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Abstract 
This article B is almost autonomous because it can be read independently 
from the first published article A [1] using only a few parts of the article A. 
Below are given instructions so to need the reader study only on few places of 
the article A. Also, in the part A of Introduction, here, you will find simple 
and useful definitions and the strategy we are going to follow as well useful 
new theorems (also and in Section 5, which have been produced in this solu-
tion). So the published solution of twin’s problem can now be easily unders-
tood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 
by a new clear method, without the possible ambiguity of the text between the 
relations (4.14), (4.16) of the Article A. Also we complete the proof for the 
twin’s distribution which we use. At the end here are presented the Conclu-
sions, the Nomenclatures and the numerical control of the proof, which is 
probably useful as well in coding methods. For a general and convincing pic-
ture is sufficient, a study from the beginning of this article B until the end of 
the part A of the Introduction here as well a general glance on the Section 5 
and on the Conclusions below. 
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About Study 
This article B is an important development of A and it does take much time 
of work together with the A, [1] [2]. The two articles in collaboration com-
plete the solution, so that the solution is convincing. The B also presents new 
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ideas, such as the theory of silver bands. You can study this article B using as 
a quick update the following sections of the first article A: From the begin-
ning until relation (2.1), from the relation (2.7) until the relation (2.9), from 
the beginning of Section 3 until the relation (4.14) of the Section 4, and as 
well from the relation (4.16) until the relation (4.19), from the relation (4.20) 
until the relation (4.22) of the Section 4. These last two parts also exist in this 
article B at Section 5 with an important improvement. 
For explanations my email is: starsee@outlook.com.gr.  

 

1. Introduction 

A) Definitions and examples 
We accept the phenomenon or “event” in the probability and information 

theory as fundamental, defining the event in general as an experiential expe-
rience. The events can form sets by their common true propositions (properties) 
of definition of these sets and distinct each other in every such set by their not 
common properties. Relying constantly on the power of definition, the events, 
with their relations as other new events, can define entities of sets. For example 
the multiverse as an infinite set that probably is reflected onto the infinite in-
formation of relations of natural numbers, which includes the events of the 
known universe as well the infinite others, more strange, potentially events (e.g. 
infinite events probably in quantum entanglement or not) in a mental informa-
tion unconscious tank. 

Rieman Hypothesis (RH) could reveal that the twins obey in distribution 
which comes from the spesial distribution of prime numbers, which is statisti-
cally equivalent to random choices from an ideal “roulette” which has been re-
gulated to obey to the statistics which is changed from one silver interval to the 
next exclussively according to the known theorem of logarithmic dilution of 
prime numbers. The statistics of a common roulette depends on the probability 
1/36 for every its number due to equal “statistical influences on 36 numbers” 
thanks to roulette’s symmetries. Similarely, in problems of predictions concern 
prime numbers, we can make statistical calculations based on the general (catho-
lic) properties coming from equal distributions of the multiples of every prime 
number. If RH is valid then the distribution of prime numbers makes the statis-
tical calculation of twins here as well valid. Because we don’t know yet if the RH 
is true, in Section 3 and in the beggining of the Section 5, we will prove the main 
charachteristics of this statistics (which are necessery for the final proof) on the 
basis of “the deletions on candidates prime numbers from the multiples of the 
prime numbers”. Based on the power of the mathematical definitions and their 
accompanies examples we will make the clarification of the final proof which 
must consist from all necessary propositions for agreement in communication. 

We’ll start with the definition of the probability of the appearance of a twin in 
a silver interval: 
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)2 2
1,M M Mq qδ +=                           (1) 

We know the information definition of Shanon [3]: ( )2log 1I p= . 
This definition tells us that the probability of an event is the other face of the 

information that is essentially the same natural magnitude. For example, throw-
ing an ideal coin with 1 2 1 2p p= =  for the two possible events, the informa-
tion we gain after the result and the entropy before the result will be: 

( ) ( )2log 1 1 2 1 bit 1 8 byteI = = =    and [ ]
2

2
1

log 1 1 bit
i

i i
i

S p p
=

=

= =∑  

A1) The probability of occurrence of an event ie  defined on the elements 

na  of a set A by definition must be calculated based on this definition.  
A2) Let be define the event of not-divisibility ( )e sν  = “the natural number 

Mν δ∈  is not divisible by the { }1 2, , ,s M Mq q q qδ∈ =  ”. In Section 3 of article 
A we saw that we can define a prime number aq  in the Mδ  as event

( ) ( ) ( )" prime" 1 2aq e e e Mν ν νν= = = ∩ ∩ ∩ . In section 3 and 5 of article B 
we will show that two such events , , ,a b Mq qν µ µ ν δ= = ∈  could be considered 
in calculations as independent events of each other, symbolically a bq q<> , in 
random Mδ  because we will prove in Sections 3, 5 of this article B here that it is 
valid ( ) ( )e s e sν µ<>  for the pair ( ) ( ),e s e sν µ  which defines in random Mδ  
the events ,a bq q  by the previous definition of “ primeν = ”. Therefore in our 
special calculations we can consider that each Mν δ∈  will have the same prob-
ability ( )0 constMP P ν= =  of being a prime number in the same random Mδ . 
This constant probability 0MP  in Mδ  can be given by a general relation (80) in 
below Section 4.  

A3) Therefore, by defining the probability 0,M twinP  of a twin by the next rela-
tion (3) [based on the events of twin’s definition], because of the (3) and pre-
vious constancy of 0MP  in random RSI we have that the 0,M twinP  will be also 
constant for each Mν δ∈ . Therefore these imply the constancy of twin’s proba-
bility 0,M twinP  in the random RSI Mδ , which we will use for the twins multi-
tude calculation in the Section 5 below. Thus, by counting the elements in a  

random RSI Mδ , the number of twins will be the sum: 0,
1

Mi d

M twin
i

P
=

=
∑ . We point  

out that for this sum when we add the ( ) 0,1, 1 M twinP i i P− + =  in a RSI (or 

,M twinP  in VSI) we add in every position i the presentence of a twin for the place 
( )1, 1i i− + . Proposition: (2). 

The exactly calculations must be based on this definition. Specifically in 
counting N-1 steps between the natural numbers of a silver interval, if ( )P ν  is 
the probability (or otherwise frequency) of occurrence of a prime number at a 
random position ν  then the total probability that this probable prime number 
is accompanied by another probable prime number at the position 2ν + , under 
the conditions of the relation (2.1) in the article A, will be [4]: 

( ) ( ) ( ) ( )2 2
0, 02 ||M twin MP P P P P pν ν ν ξ ν ν= + = < =              (3) 

Especially for the above is: ( ) ( )2 || MP Pν ν ξ ν+ = . As we will analyze little 
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below the factor Mξ  satisfies the condition 01 1 2Mξ> > . If one claims that 
according to the relation (2.1) of the article A putting as ( )P ν  for the second 
part of (1.2) then we must put ( )2 ||P ν ν+  as ( ) ( )1 0.5P ν −  because the 
probable first prime number ν  gives the information that the other natural 
number 2ν +  not be divided by 2, then as we can see from the Section 5 below 
the our proof continues to be valid, but this claim is not the correct. Proposi-
tion: (4). 

The reason is that the probability which is gave from (2.1) or every other sim-
ilar equation [as they are below the (24), (25), (80)-(82), etc.] is constant inside 
random silver interval as we analyzed below (and as the arithmetical results con-
firm). On the other hand, the existence of a prime at a position K could similarly 
give information to any position K + 2m and not only to K + 2 position, but ob-
viously this does not exist in the proof of (2.1) of article A, and therefore this 
does not apply.  

To see how the relation (3) works cumulatively, suppose we are going to ran-
domly place 3 eggs in the positions of a straight egg cup of 5 consecutive posi-
tions. It is logical that there will always be 2 vacancies. Let us also define as a 
twin the placement of two eggs in two consecutive (successive) positions. The 
question is: “How many twins are on average expected”? There are two ways to 
calculate the average number of twins:  

1) There are ( ) ( ) ( ) ( )35 5! 3!2! 10mN = = =  different ways with a total of 12 
twins. Specifically there are 3 ways where the eggs are placed in succession 
forming 2 twins in each way and so there are 3 2 6× =  twins. There is also a 
way that no twins (0) are formed. Also exist and others 6 ways where 1 twin is 
formed in each way of these 6 ways and so there are 6 1 6× =  twins. Therefore 
the expected number of twins on average is: 

( )6 0 6 10 12 10 6 5tn = + + = = . 

2) The other calculation method can be based on the relation (3). Let be
{ }1,2, ,10s∈   a random case of putting randomly the 3n =  eggs in the 
5N =  positions. What is the expected number of twins? The 5 consecutive po-

sitions of the egg cup mark 1 5 1 4N − = − =  boundaries between them. For 
such random boundary { }1,2,3,4b∈  (with two positions at left and at right of 
b let be these “first and second”) any egg has ( ) 3 5P n Nν = =  probability to 
existing in its first position of b. Therefore we conclude that the probability to 
found in its second neighboring position of b any one of the other 1 2n − =  
eggs, so defining a twin of two eggs on their common boundary b, will be
( ) ( ) ( )1|| 1 1 2 4P n Nν ν+ = − − = . The reason is that after the first choice that 

concerns this boundary b are remaining 1 2n − =  eggs inside the other 
1 4N − =  positions. Based on the relation (3) we conclude that the probability 

to exist one twin of successive eggs for any random boundary b will be: 

( ) ( ) ( )( )0, 1 || 3 5 2 4 6 20M twinP P Pν ν ν= + = =  

Therefore counting the 1 4N − =  successive boundaries we will have the sum 
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of four 0,M twinP , that is the same result of the previous method (1): 

( )
1 1

0,
1 1

1 1 6 61 4
1 1 20 5

i N i N

t M twin
i i

n n n nn P N
N N N N

= − = −

= =

− −
= = = − = =

− −∑ ∑       (5) 

The above calculations, basing on the proposition (2), on are the same with 
the calculations driving to the relation (1.1) in Section (1.4) of the first published 
article A, and relative to the previous (3) here we have:  

( ) ( ) ( ) ( )0 1 || 2 4 3 5 5 6 1M P Pξ ν ν ν= + = = < . 

