports all the commonly used continuous distributions. Some of 
them have alternative names (indicated in parentheses): 1. Beta 2. Burr (Burr 
Type 12, or Singh-Maddala), 3. Burr [4P], 4. Cauchy (Lorentz), 5. Chi-Squared, 
6. Chi-Squared [2P], 7. Dagum (Burr Type 3, or Inverse Burr), 8. Dagum [4P], 9. 
Erlang, 10. Error (Exponential Power, or Generalized Error), 11. Error Function, 
12. Exponential, 13. Exponential [2P], 14. F Distribution, 15. Fatigue Life (Birn-
baum-Saunders), 16. Fatigue Life [3P], 17. Frechet (Maximum Extreme Value 
Type 2), 18. Frechet [3P], 19. Gamma, 20. Gamma [3P], 21. Generalized Gam-
ma, 22. Generalized Gamma [4P], 23. Gen.extreme value, 24. Gumbel Max 
(Maximum Extreme Value Type 1), 25. Gumbel Min (Minimum Extreme Value 
Type 1), 26. genpareto, 27. Hyperbolic Secant, 28. Inverse Gaussian, 29. Inverse 
Gaussian [3P], 30. Johnson SB, 31. Johnson SU, 32. Kumaraswamy, 33. Levy, 34. 
Laplace (Double Exponential), 35. Logistic, 36. Log-Gamma, 37. Log-Logistic 
(Fisk), 38. Lognormal, 39. Nakagami (Nakagami-m), 40. Normal (Gaussian), 41. 
Pareto—first kind, 42. Pareto—second kind (Lomax), 43. Pearson Type 5 (In-
verse Gamma, 44. Pearson Type 6 (Beta dist. of the second kind), 45. Pearson 
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Type 6 [4] 46. Pert, 47. Power Function, 48. Rayleigh, 49. Rayleigh [2P], 50. Re-
ciprocal, 51. Rice (Ricean, or Nakagami-n), 52. Student’s t, 53. Triangular, 54. 
Uniform, 55. Weibull, 56. Weibull [3P]. 

In EasyFit, you can use almost all the Goodness-Of-Fit tests including Kol-
mogorov-Smirinov, Anderson-Darling, and Chi-square tests. When the distri-
butions are fitted, EasyFit will generate a report of goodness-of-fit values which 
includes calculated test statistics and critical values for various significance le-
vels, We will compare the process of fitting for several kinds of distribution. 
Since Goodness-Of-Fit statistics are in form of distance between data and fitted 
distributions, clearly the distribution with minimum statistics value has been 
best fitted with data. Based on this fact, EasyFit will attribute a ranking number 
to each distribution (1—the best model, 2—best model after the first one … 
etc.). This allows you to select the most reliable model easily. 

5.9. Methods 

The goodness of fit of the statistical model explains how well the set of observa-
tions fits. Fit goodness measures typically sum up the discrepancy between ob-
served values and expected values under the model in question. These tests can 
be used in statistical hypothesis testing, to test whether two samples are taken 
from the same distributions, or whether the resulting frequencies fit a particular 
distribution. There are various approaches used for the fitness test. The most 
significant of them are: • Kolmogorov-Smirnov • Anderson-Darling • Chi-Squared 
(method 2) And The methods used in this paper include goodness of fit tests, 
C-S, K-S, A-D tests, probability distribution function (PDF) parameter estima-
tion. 

5.10. Problem Identification 

After a detail study of research papers, articles and books related to reliability 
and other statistical analysis it has been found that in maximum of researches 
show that Current ruin probability models, assuming that inter-arrival time of 
claims, is distributed randomly and thus well approximated by Poisson processes. 
Here we provide clear proof that the timing of claims fits by non-Poisson pat-
terns, our analysis shows that claims activities can be represented by 
non-Poisson processes and that the subsequent distribution of inter-arrival ac-
tivity times follows the Pareto, distribution. These results will help researchers 
understand daily behavioral trends and create more sophisticated predictive 
models of claims and their timing. 

5.11. Summary of Goodness-of-Fit 

Table 2 shows that the pareto distribution is the best one among 56 continous 
distribution according to KS test, and also chi-squared test show pareto distribu-
tion is the best, while the Anderson test indicate pareto ranked 7 between 56 
continous distribution. 
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Table 2. Goodness-of-fit tests. 