And general is valid: 

( ) ( ) ( )1 1P n N n N n Nν = > − − ⇔ < . 

Which condition obviously is in general case correct that is for the above rela-
tion (3): 

( ) ( ) ( ) ( ) [ ]0 2 || 1 1 1M P P n N n Nξ ν ν ν= + = − − <   . 

So the factor 0Mξ  with the condition n N  gives:  

( )0lim 1 1MN
nξ

→∞
= −                        (6) 

The (5) applies in RSI Mδ  where 2 2
1M MN q q+= −  and n is the number of 

primes inside this random silver interval (RSI) with ( )maxM Mq Y=  where 
from the 1 of “Nomenclatures” (section in Appendix at the end of this article B) 
is { }2,3,5, ,M MY q=  . Now we can easily estimate the limit of the above de-
fined “arithmetical length” MN d=  of RSI Mδ  as the index M tends to the in-
finite. From the inequality (4.5), mentioned in 10 of “Nomenclatures” (section in 
Appendix), and from the fact that the number of prime numbers is infinite, that 
is ( )lim MM

q
→∞

= ∞ , we easily find that the limit of the length MN d=  of the RSIs 
is also infinite. Really: 

( ) ( ) ( )4 lim lim 4 limM M M M MM M M
d q d q d

→∞ →∞ →∞
> ⇒ > = ∞⇒ = ∞       (7) 

Let organizes all the formulas here. According to the definitions in 5 of “No-
menclatures” (section in Appendix at the end) and from the calculations of the 
previous example of the eggs we can easily prove the below relations for any RSI 

Mδ :  

( ) 0
0

M
M

M

NnP P
N d

ν = = =                     (8) 

( ) ( )total twies
0, 0 0

total cases

1
1t M twin M M

n nN
n N N P

N N
−

= = = = −           (9) 

( ) ( ) ( )2
0, 0 01 1t M twin M Mn N N P n n Nξ= = − = −           (10) 

( )
( )

0
0

0

11
1 1

M M
M

M M

N dn N
N n d N

ξ
−−

= =
− −

                (11) 

From the (9) we confirmed that: 

If { } 0,0,1 0t M twinn n N∈ ⇒ = =                                    (12) 
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If 0 01 22 1M M Mn N N d ξ≤ = < = ⇒ < <                           (13) 

We can do many tests for the above relations with different examples by dif-
ferent values ,N n . 

We will also give a result that we proved, but indifferent to the proof of the 
twins’ conjecture here. In an Euclidean (flat) space of dimensions k we consider 
a k-dimensional parallelepiped with lengths of its sides: 1 2, , , kN N N  which 
are natural numbers. Let define now 1 2 kN N N N=  , ( ) ( ) ( )1 2 1i i i kW N N N −= ∑   
evidently with the all possible combinations and with indexes ( ) { }1,2, ,i m k∈   
different per two. If we randomly place n eggs (representing each of them the 
event 1) in the N positions (the empty positions evidently correspond to event 0) 
then the corresponding result of the relation (9) for the on average expected 
twins will be: 

( ) ( ) ( ) ( )1 1tn n N n N kN W= − − −                  (14) 

This result may be related with entropy’s problems in topology etc.  
Proof:  
Let’s start with a space k = 2 dimensions. Let be a rectangle with two sides 

with lengths 1 22, 3N N= = . This includes 6 square cells with 7x =  inner 
boundaries between them, while the (outer) perimeter has ( )1 22 10N Nλ = + =  
outer boundaries of the cells. We first want to find the number x of the inner 
boundaries computationally. Multiplying the total number 1 2N N N=  of the 
square cells by the number 2k of the boundaries of the perimeter of each 
square cell of these we find 2xλ + , because each inner boundary of cells was 
calculated twice while each outer boundary of cells was calculated once. 
Therefore we conclude that 2 2kN xλ= + , and next expanding this result we get 

( ) ( )1 2 2 6 2 3 7x kN N N= − + = × − + =  internal boundaries. And for the proof of 
the above relation (14) we can obviously write ( ) ( ) ( )1 1tn n N n N x= − −   . 
That is, for two dimensions x kN W= − . We can easily generalize for more 
dimensions bearing in mind that on the outer surface 1k − -dimensions of a 
k-dimensional cube [defining by arbitrary multitude (number) of dimensions] 
reside ( ) ( ), 2k m

mN k m k −=  m-dimensional “cubes” with m k< . For example 
on the 2-dimensional surface of a typical three-dimensional cube there are: 

( ) ( )
3 2

23, 2 3 2 3 2 6N −= = × =  faces, ( ) ( )
3 1

13,1 3 2 3 4 12N −= = × =  edges and 
( ) ( )

3 0
03,0 3 2 1 8 8N −= = × =  vertices. And for the number of sides of a square 

( ) ( )
2 1

12,1 2 2 2 2 4N −= = × =  etc. We can also see that the quotient of the peri-
meter D of a geometric shape of the plane to the area A of its surface corres-
ponds to a magnitude S associated with the entropy of the geometric shape. That 
is S D A= . So if we calculate S for a circle, for a square, for a rhombus etc 
which have the same area A we will find that the circle has smaller S than the 
square one that has less S than the rectangle and so on. That is, the smaller S has 
a geometric shape, the more axes and centers of symmetry it has. However, if we 
divide it into cells, we can calculate its entropy from known methods and for-
mulas and then we can correlate this entropy with S. We can then study these 
correlations in spaces (manifolds) of larger dimensions. So we can find methods 
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to calculate [taking as well in account the previous relation of Shannon] the bits 
of “average information” (or entropy) of a geometrical object in Euclidean and 
as well in curved manifolds and with arbitrary number of dimensions which as 
well corresponds to events.  

A3) We will prove one more proposition: Let be two arrangement sets ,A B  
of positive real (for example rational) numbers: 

{ }1 2, , , NA a a a=  , { }1 2, , , NB b b b=   

and also let the product symbols: 

( )1 1 2 2 1n n n n n nX a X a a a a a− − −= =  , 1 1X a= , 1n >  

( )1 1 2 2 1n n n n n nY b Y b b b b b− − −= =  , 1 1Y b= , 1n >  

This permits us to make any permutation between the elements of the set A 
simultaneously with the homologous elements of set B. The rearrangement ob-
viously is absolutely arbitrary. We can prove that if is valid i j i ja a b b>  for every 
pair { }, 1, 2, ,i j N∈   with i j≠ , then will be valid: 

, 2,3, ,n nX Y n N> ∀ =  . Proposition:             (15) 

Proof: The above proposition (15) for index 2n =  is valid from our hypothe-
sis. Let hypothesized that the relation (15) is valid for 2k ≥ :  

1 1k k k ka X b Y− −>                         (16) 

As we know from the method of perfect mathematical induction, it suffices to 
show the relation (15) for 1n k= + . So, “let we assume the relation (15) to be 
valid for n k= , as we assumed just now, and let we assume simultaneously that 
the relation (15) not apply to 1n k= + ”. Let be this Proposition (17). 

Now, according to the other mathematical method of “negation introduction” 
(reduction ad absurdum) it is enough to show that the last proposition (17) leads 
to an absurd result. Really, if is valid the (17) we conclude that must exist two 
numbers 1 1,k ka b+ +  [except of these in (16)] so we have: 

1 1 1 1k k k k k ka a X b b Y+ − + −<                      (18) 

But the standard hypothesis (16) can use as well these previous factors 

1 1,k ka b+ +  indifferent to according on (16) what these two previous factors are, 
because obviously the relation (16) always applies to any two factors:  

1 1 1 1k k k ka X b Y+ − + −>                        (19) 

Multiplying the members of the relations (16), (19) we get: 

1 1 1 1k k k k k ka a X b b Y+ − + −>                      (20) 

We thus arrived to an absurd result because the (20) is the refusal of (18). So 
the relation (17) is not valid and the proof of (15) has been completed. We 
could start from i j i ja a b b>  and similarly to the above proof we can try to 
prove the (15) initially for only three numbers to make clear the picture of this 
proof. That is, if the proposition is not true then must existing two numbers 

,m ma b  so to be i j m i j ma a a b b b<  from which we again conclude that m ma b<  
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and then ( ) ( )2 2
i j m i j ma a a b b b< . But from the other hand by initial hypothesis we 

have that i m i ma a b b> , j m j ma a b b>  and multiplying the members of the two re-
lations we get the refusal of the previous relation: ( ) ( )2 2

i j m i j ma a a b b b<  and so 
on.  

A4) If we replace the sets ,A B  of numbers by new sets * *,A B  of events 
* *,i ia b  and then if is valid that ( ) ( )* * * *or ori j i jP a a P b b>  for every pair 

{ }, 1, 2, ,i j N∈   with i j≠  we conclude that will be valid that: 

( ) ( )* * * * * *
1 2 1 2or or or or or ori i im i i imP a a a P b b b>           (21) 

To prove the (21) we can use the (83) of Section 4 below, but with probabili-
ties of our hypothesis instead the fractions there, and similarly to the proof there 
by using the (15) we can correlate the two expansions of (81) with probabilities 
for the * *,A B  instead the fractions. Taking into account the known probability 
theory for many alternatively events we can complete this proof. Next, we can 
try to formulate a corresponding theorem between two classes ** **,A B  with 
many intersected each other sets, by multitude N for every class, proving this 
theorem between the common subsets (of intersections) on the basis of the pre-
vious analysis, because the theory of probability is connected by the theory of 
sets.  

B) Connection by the first article A 
According to the definitions we said that the symbol qν  (with Nν ∈ ) sym-

bolize the prime numbers: 0 1 2 31, 2, 3, 5,q q q q= = = =   
We will define now some categories of silver intervals and then bellow in Sec-

tion 2 we will give arithmetical examples as well for these categories as for their 
interior:  

The interval which is presented at Figure 1, in Section 4 of first article A 
that we represented above again, we will call “Real Silver Interval” (RSI) if, and 
only if, it represents the real distribution of bands in a real (true) silver inter-
val. In Section 3 of first article A we defined the band of sq -multiples 
[prime-multiples of some silver interval )2 2

1,M M Mq qδ +=  ] the subset interval 
( ) ( ) ( )1, , ,s s sb M M Mθ θ τ=     that includes only natural numbers between the 

positions of first “1” and last “τ ” multiples of corresponding prime number sq  
in the same silver interval. In Section 3 of A also we gave the necessary defini-
tions and examples relative to bands. Two bands in the same real silver interval  
 

 
Figure 1. Silver interval. 
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(RSI) Mδ , and in relative to their limits, are related only in two ways. One way 
is to be included the one band inside the other band as it is in the case of bands

( ) [ ],sb M γ ζ= , ( ) [ ],b Mρ α η=  in Figure 1 of Section 4 in first article A. We 
will call this way as “not intersection way”. The other way is these bands inter-
sect each other and we will call this second way as “intersection way”. The dis-
tribution way where the beginning of second band B2 appears after the end of 
first band B1 (in the same real silver interval) does not take place. The reason is 
that in this case the left distance L1 between the left border of B2 and the left 
border of RSI Mδ  must satisfy the inequality L(B2) > L1 > L(B1) and similarly 
the right distance L2 between the right border of B1 and the right border of Mδ  
must satisfy the inequality L(B1) > L2 > L(B2), where L(B1), L(B2) represent the 
two lengths of bands B1, B2, and adding these two double inequalities we result 
in irrational conclusion. 

Next we’ll define as “Virtual Silver Interval” (VSI) a silver interval where every 
band of Mδ  is expanding theoretically from one border (boundary) of Mδ  to 
another border of Mδ , so all bands overlap theoretically each other perfectly 
and moreover in this manner their erasers can interact perfectly as the theory 
drives to (4.7) of article A predicts. To understand it we must define the “eras-
ers”. 

In Section 4 of article A (and after Figure 1) we defined as “eraser” every mul-
tiple of a prime number sq  at a place ν  (in RSI Mδ  or in VSI) because every 
such eraser deletes the possibility to be the integer ν  prime number. These 
erasers initially are “real erasers” in RSI. But in calculations using the relation 
(4.7) these erasers [which as we said correspond to prime numbers of 

{ }1 2 3, , , ,M MY q q q q=   which has been defined at the beginning of Section 2] 
interact in a VSI each other perfectly and in absolutely accordance with the re-
sults of these relations, because the erasers distributed perfectly in total interval

Mδ . But absolutely the same interaction does not happen in RSI (where again 
the erasers coincident only with the multiples of primes sq ) because the bands 
have not now a complete overlap as it was happening just before in virtual silver 
interval (VSI). Every band ( )sb M  is a set of eraser sq -multiples of MY  and 
therefore the overlap of two bands ( )sb M , ( )nb M  causes a partial overlap 
between these sets of two kinds of erasers { sq -multiples, nq -multiples} that is a 
partial coincidences of them on some points (natural numbers of silver interval) 
only inside overlapping intervals of these two bands. The statistics that is ex-
pressed by the relations (2.1) or (2.7) of article A work perfectly only for VSI, 
because the bands only in the VSI are expanding into all its length (which is the 
same length with the length of its corresponding RSI). This condition is neces-
sary for the correctness of results of (2.1) or (2.7). We can thus expand and study 
the coincidences of the erasers of different kinds of multiples between three or 
more bands define common intervals of overlap in all length of VSI or in part of 
length in the RSI. We define from now on as “real clear deletion multitude” in-
side an interval the multitude of essential (clear) deletions from all kinds differ-
ent erasers in this interval by rule to counting as one deletion all together the 

https://doi.org/10.4236/apm.2020.109035


P. C. Papadopoulos 
 

 

DOI: 10.4236/apm.2020.109035 556 Advances in Pure Mathematics 
 

degenerate deletions (from all the different kind of erasers) when these are coin-
cident on a point (on a natural number inside this silver interval). And similarly 
we will define the “virtual clear eraser multitude” for virtual silver interval, 
minded that in VSI the above definition has no specific points of coincidences. 
The general rule is: “The greater the clear density of the deletions, the fewer the 
prime numbers”. We can also use the dynamic term “moving eraser” for dele-
tions of specific kind sq -multiples for its many deletions in an interval inside a 
silver interval RSI or VSI so to have a moving image of this specific eraser’s dele-
tions.  

As we analyzed in Section 4 of first article A, and after Figure 1, this arith-
metical phenomenon decreases the clear multitude of virtual deletions (from all 
kinds of erasers) in VSI, because the deletions partially and virtually coincident 
more times each other on non specific points (natural numbers) inside VSI, in 
comparison to the real deletions (from all kinds of erasers) which coincident 
partially again each other but now (in contrary to VSI case) on specific points (of 
natural numbers) inside the corresponding RSI. An important phenomenon of 
partial degeneration that increases the “real clear deletion multitude” and there-
fore increases the “real clear density of deletion” of erasers relative to “virtual 
clear deletion multitude” and “virtual clear density of deletion” of virtual default 
case. So we define as “clear density” the one that ultimately determines the 
number of prime numbers. And so we need define a virtual silver interval “g” 
with virtual clear density of deletion greater than 1 sq , that is a “special virtual 
deletion density”: 1s sqρ > , which in the article A we called “true density” of 
calculations for relation (4.16). The density 1s sqρ =  in (4.7) for the default 
virtual silver interval we called “active density” and in calculations obviously this 
density drives to a greater default virtual multitude of primes in comparison to 
the real prime’s multitude in real Mδ . To avoid confusion we will henceforth 
adopt only the term “virtual clear density of deletion” or simply “virtual density” 

s sg qρ =  because in calculations we always use a virtual silver interval and so 
every density refers to some virtual silver interval. The factor g (of choice of the 
“virtual silver interval g”) gives the virtual modification for the density incre-
ment of virtual deletions in “virtual silver interval g” and takes values equal or 
greater than 1. The case equal to 1 refers to the default virtual silver interval of 
RSI Mδ . At this point we must make clear that the cases where the “virtual clear 
deletion multitude” Y1 of virtual erasers is smaller than “real clear deletion mul-
titude” Y (in the corresponding real silver interval) do not interest us, because in 
calculations we need a virtual silver interval “g” with smaller multitude X1 of 
primes in it than the real multitude X, so if we prove that the X1 is infinite, then 
automatically we will have as final conclusion that the real multitude X is infinite 
also. Consequently we must choice 1g >  and below we will prove that the case 
of every “special virtual silver interval” with 2g =  (which we used for our cal-
culations in article A) really corresponds to a multitude X1 of primes smaller 
than real multitude X of corresponding RSI, and so our calculations are really 
correct. 
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Then, in addition we’ll prove here that all cases with 1.3g >  correspond to 
X1 < X also. Obviously the proof in article was depended on case 2g =  [rela-
tion (4.17)]. But as we refer [in (3) of section “The steps”], in the next Section 4 
the proof of this point (that declares that case 2g =  corresponds to X1 < X and 
so is valid for our realized statistical calculation) now will be different. The rea-
son is that this point in first published article A arose with introduction “two 
erasers in every band”, hoping there we can arrive to a virtual silver interval “g” 
with more deletions than the case of real silver interval. But we owe a clear proof 
for (4.17). So finally we will understand the critical point of total proof more eas-
ily and absolutely clearly, so we will are sure that our choice of case 2g =  real-
ly corresponds to relation X1 < X, and so in the Section 5 with new techniques 
we will make the proof perfect. 

2. Band’s Theory in Silver Intervals 

We defined before, that every Real Silver Interval (RSI) in N:  

)2 2
1,M M Mq qδ +=  , 

M N∈  with unknown real density * 1s s sqρ ρ> =  for every prime number 
{ }1 2 3, , , ,s M Mq Y q q q q∈ =   corresponds to a set including an infinite multitude 

from Virtual Silver Intervals (VSI) with densities s sg qρ =  for every VSI. The 
above value s sρ ρ=  would be in the factors of relation (4.16) of article A, only 
if we choose 1g = ]. In article A we are interested only for g values with the 
property 1 2g≤ ≤ . The role of the parameter g will be analyzed just below, e.g. 
see below relation (24). The dash above the symbols P etc, in relations (2.1) or 
(2.7) of article A, indicates that the corresponding probabilities and densities re-
fer to the default VSI that we defined by choice 1g = . In other words the VSI 

1g =  corresponds to that we called before default virtual interval. Another VSI 
defined by choice 2g =  we will call proper virtual interval. We can understand 
the VSI for some g easily. For example let we choose the RSI: 

) ) [ )2 2 2 2
4 4 4 1, 7 ,11 49,121q qδ + = = =   

We define two types of lengths in Mδ  between two places of natural num-
bers ,m n  inside Mδ : A) The type of arithmetical length [ ]( ), 1l m n n m= − +
that counts the natural numbers of the interval [ ],m n . B) The geometrical 
length [ ]( ),L m n n m= −  that counts the units (the multitude of 1) included in 
[ ],m n . For example, the relations (4.4), (4.5) at the beginning of section 4, in the 
first article A, define the arithmetical length of a band and of a silver interval, 
whereas the relation (4.6) there represents the geometrical length L of the inter-
val 2

10, 1Mq + −   on the known axis N. The relation between arithmetical and 
geometrical length of the same interval [ ],m n  evidently is [ ]( ) [ ]( ), 1 ,l m n L m n= + , 
and the (4.3) defines the arithmetical length 2 2

1M M Md q q+= −  of silver interval 

Mδ . C) We must point that the product pl  of arithmetical length l inside Mδ  
with a probability p of an event e, on every natural number of the interval l, gives 
the fraction (per unit, whereas per cent is 100 %lp× ) of this event e on the total 
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numbers of the arithmetical interval l, if we considerer that 1Mpd = . This event 
e could be e.g. a kind of deletion of some eraser (or in other case of many erasers 
together) inside the silver interval Mδ  with probability p on every natural 
number of the interval l.  