Distribution 
Kolmogorov Smirnov Anderson Darling Chi-Squared 

Statistic Rank Statistic Rank Statistic Rank 

Pareto 0.01816 1 2.2587 7 3.2094 1 

Pearson 6 (4P) 0.01877 2 4.3282 11 N/A 

Dagum (4P) 0.02032 3 0.35633 1 5.4068 4 

Log-Logistic (3P) 0.02146 4 0.58452 2 6.9813 6 

Burr (4P) 0.02223 5 4.2821 10 N/A 

Lognormal (3P) 0.02975 6 0.7423 3 3.7114 2 

Gen. Pareto 0.03098 7 1.6016 4 4.5452 3 

Inv. Gaussian (3P) 0.04038 8 2.1557 6 17.966 8 

Log-Pearson 3 0.04065 9 2.1431 5 6.0442 5 

Pearson 5 (3P) 0.04121 10 2.9102 9 26.673 10 

Frechet (3P) 0.0415 11 2.781 8 21.23 9 

Gen. Extreme Value 0.07233 12 6.0418 12 10.895 7 

Pearson 5 0.10769 13 23.488 18 66.948 15 

Pearson 6 0.10943 14 22.838 17 64.565 13 

Fatigue Life (3P) 0.11065 15 15.325 13 62.524 12 

Levy (2P) 0.11716 16 19.679 15 132.06 18 

Weibull (3P) 0.12044 17 25.749 19 135.87 19 

Frechet 0.13169 18 17.489 14 49.008 11 

Gamma (3P) 0.14025 19 40.773 21 N/A 

Log-Gamma 0.14105 20 21.828 16 65.85 14 

Lognormal 0.15359 21 41.181 22 115.63 17 

Burr 0.15361 22 382.41 49 N/A 

Log-Logistic 0.15647 23 38.795 20 103.63 16 

Chi-Squared (2P) 0.19292 24 108.79 29 198.12 20 

Gen. Gamma (4P) 0.19467 25 58.949 23 347.85 26 

Weibull 0.1948 26 99.293 27 230.06 22 

Fatigue Life 0.2034 27 83.944 24 203.71 21 

Cauchy 0.24559 28 100.08 28 261.54 23 

Exponential 0.24673 29 90.209 26 286.56 25 

Rayleigh (2P) 0.26225 30 204.45 40 N/A 

Exponential (2P) 0.26411 31 169.35 31 415.52 29 

Kumaraswamy 0.27082 32 127.53 30 N/A 

Error 0.3109 33 184.03 34 394.5 27 

Laplace 0.3109 34 184.03 33 394.5 28 

Pareto 2 0.31804 35 88.52 25 276.02 24 
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Continued 

Gen. Gamma 0.32178 36 180.03 32 546.01 35 

Hypersecant 0.33846 37 190.47 35 422.62 31 

Levy 0.3468 38 207.91 41 612.33 36 

Logistic 0.35139 39 196.09 38 439.44 32 

Power Function 0.35715 40 195.93 37 N/A 

Normal 0.36771 41 216.29 42 448.92 33 

Rayleigh 0.37008 42 330.94 48 825.79 38 

Chi-Squared 0.38529 43 393.68 50 1153.8 39 

Gumbel Min 0.39505 44 287.7 44 N/A 

Uniform 0.40245 45 299.7 45 N/A 

Gumbel Max 0.42061 46 191.45 36 416.61 30 

Inv. Gaussian 0.46214 47 197.65 39 687.46 37 

Beta 0.48425 48 323.76 47 N/A 

Reciprocal 0.54998 49 709.4 51 1724.3 41 

Error Function 0.55314 50 284.05 43 478.6 34 

Gamma 0.58597 51 322.24 46 1206.6 40 

Rice 0.64241 52 1188.2 52 3728.7 42 

Pert 0.70911 53 1484.7 53 4591.7 43 

Triangular 0.81258 54 2264.7 55 6786.5 44 

Dagum 0.89083 55 2060.6 54 12042.0 45 

Student’s t 0.94302 56 2426.9 56 17027.0 46 

 
I will provide four classical goodness-of-fit plots for pareto distribution pre-

sented on: 
• p-p Graph; 
• Q_Q Graph; 
• Probability Difference (PD) graph; 
• Cumulated Distribution Function (CDF) graph. 