Let be the above A, B, C definitions as the Proposition: (22) 
Let be the previous example of 4δ , with its sub-sequence { }4 2,3,5,7Y = . We 

defined MY  at the beginning of Section 2 of the article A. This RSI 4δ  corres-
ponds to a collection of the VSIs from different values of g that we will symbol-
ize and we will define as follows: 

( ) ) [ )2 2
4 4 4 1, 49,121vir g q qδ += =  

by the factor: 
g = Κ Λ                            (23) 

The numbers ,Κ Λ  are prime numbers to each other, so to be the number g a 
positive rational number. The symbol “vir” means virtual (silver interval). The 
arithmetical length of VSI ( ) [ )4 49,121vir gδ =  according to its previous defini-
tion obviously is ( ) 121 49 72Ml g = − = . Accordingly to the relation (4.16) we 
will define as probability to find a prime in ( )4

vir gδ  the next expression by 
1 2g≤ < : 

( ) ( )
1

1 1 1 1 1
2 3 5 7

M

M j
j M

g g g g gP g F g
q

ν

ν=

     = = − − − − −     
      

∏      (24) 

And choosing g = 1 for default VSI we calculate: 

( )4
1 1 1 1 241 1 1 1 1
2 3 5 7 105

P     = − − − − =    
    

             (25) 

This result represents the fraction of prime numbers in ( )4 1virδ  and therefore 
it predicts a multitude ( )( )121 49 24 105 1728 105 16.4n = − = ≅  of prime 
numbers which is a not correct result because in this RSI are included 15 prime 
numbers as Table 1 of article A shows. Thus the rational number 1728/105  
 
Table 1. Prime multitude in silver intervals. 

Real Silver Intervals (RSIs) 
True Multitude 

of prime numbers 
Expected multitude 

of prime numbers in VSIs g = 1 

[4, 8] 2 2 

[9, 24] 5 5 

[25, 48] 6 6 

[49, 120] 15 16 

[121, 168] 9 9 

[169, 288] 22 23 

[289, 360] 11 12 

[361, 528] 27 28 

[529, 840] 47 51 

[841, 960] 16 18 

[961, 1368] 57 62 

[1369, 1680] 44 46 
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represents the virtual multitude of primes for default VSI g = 1. This number 
could be useful for our calculation but as we explained in the first article (A) it is 
greater than the real multitude because the bands in the RSI [ )4 49,121δ =  do 
not have a complete overlap as it is happening in the VSI ( )4 1virδ  and so the 
deletions in RSI are distributed in a greater (of one dimension) space with a less 
overlap to each other than the above relation (25) predicts. In other words the 
“virtual clear deletion multitude” (that we defined in Introduction here) de-
creases in comparison to the corresponding “real clear deletion multitude” (that 
we also defined in Introduction) of RSI [ )4 49,121δ =  because they in default 
VSI (defined as we said by choice g = 1) have the theoretical deletion coinci-
dences of (4.7) of A article in contrary to the deletions of its corresponding RSI 
where for “real clear deletion multitude” in general case (random choice) we 
have no correct general relation to calculate this. The problem now is to find a 
new g greater than 1 for VSI ( )4

vir gδ  which will generate the properly great 
density of deletions so that accordingly to (24) the VSI ( )4

vir gδ  would have a 
properly less virtual multitude of prime numbers than the true multitude 15, not 
only especially for this RSI [ )4 49,121δ =  but in the general case. And therefore 
this will drive us to calculations with a less multitude of prime numbers than in 
real exist. Conclusively, if we in this way can prove that the virtual multitude of 
twins of all together VSI ( )vir

M gδ , e.g. with common 1g > , is infinite, then we 
will immediately conclude that the true (real) multitude of twins of all together 
RSI Mδ  in N is infinite also.  

Finally, we will give some examples with bands and their deletions using the 
real silver interval RSI ) ) [ )2 2 2 2

4 4 5, 7 ,11 49,121q qδ  = = =  : 
This RSI includes four bands with their corresponding moving erasers: 
1) ( ) ( ) ( ) [ ]2 2 24 1,4 , , 4 50,120b θ θ τ= =   , with 36 deleted numbers in it from 

moving eraser 2q -multiple.  
2) ( ) ( ) ( ) [ ]3 3 34 1,4 , , 4 51,120b θ θ τ= =   , with 24 deleted numbers in it from 

its moving eraser 3q -multiple.  
3) ( ) ( ) ( ) [ ]5 5 54 1,4 , , 4 50,120b θ θ τ= =   , with 15 deleted numbers in it from 

its moving eraser 5q -multiple.  
4) ( ) ( ) ( ) [ ]7 7 74 1,4 , , 4 49,119b θ θ τ= =   , with 11 deleted numbers in it from 

its moving eraser 7q -multiple. Also in RSI 4δ  the “real clear deletion multi-
tude” is equal to 72 − 15 = 57, accordingly to the definition of “real clear deletion 
multitude” in Introduction before. And also to the definition “real clear density 
of deletion”, in Introduction before, for our RSI we can put: 

* 57 72 0.791ρ = ≅                        (26) 

We will distinguish the “clear deletion density” from the previous density 

s sg qρ =  that we referred at the beginning of this Section 2. The “clear dele-
tion density” will be calculated below in relation (28) and is different from sρ . 
Obviously the first band ( )2 4b  coincides with the third band ( )5 4b , while 
apart from this pair all the other 5 pairs (which are formed from these 4 bands) 
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don’t coincide. There are also natural numbers (points) in RSI 4δ  where the 
deletions from two or more moving different erasers coincide, e.g. in position 50 
(which is the second position of RSI 4δ ) where the deletions from moving eras-
ers 2q -multiple, 5q -multiple coincide and the point 56 where the same take 
place by the pair 2q -multiple, 7q -multiple etc.  

For VSI ( )vir
M gδ  we must emphasize that it is an ideal interval that has as its 

archetype the RSI Mδ . We can imagine that ( )vir
M gδ  is placed as a slide on 

Mδ  where it is applied perfectly and constantly compares its data with Mδ . 
Deletions in ( )vir

M gδ  are always ideal and fairly distributed in it based on the 
relation (24). We can thus imagine any virtual eraser sq -multiple of ( )vir

M gδ  
as an arrow that has probability of sg q  hitting any natural number inside the 
VSI ( )vir

M gδ . Therefore the probability of being prime number on every posi-
tion ν of VSI ( )vir

M gδ  will be constant equal to ( )MP g  and will be given by 
(24), while according to (1.1) in Section 1 of the first article A for the corres-
ponding twin, in the same random position, this probability was equal to 

( ) 2
MP g   , but as we said below we replace it by (3). 
Let us now compare the relations (24) and (25). Selecting e.g. the value 

1.43g =  (which is greater than 1.3) these relations give us respectively
( )4 1.43 0.085P ≅  and ( )4 1 0.228 16.45 72P ≅ = . We observe the drastic reduc-

tion of the prime number multitude in VSI ( )4 1.43virδ  in relation to RSI 4δ  
(where we saw that P = 15/72) because it is 1.43 1.3 1g = > > . We thus manage 
to already have one 1.43g =  which promises that the proof we are looking for 
is feasible. In other words, although the default VSI ( )4 1virδ  has a larger multi-
tude of prime numbers (16) than the RSI 4δ  that has 15 (something that is true 
for intervals in Table 1 of article A) now we managed to reverse the situation by 
replacing the default case of VSI of 1g =  with a new VSI of 1.43g = . So it suf-
fices to prove that 1) this is true generally for VSI ( )vir

M gδ  with 2 1.3g≥ >  
and 2) the set of proper VSI ( )vir

M gδ  includes an infinite multitude of twins, as 
we analyzed before. This we already did in article A and now, as we said, we will 
give bellow in Section 4 a new proof that clarify the critical point of case (1) just 
before. The “y” – “g” diagrams are also interesting, choosing for example two 
cases from them with ( )My P g= , ( ) ( )1M My P g P= . These diagrams hide in-
formation about distribution of prime numbers in silver intervals with
g Q R∈ ⊂ . 

Developing the above relation (24) we turn the product into a sum, and so we 
get:  

( ) ( )
1 2 1

1 1 2 11 2 1

1

1 1 1 1 1
1 1

N

k N N

I MI M I M I Ms M N
M

s I I I I I Ii I I I I

g g g g gP g
q q q q q

== = ==
+

= = ≠ = = ≠ =

 
= − − + + − 

  
∑ ∑ ∑ ∑ ∑    

Where the proposition k NI I≠  means that the indexes in products in every 
sym are different between them. And for the new greater virtual density, putting 

s sg qρ = , we will have the corresponding smaller prime numbers probability of 
VSI g > 1 (relative to the default VSI g = 1 probability): 
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( )

( )

1 2

1 2
1 1 2

1

1
1

2

1 1 1

1 1

1

1
N

N
k N

I M I Ms M

M s I I
s I I I

I MI M
N N

I I
I I I

P g g g

g

ρ ρ ρ

ρ ρ

= ==

= = ≠ =

==

= ≠ =

 = − + − 
  


+ − 



∑ ∑ ∑

∑ ∑



 

          (27) 

Let us putt ( )
1

s M

M s
s

R g g ρ
=

=

 =  
 
∑  and 

( ) ( )
1 2 1

1 2 1
1 1 2 1

2

1 1 1 1
1

N

N
k N

I MI M I M I M
N N

M I I I I
I I I I I I

K g g gρ ρ ρ ρ
== = =

= ≠ = = ≠ =

 
= − + − 
 

∑ ∑ ∑ ∑    

By these substitutions the above (27) takes the simplest form: 

( ) ( ) ( )( ) ( )1 1M M M MP g R g K g U g= − − = −  

Thus we define the quantity: 

( ) ( ) ( )M M MU g R g K gρ = = −                    (28) 

Let us now develop the above relation (28) for only two random factors 
,i jF F  of (24) setting for them 1 ix q=  and 1 jy q= . So will have that
( ) ( )R g g x y= + , ( ) 2K g g xy= . Conclusively, for this simple case we find: 

( ) ( ) 2U g g x y g xyρ = = + −                     (29) 

This relation (29) represents the “virtual clear density of deletion” [that we al-
ready used in relation (26)] or simply “virtual density” as it is formed by the in-
teraction of the erasers between only two bands ( )ib M , ( )jb M  for some val-
ues ,g M . This relation will be useful in bellow Section 4. The general rule as we 
said in Introduction here is: “The greater the clear deletion density, the fewer the 
prime numbers”. 

According to our definitions before, we calculated in (26) the “real clear den-
sity of deletion” 57/72 of the specific RSI 4δ . Similarly the quantity ( )U gρ =  
generally can represent the “virtual clear density of deletion” of VSI. For exam-
ple for the default VSI ( )4 1virδ  we will have the “virtual clear density of dele-
tion” or simply “virtual density”: 

( ) ( )44 1 1 1 16 72 56 72 0.777U Pρ = = − = − = ≅  

This value 56/72 is smaller than the corresponding real 57/72 because the RSI 

4δ  has “real clear deletion multitude” equal to 57 whereas the default VSI 
( )4 1virδ  has “virtual clear deletion multitude” equal to 56.  

As we said before, we are now looking for every ( )vir
M gδ  that has greater 

“virtual clear density of deletion” than the “real clear density of deletion” for all 
values of M. For example choosing the previous value 1.43 1.3g = >  and using 
the relation (28) we find ( )41 1.43 1 0.085 0.915Pρ = − ≅ − = . 

We observe that this value of new VSI 1.43g =  [ ( )4 1.43virδ ], in contrary to 
the default ( )4 1virδ  that has ρ  about 0.777, is now significantly greater than 
the corresponding value * 57 72 0.791ρ = ≅  of RSI 4δ . Thus we looking for 
any values ,g M  to be: 
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( ) ( ) ( )proper VSI RSI default VSIρ ρ ρ> ≥  

that is the general case of our special example here: 0.915 0.791 0.777> > . We’ll 
define as “proper VSI g “ every ( )vir

M gδ  that for all its infinite natural numbers 
1,2,3,4,M =   satisfies the inequality: 

( ) ( ) ( )proper VSI 1 RSI default VSI 1g gρ ρ ρ> > ≥ =          (30) 

All these because we said that we want to do the proof for the twins using a 
suitable ( )vir

M gδ  that satisfies the relation (30). Because by adding the twins for 
1,2,3,4,M =   and for a single proper VSI (that is, with a specific value of

1g > ) if we manage and prove that these virtual twins of this specific 1g >  
have infinite multitude then we will conclude that the twins of all infinite cor-
responding RSI on basis of (30) will also have infinite multitude, by the condi-
tion that the statistical distribution of the twins within the infinite number of all 
RSIs is such that we can use the inequalities we prove. We study this problem 
below. Also in Section 4 we will determine the allowable (only in our need) value 
of the factor g. We will thus prove that the specific value 2g = , with 1g =  for 
the first factor, are proper values for our proof.  

3. The Proposition of Catholic Information in a Random  
Silver Interval 

Based on the principle that nothing happens in Mathematics without a cause, we 
will formulate the “known” following proposition: 

“Let be a set A. We symbolize ( )ia R A=  a random choice of an element 
from A. Random selection or choice we define the selection of a mental machine 
from A, where from any subset of A with N finite multitude of elements the 
machine select any time one element from them by 1P N=  constant proba-
bility (or frequency). On each random selection will be true all the propositions 
of definition of the set A”. We can include these propositions in a proper defini-
tion set ( )def A . The set ( )def A  we will call Catholic Information o A and 
the above general definition we will call here as Proposition: (31). 

If the set A has infinite multitude of arranged elements we can say that the 
( )ia R A=  in A represents an element of “infinite in set A”, because the infinite 

in A is defined by the general or Catholic propositions of set A, and nothing 
more. For example, what is the even number “in the middle of set N”? The an-
swer is “all the propositions which are true for the number’s form 2k and noth-
ing more”. “Something like correlation between the infinity of the numbers and 
the world of logical propositions …” 

Therefore, the propositions for defining an event e occurring with probability 
( )P e  on ( )ia R A=  will constitute a new set ( )B def e=  of new proposi-

tions that will be true on A and therefore will contribute to the form of a third 
set ( ) ( )G def A def e= ∪  which includes the above proposition (31) with the 
definition of the event e. This means that the statistical distribution of e in A will 
be dictated solely by the set G. 

We will name this Proposition: (32) 
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Moreover the set ( ) ( )primeG def D def= ∪  with (35) below define the most 
general propositions which absolutely describe the statistics of a random prime 
number in N or in other words they give the distribution of prime numbers 
probability in N. Let us now symbolize by |sq ν  the proposition “The quotient 
of the division : sm qν=  is a natural number”. Also we will define the refusal 
of perfect division in N as follows:  

, not |sq ν                            (33) 

Let us also symbolize α β<>  = “the event α  of Nν ∈  is independent of
β  of ν , i.e. ( ) ( )||P Pα β α=  in N”, (see 2 of Nomenclatures section in Ap-
pendix at the end of this article B).  

In general, we will define two events a, b (defined by catholic propositions in a 
set Α) be independent α β<>  when and only when any proposition which 
change the probability of the truth of one from the two (that must based exclu-
sively only on catholic information of definitions) does not change the probabil-
ity of truth of the other event [by use again only catholic information (general 
propositions) coming exclusively only from their general (catholic) definitions]. 
Also we will symbolize the dependence as 1 2e e>< . As we had referred in In-
troduction in the article A in combination by Section 2, the set: ( )primeB def=  
defined as follows: 

( ) ( ){ }{ }prime || , not |M s Mdef CP q R Yν δ ν= ∈ = =         (34) 

The symbol CP declares a Catholic Proposition by general definition. For 
example the set D of all RSI Mδ  can be defined as follows: 

( ) {
( ) ( ){ }}

( ) ( )

2 2
1

1

, 1 || ,

|| || prime ,

prime

M n n n

n q q

def D q q q

q N N N CP def

G def D def

δ

ν ν

+

+

 = = − 

∈ = ∈ =

= ∪

    (35) 

Let random prime 

( )m Mq R R Dδ= =                        (36) 

With (36) let be the natural number: 
2mx q= +                          (37) 

There are two possibilities: 

1) Mx δ∈                                                     (38) 

2) 1Mx δ +∈                                                    (39) 

Let us examine at first the main case (38) and next we’ll refer to the other (39). 
Let be now the 

( ) ( ){ }, , MCP R R Dµ ν ν µ δ= = =                  (40) 

We will examine the next relation which concerns the independence of not 
divisibility: 

( ) [ ], not | , not |s M sq R Y qν µ= <>                  (41) 
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In Introduction of first article A we explained that the multiples of a prime 
number (e.g. 5) do not change their frequency (e.g. equal to 1/5) when we im-
pose to this number ν  as restriction to be as well ν  multiple of another prime 
number (e.g. 7):  

( ) ( )mul. of 5 || mul. of 7 mul. of 5 1 5P Pν ν ν= = = = =       (42) 

And this implies that the same would happen for the refuses of divisions of 
such events. In other words the last proposition will be valid if we reverse events 
by substituting where “multiple” with “not multiple” inside (42). As we know, 
for every pair of two prime numbers ,a bq q  exist always two natural numbers 

,m n  so for two successive multiples of ,a bq q  we can write:  

a bmq nq υ= + , 

where is valid 

a bq qυ ≤ −                          (43) 

The catholic information set ( )def A  choice the elements of A from a wider 
set Ω  of its reference. Therefore ( )def A  contains exclusively and only all the 
necessary propositions whose truth is equivalent to the coherence of the ele-
ments of set A. However, each specific element ia  of A also must contain and 
other propositions which belong exclusively to ia  by distinguishing ia  from 
all other elements of Ω . The truth of these last propositions of ia  constitutes 
the distinction of the elements A between them. Thus these propositions with 
value “true” for the distinction of elements ia  must have other sets of reference 

( ) ( )1 2, ,def A def A  . For example, counting the keys of a computer requires 
the knowledge of both the ( )def A  set of identification of keys of their set A so 
that we do not count with the keys and the chairs in the room, and also we need 
and other sets of propositions ( ) ( )1 2, ,def A def A  . (now foreign to A) for 
distinguish the keys between them, so for example we do not count two keys to-
gether as one.  

According to sentences (31), (32), any proposition that refers to statistical dis-
tributions of events in the infinite number of elements of a set A will be valid 
when, and only when, this catholic statistical proposition is proved exclusively 
and only by the use of catholic propositions of choice (and therefore definition) 
of these events on of A. E.g. for the proof of a property all points of a straight 
segment OH in geometry we must use only the general properties of the defini-
tion of OH getting a random on it. These are catholic true propositions which 
define generally all the geometrical properties OH.  

In 1b of Nomenclatures (section in Appendix at the end) we define as Golden 
Interval (GI): 

[ ]1 21,N Nq q q∆ =  , with sub sequence { }1 2, , ,N NX q q q=      (44) 

Also we define there the random selection from a set A under restriction:  

( )||ia R A CIR=                       (45) 

According to (31), (32) every random selection (45) will present exclusively 
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and only the general propositions of each event defined on the elements of A. 
Proposition: (46) 

E.g. suppose that on n different faces of an irregular polyhedron we have 
written n prime numbers ( ) , 1, 2, ,M iq i ν=   different per two and on the other 
hand we have defined the set A to include only these numbers. Suppose we 
throw this polyhedron N times using it as irregular dice and then we observe 
that have came ( ) , 1, 2, ,i iµ ν=   times the ( ) , 1, 2, ,M iq i ν=   correspon-
dingly. Let be we now choose numbers with N random choices from the set A 
where we will have now respectively ( ) , 1, 2, ,m i i ν=   for ( ) , 1, 2, ,M iq i ν=  . 
Consequently, according to the above proposition (46), if the above result is the 
average of infinite number of repetitions, will be valid the next Catholic Proposi-
tion (CI): 

( )
( )

( )
( )

( )
( )

1 1 1

i N i N i Ni i m i
M i M i M i

i i i
q q q

µ µ
= = =

= = =

  = ≠ ∏ ∏ ∏                  (47) 

The reason of the above inequality is that the polyhedron does not choose the 
prime numbers randomly, that is with the same probabilities because this is ir-
regular.  