Figure 3, Figure 4 represent the PP and QQ diagnostic plots for the fited pa-
reto. Since out of the diagnostic plots the probability plot and quantile plot are 
approximately linear and the straight line fits most of the data points, it is safe to 
conclude that the pareto fits the inter-arrival time of insurance claims data 
points and the model we chose is valid. 

Figure 5 shows Probability Difference Graph, The probability difference 
graph is a plot of the difference between the empirical CDF and the theoretical 
CDF, This graph can be used to determine how well the theoretical distribution 
fits to the observed data, and Figure 5 shows a fairly linear relationship between 
the sample, and the theoretical quantiles. 

Figure 6 shows Cumulative Distribution Function (CDF) graph for pareto 
distribution and is displayed as a stepped discontinuous line depending on the  
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Figure 3. QQ plot of pareto distribution. 
 

 
Figure 4. PP plot of pareto distribution. 
 

number of bins. 

5.12. Hypothesis Testing 
5.12.1. KS Test 
The null and the alternative hypotheses are: 
• H0: the data follow the pareto distribution. 
• HA: the data do not follow the pareto distribution. 
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Figure 5. Probability Difference (PD) graph of pareto. 
 

 
Figure 6. Cumulated Distribution Function (CDF) graph. 
 

Table 3 shows that pareto distribution is accepted by KS Test having P value 
0.91054 at all level of significance. 

5.12.2. AD Test 
The null and the alternative hypotheses are: 
• H0: the data follow the pareto distribution. 
• HA: the data do not follow the pareto distribution. 
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Table 4 shows that pareto distribution is accepted by AD Test at 1% and 2% 
and 5% level of significance, But rejected at 10% and 20% level of significance. 

5.12.3. Chi Test 
The null and the alternative hypotheses are: 
• H0: the data follow the pareto distribution. 
• HA: the data do not follow the pareto distribution. 

Table 5 shows that Pareto distribution is accepted by chi-squared Test having 
P-value 0.95541 at all level of significance. 

6. Conclusion 

In many applications of claim inter-arrival time data distributions, a key concern  
 

Table 3. KS test for pareto distribution. 

Kolmogorov-Smirnov 

Sample Size 

Statistic 

P-Value 

Rank 

939 

0.01816 

0.91054 

1 

α 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.03502 0.03991 0.04432 0.04954 0.05316 

Reject? No No No No No 

 
Table 4. AD test for pareto distribution. 

Anderson-Darling 

Sample Size 

Statistic 

Rank 

939 

2.2587 

7 

α 0.2 0.1 0.05 0.02 0.01 

Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074 

Reject? Yes Yes No No No 

 
Table 5. Chi-squared Test for pareto distribution. 

Chi-Squared 

Deg. of freedom 

Statistic 

P-Value 

Rank 

9 

3.2094 

0.95541 

1 

α 0.2 0.1 0.05 0.02 0.01 

Critical Value 12.242 14.684 16.919 19.679 21.666 

Reject? No No No No No 
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is fitting the claim inter-arrival time in the tail. As mentioned above, good esti-
mates of the tails of fire claim inter-arrival time distributions are essential for 
pricing and risk management of commercial fire insurance loss. We execute an 
exploratory claim inter-arrival time analysis using a goodness of fit. The good-
ness of fit revealed the some distributions to be poorly fitted, while pareto dis-
tributions can be seen to fit the claim inter-arrival time data much better. 

The Q-Q plots indicate that most points of the Pareto distribution are lying 
along the reference line thus making it one of the best distributions for claim in-
ter-arrival time. A histogram of claims and goodness of fit with Probability Den-
sity Function (PDF) graph, Cumulated Distribution Function (CDF) graph, p-p 
Graph, Probability Difference (PD) graph and also pointed that Pareto distribu-
tion was one of the best fitting distribution among the 56 distributions. 

Preceding page and the goodness-of-fit shows that after analyzing the results 
of Table 2 it has been found that pareto distribution is the best distributions 
among 56 probability distributions. This distribution is accepted by KS Test 
having P-value 0.91054 at all level of significance, is accepted by AD Test at 1% 
and 2% and 5% level of significance, but rejected at 10% and 20% level of signi-
ficance and accepted by chi-squared Test having P-value 0.95541 at all level of 
significance. 
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