According to the above (44) let be ( ){ }0 1 3, , , ,N K ND δ δ δ δ=   the set with the 
all RSIs which are including in GI N∆ , and let be  

1 2 2 3 5N N Nq q q qΩ = = × × × ×   the arithmetical length of N∆ . We have 
defined ) )2 2 2 2 2 2

0 0 1 12, 2 , 2 2, 2 ,3 , 3 2 ,d dδ δ = = − = = −   . Next, we will de-
fine: 

( ) ( ) ( )
2

0 1 2 11 1N NN K N K Nd d d d d q∆ +
 = Ω − + + + + − = Ω − +        (48) 

For example the remaining part of 3∆ , that is left over and belongs to the last 

3δ  which is not completed in GI { } [ ]3 1, 2, ,30 1,30∆ = = , will have according 
to (48) the numerical length:  

( ) [ ] ( )2 2
3 0 1 2 3 2 13 1 1 2 3 5 5 1 6d d d d q +∆ = Ω − + + − = Ω − + = × × − + =  

Next we will prove that: 

( )lim 0NNN
d∆→∞
 Ω =                         (49) 

We know the theorem of prime numbers: 

( )d d ln ,n x x x N= ∈                        (50) 

We always can choose d 1x x x xδ →   with any desired accuracy:  

( ) ( ) ( )ln ,x x x x x X Qδ ε ε += < ∀ > ∈                (51) 

Because the sequence ( )ln x x  is descending as x is increasing we can always 
find ( )X ε  for any 0ε > . The reason for these is that from (50) the distance 
between two successive prime numbers can be found putting: 

( ) ( )1 ln lnn x x x xδ δ δ= = ⇒ =                  (52) 

Putting ( ) eTX ε = , e Eε −=  from (51) we will have ( )lnT T E− > , and so 
for this is sufficient to select: 
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( )min 1 lnT E E= + +                        (53) 

For example if we demand an accuracy 50eε −=  we will have:  

( ) ( )50 50 50 5 55ln e , e e ex x x x x Xδ − − += < ∀ > = = . 

Therefore according to the previous ( ), 0N X Qε ε +∀∆ ∀ > ⇒ ∃ ∈  so the dis-
tance between two successive RSIs can be used as follows: 

[ ] ( )( ) ( )2 2
1 1 1 2M M M M M M M M M Md q q q q q q q q qδ + + += − = + − = + ∆ ∆  

or 

[ ] ( )( ) ( ) ( ) 2
2 2 ln lnMd x x x x x xδ δ δ= + = +    , ( )x X ε∀ >        (54) 

( ) ( ) ( )
( )

1 2 1

n N

N Nn n
n n

q q q q q x n xεε ε
ε

δ
=

−
=

 Ω = = Π +  ∏  , ( )x X ε∀ >      (55) 

And so 

[ ] ( ) ( )( ) ( )( )
( )( )

d d 1 ln
n NN

N
n n n

x x x n x
ν

ε
ν ε ν ε

ν
==

= ≠ =

 
Ω = Π + + 

  
∑ ∏         (56) 

According to (52) in the (54), (55), (56) will be: 

( )d lnx x xδ← = , 

and so dividing these two last relations we easily get: 

( ) ( ) ( ) ( )lim lim d d 0N M N MN N
d dδ δ

→∞ →∞
   Ω → Ω =            (57) 

The (57) says that the Gold Interval grows up very faster toward the infinite 
than the including RSIs in it and therefore we conclude the validity of (49). 

For any GI [ ]1 21,N Nq q q∆ =   we can define one circle circumference with 
inscribed regular polygons which we will call golden polygons and will correspond 
to the prime numbers of the sub sequence { }1 2, , ,N NX q q q=   of the GI N∆ . 
We will present them by an example which easily can be generalized for every N. 
Let us get the 3∆ . The regular basic polygon of all its inscribed polygons will have 
(2) (3) (5) = 30 sides with length 1. The inscribed polygons will be three and will 
have numbers of sides 30/2 = 15, 30/3 = 10, 30/5 = 6 respectively, corresponding to 
the prime numbers 2, 3, 5. The 2, 3, 5 are the lengths of their sides measured by 
unit defined by the side of polygon of basis with 30 sides which as we said are all 
equals to 1. The common divider of the number of sides between two polygons 
presents the number of their common vertices. The system of these polygons re-
mains unchanged geometrical construction to their rotations. If we let the N 
tends to infinite, then the arc corresponding to ( )Nd∆  according to (49) will 
tend to be zero relative to the total circumference which corresponds to N∆ . 

Let be now one GI N∆  with its RSIs ( )0 1 3, , , , K Nδ δ δ δ  inside it. 
Ignoring initially these RSIs we can subdivide N∆  into successive segments

0 1 1 2 1, , , k kA A A A A A− . It is obvious that there is no way of division that makes 
the random selection of a natural number ν  inside GI N∆  have a different 
probability ( )|sP q ν  from 1 sq  whatever the interval 1m mA A−  in which 
happened to be the selection of ν . But thus we observe that in this way a ran-
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dom interval 1m mA A−  was chosen independently to the method of subdivision 
of GI N∆ . Therefore, because the method is arbitrary, we can select as method 
of subdivision the specific method of subdivision into ( )0 1 3, , , , K Nδ δ δ δ . This 
analysis easily leads to the conclusion that inversely now, selecting a random 

Mδ , the probability ( )| 1s sP q qν =  will be stable inside this ( )M NRδ = ∆ . 
Proposition: (58). 

We can go deeper, examining the minimum distances of any multiple . smul q  
from the limits of ( )M NRδ = ∆ . That is to prove the distances between the 
boarders of a band ( )sb M  and the limits of Mδ  are as well random. We will 
use the (42) in general form with (43) and with the proposition (46). For this let 
be one prime number defining the first limit of a random RSI: 

( ){ } ( ): 1, 2, ,M qM iq R q i K R N = = =   

and let be a prime number ( )s Mq R Y= . Thus initially we selected Mq  random 
in qN  and not in N. Next, choosing the natural numbers ( )sin R N=  let de-
fine other natural numbers by the relation: 

( ) ( )si si s M i M iV n q q q= − ×                       (59) 

Let be initially suppose that siV  is not random in N, that is ( ).siV not R N= . 
This is the hypothesis. Let be this as Proposition: (60) 

Next, we can define random numbers in N as product each time of two ran-
dom numbers, a) ( )M iq  and b) ( )jN R N= : 

( ) ( )( ) ( )

( )

( )

( )

01

1
M j

j N jm i

i jM i M i M i
i j

N q q q q N
µ=−

≠ =

 = = × ∏ , { }, not |s iq N     (61) 

where ( )( ) ( )m i

M iq  is random in set ( ) ( )m i
qN , ( )0N R N= : Multiplying the 

members of the relations (59) with jN  of (61) we get: 

( )j si si s i M iN V N q N q= − ×                      (62) 

But because sin  is random in (59) from the definition itself, we conclude that 
and si j siN N n=  will be as well random in N as product of two random selected 
natural numbers. Let be this as Proposition: (63) 

We can write the general form of (42) for a random multiple ν  of sq , that 
is: 

( )( ) ( ). || . . 1s s sM iP mul q mul q P mul q qν ν ν= = = = =         (64) 

Here we use the random selections according to the definition (31) to study 
events in set N with the classical theory of probability. Next, we define that one 
relation ( )1 2s M in n q n q= −  represents the (64) when, and only when, two of the 
three natural numbers 1 2, ,n n n  are random in N, and therefore on the basis of 
the probability theory from the independent prime’s multiples (events) of the 
relation (64) we have as conclusion that and the third natural number of them as 
well will be random in N. Proposition: (65) 

Combining the propositions (62), (63) and the fact that iN  is also random in 

https://doi.org/10.4236/apm.2020.109035


P. C. Papadopoulos 
 

 

DOI: 10.4236/apm.2020.109035 568 Advances in Pure Mathematics 
 

N (as we defined) we observe that accordingly to (65) the (62) represents the 
(64) and from this [taking in to account the (46)] we conclude that the first 
member j sin N Vν= =  will be random in N. But thus we conclude a proposi-
tion which contradicts to our hypothesis (60), because according to (60) the siV
is not random in N and thus the product of not random siV  with the random 

jN  is not random in N. Conclusively we must reject the (60) and thus accor-
dingly to (65) now the relation (59) represents as well the (64) which implies for 
the third number of (59) that ( ) ( )2 M M in q q R N= = = . We observe that select-
ing initially one ( )M qq R N=  then we proved that ( )Mq R N=  and therefore 
according to the relation (46) and to the familiar relation (43) of the number 
theory, for the minimum distance [remnants of divisions:  
( ) 2

min minminsi s s MV x n q qυ= ∆ = = − ] in the random RSI in their set D we will have 
the effect (of the events randomness) of the probability theory for independent 
events (multiples of primes) in N: 

( ){ },si s MV R N q q= ≠ ⇒  

{ } ( )2 2
minmin

1, 2, , 1s s s M s M s sn q q n q q R q R Iυ    = − = − = − =     

In other words we result to the fact that because we proved that 2
Mq  has 

been essentially selected random in the set N (as a product of two similar 
numbers random in N) and not only in q qN N×  then the minimum distance 
between this random place 2

Mqµ =  and the multiples of ( ) ( )s Mq R Y R N= = , 
and also ( )sq R N=  [because ( ), M R Nµ = ], will be obviously random in 

sI , that is ( )min sx R I∆ = . The same obviously is valid about 2
1Mq +  of the oth-

er limit. So we proved that the distances between the limits of a band ( )sb M  
and the limits of a random Mδ , in which belongs this band, are random in N. 
Proposition: (66). 

Taking in to account the proposition (66) the previous proposition (58)has 
been absolutely patented, that is: 

( )| 1s sP q q constν = =  (constant) in ( ) ( )M NR R Nδ = ∆ =      (67) 

This result is very important for the distribution of prime numbers in N (that 
concerns and RH). That is, according to (67) the production of twins in random 
RSI obeys to the general statistics which is exclusively and only under to the 
control of the relations and inequalities proven in next Sections 4, 5 and nothing 
more. 

The (67) implies that the definitions not gave catholic information for the 
place of min sn q  relative to the multiples of other primes of the MY  that is 
without catholic information (CI) for changing the [ ]|sP q µ  of ( )R Nµ =  
when we introduced the new catholic information: ( )MR R Dµ δ= =   . And 
evidently the same will be by the refusal propositions, that is with  

( )1 2,s s Mq q R Y= , ( ), MR R Dµ ν δ= =    (where obviously the MY , Mδ  are 
corresponding) we get the corresponding relation of the (41): 

( ) ( )1 2, not | , not |s sq qν µ<>                     (68) 
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The other case (39) 1Mµ δ +∈  can’t change the result, because according to 
the proposition (2) this limited twin is counting as well, and on the other hand 
and if it still was not so, evidently would be multiplied the multitude of real state 
twins by a factor which would be very near to 1, ( 0 1f< < ), and thus the result 
is again infinite, because the product of infinite with such f is again infinite.  

Finally, we point out that graphs: ( )M W M↔  of the next function of 
phases into RSIs may present interest to the distribution of prime numbers: 

( ) ( )
2

1

2

1

1
cos 2 1

M

M

q s M

s
sq

W M q
ν

ν

ν
+= − =

==

 =  
 

 π ∑ ∑               (69) 

According to the propositions (31), (32), (46) of catholic (general) 
information the proof has been based exclusively on distribution which comes 
from general definition of twins that correspond to random selection which is 
the only representative of the statistical distribution of twins in the infinite mul-
titude of the natural numbers.  

4. The New Proof of Relation (4.17) of First Article A and  
Optimizations 

We will omit the passage from relation (4.14) to relation (4.16) of the first article 
A and bridge it here with the proof that relation (4.17) [resulting from the gen-
eral form (4.16) by 2g = ] is valid. Specifically, we will prove that factor g in 
(24) of previous Section 2, which is its analytical form (4.16) in the first article A, 
makes valid the inequality (4.17) if we replace its value 2g =  in relation (4.17) 
with a value between value 2 2 2 1.293 1.3− < ≅  and value 2. That is we refer 
at paragraph 3 of section “The steps” at the beginning of this second article B. 
We will here use Figure 1 of Section 4 of first article A (as well in Introduction 
here again), together with relation (4.5), which is the same as relation (3.2) of 
Section 3, where this has been proved. Figure 1 shows two bands ( ) [ ],sb M γ ζ= , 

( ) [ ],b Mρ α η= , where the first band is included in the second, with their limits 
,γ ζ  and ,α η  respectively. There is also an eraser of ( )b Mρ  in position β  

and another of ( )sb M  in position δ , as well as the spectral zones , ,γδ δε εζ  
[with length sq  for every one zone] of band ( )sb M . The relation (4.5) shows 
that the minimum number of these spectral zones, in which each band is subdi-
vided, is at least 4. However, in Figure 1 we presented only 3 spectral zones for 
reasons of economy of shape, as we explained in Section 4 of the article A. Each 
band is subdivided into spectral zones by its erasers, i.e. the multiples of the spe-
cific prime number to which this band corresponds. These are all the multiples 
(of its corresponding prime number) which are enclosed within the specific real 
silver interval (that is RSI) Mδ  with limits ,G L  where this band is formed 
each time, as we analyzed in the introduction earlier. 

As we explained in the introduction earlier, there are only two ways of over-
lapping the bands. One is the way shown in Figure 1 (it is that of paragraph 4 in 
article A and in Introduction above here) in which one band is contained whole 
inside another band and we called this way of “not intersection way”. While the 
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other way is the way where the two bands are intersected between them and we 
called it the “intersection way”. 

We will not give a new Figure for this case, because this can be made imme-
diately, where we will consider the band ( ) [ ],sb M γ ζ=  not to be contained 
inside band ( ) [ ],b Mρ α η=  but to be intersected by this. This can be done very 
simply by moving the boundary γ  of band ( )sb M  and placing it to the left of 
the boundary α  of the other band ( )b Mρ . Thus in this case of the “intersec-
tion way” we will observe that the limits of two above bands have the order 

, , , , ,G Lγ α ζ η , while in previous case of “non intersection way” of Figure 1 the 
limits of these bands have the order , , , , ,G Lα γ ζ η . Where ,G L  they are the 
limits (boundaries) of this silver interval. We will call this Proposition: (70) 

We will now move to the beginning of Section 2 where we presented the 
sentence (22), where we defined the arithmetic length of an interval 
[ ]( ), 1l m n n m= − + . We will also note that the relation (24) in Section 2 gives us 

the exact number of primes in interval [ ]( ), Ml m n δ∈  if this length is a mul-
tiple of the product of all prime numbers of the subsequence MY . E.g. in 

[ )2 9, 25δ =  with subsequence { }2 2,3Y =  for its interval [13, 24] with arith-
metical length [ ]( ) ( )13,24 24 13 1 12 2 3 2l = − + = = × ×  we have  

[ ] [ ]( ) ( ) ( )( )213,24 13,24 1 12 1 1 2 1 1 3 12 1 3 4N l P= ⋅ = − − = × =  prime numbers. 
Really they are the prime numbers 13, 17, 19, 23 which are all the prime num-
bers of interval [13, 24]. But the same does not happen if we select the 

[ )2 9, 25δ =  where we calculate:  

[ ] [ ]( ) ( ) ( )( )( )29,24 9, 24 1 24 9 1 1 1 2 1 1 3 16 1 3 5.33N l P= ⋅ = − + − − = × ≅  

The multitude of prime numbers inside 2δ  is 5 16 3< . The reason is that 

the arithmetical length 16 now is not a multiple of product ( )2 3 6× = . 

We call this last proposition of “the calculation of exact multitude of prime 
numbers”, as Proposition: (71) 

We will now define as a percentage arithmetical length for every silver interval 
a constant length c equal to 1, that is 1c =  for every RSI and so and for its every 
corresponding ( )vir

M gδ . We are talking in principle about ( )vir
M gδ  where 

works exclusively the relation (24), as we said. Next let’s then study at the rela-
tion (29) on the basis of relation (22) mentioned just before. Let us first set 

1g =  and let us assume that the RSI Xδ  contains only two bands ( )ib X , 
( )jb X . Such VSI 1g =  is the ( )2 1virδ . Obviously only these same bands will 

be contained in every ( )vir
X gδ . So this relation (28) takes the form (29) that is 

( )x y xyρ = + −  for the ( )1vir
Xδ . If we zero the ,x y  the ρ  will be zero and 

its entire percentage length 1c =  will contain a fraction 0κ  of the prime 
numbers that will be due only to bands ( )ib X , ( )jb X , and will be given by 
(24) with 1g = . So we have: ( )( )0 01 0 1 0 1 0 1 1cP cκ ρ= = − − = − = − = . 

This result simply means that by abolishing the two moving erasers iq
-multiple, jq -multiple [that correspond to the two bands ( )ib X , ( )jb X ] the 
whole arithmetical percentage length c of ( )1vir

Mδ  consists only of prime num-
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bers ( 0 1κ =  of 1 100%c = → ). Let’s now we enter only the 1 x yρ = + . We get 
( )1 1 x yκ = − + . So now the fraction 0κ  has been changed to a new fraction 

1 1κ <  again of 1 100%c = → , and so now will be 1κ →  less than 100% of 
multitude of natural numbers of default ( )1vir

Xδ  or also of the same multitude 
of natural numbers of RSI Xδ . This means that all deletions from the two eras-
ers were made inside ( )1vir

Xδ  without them coinciding between them on some 
natural numbers of the ( )1vir

Xδ . However, this is not correct. What is important 
at this point is that x y+ , and therefore ( )MR g  in the general case of (28), 
represents the fraction of 1c =  of all deletions without degeneration, that is, 
without coinciding two deletions of different kinds of erasers between them 
somewhere, even only once. To get the correct virtual fraction from the above 

1ρ  we have to subtract from ( )1 x yρ = +  the fraction of all the degenerate de-
letions that ( )MK g  represents inside the (28) and here, for our simplest case, 
this corresponds to the term 2 21g xy xy xy= =  of (29). Therefore, finally we 
must write ( )1 1 x y xyκ ρ= − = − + −   . And for the multitude of prime num-
bers in ( )1vir

Xδ  we have: ( ) ( )2 2
11X X X X XN d P q q κ+= = − . And more generally 

we must write the relation (28) for the “virtual clear density of deletion” ρ  for 
some 1g ≥  and for all bands of ( )vir

M gδ . We understand that ( )MR g  of rela-
tion (28) represents the fraction 1Mρ  of the deletions from all moving erasers of 

( )vir
M gδ  without coincidences between them, i.e. without degenerations. While 
( )MK g  represents the fraction of all coincidences, i.e. the fraction of the number 

of degenerate cases [inside the ( )vir
M gδ ] which must subtract of 1Mρ . Thus we 

can see that subtract of “virtual degenerate deletion density” from the “virtual total 
deletion density” in (28) gives the clear fraction of deletions or the “virtual clear 
density of deletion” in the total space of ( )vir

M gδ . Now we’ll find the correspond-
ing for a part (fraction) of space of ( )vir

M gδ . It is now easy to see that for an 
arithmetical length [ ]( ),l m n  of (22) within the total arithmetical length of Md  
of random silver interval Mδ  the corresponding percentage length will be 

[ ]( ),p Ml l m n d=  of 1c = . So within this fraction pl  of c the fractions of 
( ) ( ),M MR g K g  will be changed analogically to the smaller ones: 

( ) ( )lM p Mr g l R g= , ( )lM p Mk l K g=                (72) 

And obviously they will have the same meaning for 1pl ≤  which they had 
the fractions ( ) ( ),M MR g K g  for the 1c =  previously. We conclude that the 
fraction of the prime numbers in pl  will be ( )p Ml P g  while the fractions of the 
deletions of the two types ,R K  have been changed now to those is given from 
relation (72). We will now consider how (70) applies in the two relation cases 
(72) that refer to the interaction of only two bands: 

( ) [ ],sb M γ ζ= , ( ) [ ],b Mρ α η= . 

We will also use the relation (3.2) or (4.5) of article A, which is also presented 
in the 10 of “Nomenclatures” (section in Appendix at the end of this article B). 
In the first case of “not intersection way” of (70), at the beginning of this section 
4, we observe that the two bands ( )sb M , ( )b Mρ  of RSI have overlap only 
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within the segment [ ],γ ζ  and therefore only in this segment the relation (25) 
will be valid. The (24), (25) are valid for the entire space of the corresponding 
any VSI as we said, because in VSI these two bands have ideal overlap along the 
entire GL length of silver interval. Therefore iq -multiple, jq -multiple moving 
erasers will not coincide anywhere in the two segments [ ]1 ,θ α γ=  and 

[ ]2 ,θ ζ η=  of RSI Mδ . Therefore, in order to have the same clear deletions 
between RSI and VSI within these exactly sections 1 2,θ θ  of the “disorder” of 
RSI, the ( )MK g  inside these corresponding sections 1 2,θ θ  of VSI 1g =  
should be zero (“as it is potentially happening in its corresponding RSI”) instead 
of the value calculated by the relation (29) that expresses the interaction between 
both bands. That is, based on (29) for (25) we should have for overlap in 1 2,θ θ  
(of VSI 1) that ( ) ( ) ( ) ( )1 21 1 0p M M Ml K K l l dθ θ= + =    and not  

( )1 0p M pl K l xy= >  that corresponds to calculations of (25), where the (29) hide 
inside its expansion, so that in the end to we have the same number of degene-
rate deletions in RSI Mδ  and VSI 1g = . Because in reality something this do 
not happens and we do only a hypothesis to find the way toward the asking VSI 

1g > . This is why on accordance (29) the “virtual clear density of deletions” is 
less than the corresponding “real clear density of deletions”. According to what 
we said about the search for proper 1g >  we should select the factor g so that 
the new deletion density at new unknown VSI 1g >  [instead of VSI 1g = ] 

( ) ( ) 2U g g x y g xyρ = = + −  increases over the deletion density ( ) 21 1x y xy+ −  
of VSI 1g =  of (29) by an amount greater than pl xy , which has been refer just 
before. So must be valid:  

( ) ( )2 21 1 pg x y g xy x y xy l xy   + − − + − >               (73) 

However, we can easily understand that for the percentage length 1c =  the 
( ) ( )1 1p Ml l l dθ θ= +    based on the (4.5) of the article A will satisfy the 

relation 1 4pl < , because based on this useful inequality (4.5), and symbolizing 
distances as , ,Gαγ ζη γ ) etc., it will be:  

1 2 4 4 1 4sG L q GL cθ θ αγ ζη γ ζ+ = + < + < < → =        (74) 

Because in percentage lengths we have the contraction 1GL c→ = . So finally, 
based on the above, and mainly to (73), (74), must be valid: 

( ) ( )2 21 1 4g x y g xy x y xy xy   + − − + − >               (75) 

So that the relation (73) applies. If we repeat the same procedure for the other 
case of its “intersection way” of proposition (70), where the complete overlap of 
the two bands is now done in their common part [ ],α ζ , following a completely 
corresponding procedure, we understand that the application (74) is now re-
placed by the requirement: 

[ ] [ ]4 4 2 2 1 2
sG L G L q q

GL GL GL c
ργα ζη γ γα ζη η α ζ+ < + + + = + < +

< + = → =
          (76) 

Because again, based on (4.5) of article A, we will have 4G q GLρα < <  and 
4sL q GLζ < <  for ( )b Mρ , ( )sb M  respectively. So (75) leads, as before, to 
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the requirement that it is sufficient for the relation:  

( ) ( )2 21 1 2g x y g xy x y xy xy   + − − + − >                (77) 

So that the relation (73) applies again. Relations (75), (77) both have the 
sufficient condition the (77) for the validity of (73) which we demand for proper 
VSI 1g >  [or ( )vir

M gδ ]. In this way we showed that (77) is the sufficient con-
dition for the asking VSI 1g >  so that it has a greater “virtual clear density of 
deletion” than the “real clear density of deletion” of RSI Mδ  and therefore the 
relation (24) to give for this proper VSI 1g >  less multitude of prime numbers 
than the corresponding random RSI Mδ  for all M. i.e. to be valid the (77) for 
the required VSI 1g >  for all M. Because the probability function in (24) is de-
creasing as g increasing, and just that is we need, that is, a less multitude of 
prime numbers to proving equation (4.17) for proving next the (4.18) in first ar-
ticle A. But in fact in the first article A, we did just that. Below now we’ll calcu-
late a sufficient critical minimum value of proper VSI 2 1g> >  and as we 
promise we’ll prove this is: 

proper1.3 2g≤ <                           (78) 

We only used two bands. However, since thus VSI 1g >  increases its virtual 
clear density of deletion per two bands, it follows that this density will increase 
for all bands, because the interaction in the overlaps with a third band (and so 
on) does not cancel the result (77) of the two bands. This we will prove. In other 
words we will prove little below that the proper increment of “virtual clear den-
sity of deletion” in comparison to “real clear density of deletion” per any pair of 
bands produces the same proper comparative increment (of “virtual clear densi-
ty of deletion” in comparison to “real clear density of deletion”) from the general 
overlap of all bands together. Proposition: (79). 

Let us prove the above (79) analytically: For every RSI Mδ  inevitably will ex-
ist positive rational factors, that is 1 2, , ,M M MMG G G Q+∈  with the restriction 
0 iM iG q< <  so we can have a correct calculation of exactly probability (or frac-
tion) of prime numbers in RSI Mδ , and M N∀ ∈ , in correspondence to (24): 

( ) 1 2
0

1
1 1 1

2 3

M
M M MM

M j jM
j M

G G GP F G
q

ν

=

   = = − − −   
    

∏          (80) 

The reason is that to every ( )jb M  band always corresponds some jMD  
value of a rational number that represents the rational number of deletions of 
moving eraser jq -multiple as a result which took into account also its coinci-
dences by the all other moving erasers iq -multiples. And so will exist always 
one suitable jMG  rational number that satisfies the equation ( )j jM jMF G D= . 
Based on the relation (67) according to (3) we will prove in Section 5 that the 

0MP  can be considered constant on each Mν δ∈  during the counting of the 
elements of Mδ . Next, generalizing the relation (2.B3) we get the probability for 
the corresponding default VSI 1g = :  

( ) ( )
1

1 1 1 11 1 1 1 1 1
2 3 5

M

M j
j M

P F
q

ν

=

    = = − − − −    
     

∏           (81) 
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Now the relation (24) gives the probability of the asking VSI 1g > : 

( ) ( )
1

1 1 1 1
2 3 5

M

M j
j M

g g g gP g F g
q

ν

=

    = = − − − −    
     

∏          (82) 

Taking in to account the relation (82) we conclude that to be valid the (79) is 
sufficient be valid every inequality of the type: 

1 1 1 1jMiM

i j i j

GG g g
q q q q

      
− − > − −               

               (83) 

The proof is that by correlating the relations (80), (82) on the basis of relation 
(15) [which we before proved in the part A of Introduction here] we conclude 
that the set of inequalities of (83) will implies the general inequality: 

( )0M MP P g> , 1g >                        (84) 

These all happens because we can’t correlate one by one the factors of paren-
thesis between the relations (80) and (82), but according to the previous analysis 
two by two. Therefore thanks to (15) we prove the (79) as we promised. And 
from the other hand the (83) is valid when, and only when, the “real clear densi-
ty of deletion” that represent the first member of (83) be done smaller than the 
“virtual clear density of deletion” of the second member and something such 
happens when the above condition (77) is valid, as we proved before using the 
default VSI 1g =  as one mediator of the correlation all possible pairs from 
factors jF  between the relations (80), (82). 

To make this clear we can expand the members of (83) so to have the expres-
sion 0. 0.1 1ij ij ij ijρ ρ ρ ρ− > − ⇔ <  that is equivalent to (77). 

From the above we conclude that the main condition of finding the asking 
proper g, [for proving of (78)] is the inequality (77) of g, that takes the form: 

( ) ( )2 21 11 1 0
2 4 2 4

xy xyg x g xy g y g xy   − − + + − − + >   
   

        (85) 

This relation (85) has as sufficient relations the next two: 

( ) 211 0
2 4

xyg x g xy− − + > , ( ) 211 0
2 4

xyg y g xy− − + >         (86) 

We point out that because we don’t need all proper values of g, but only some 
above the 1, we looking for only sufficient inequalities to be valid the (77) and 
not the sufficient and necessary inequalities for (77). The two inequalities of (86) 
are equivalent each other because the two factors 1 ix q=  and 1 jy q= , which 
have been defined just above the (29), are both less or equal to 1/2, because are 

, 2i jq q ≥  as prime numbers: 

1 21 ix q= ≤  and 1 21 jy q= ≤                 (87) 

So is sufficient to solve one of them as to g in (86), e.g. the second of them, so 
eliminating the y we get: 

( )22 4 4 0xg g x− + − <                      (88) 

If the discriminant x∆  of quadratic inequality (88), as function of x, is nega-
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tive the (88) is impossible. Therefore must be:  

( )28 4 2 0x x x∆ = − + > ⇔                    (89) 

{ 2 2x > +  that is rejected from (87) or 0 2 2 0.6x< < − ≅ , that is ac-
cepted}. 

Putting ( )4 2 4D x x= − −  we conclude that for (88) is sufficient to be:  

( ) ( ) ( ) ( )1 11 2 1 2L Rx D f x g f x x D− −− = ≤ ≤ = +           (90) 

The derivative is: 

( ) ( ) ( )22 2Lf x x D x D′ = − −                    (91) 

So to be ( )Lf x  increasing function of x must be ( ) 0Lf x′ >  and so must be: 
22 2 4 8 2x x x D− + > − + =                    (92) 

But we percept that ( ]2 2 1 0, 1 20,x x− + > > ∀ ∈ , so for the validity of (92) as 
long as it is valid ( )2 22 2 4 8 2x x x− + > − + , which is true. We conclude that the 
(92) is valid and so the function ( )Lf x  is increasing function of x. Similarly we 
can see that for (90) the function ( )Rf x  is a decreasing function of x. Moreo-
ver symbolize the decreasing function as ↓  we have the properties: ↓ + ↓ = ↓ , 
↓ × ↓ = ↓ , and so for the two terms of ( )Rf x  we will immediately have: 

( )↓ + ↓ × ↓ = ↓ + ↓ = ↓ , and therefore the ( )Rf x  is decreasing. The combina-
tion of the two diagrams of the functions ( )Lf x , ( )Rf x  of the above relation 
(90) gives a beautiful graph of their mixing just below in Figure 2. 

The diagrams of functions ( ) ( ),L Rf x f x  are meeting at the points: 

( )( )2 2,1 2 2− − , ( )( )2 2,1 2 2+ +  

Because ( )Lf x  is increasing and ( )Rf x  is decreasing as the x increasing we 
finally conclude that for the domain ( ]0,1 2  of the x any value of g that satisfies 
(4Β .14) should be located within the area defined by the maximum value of 

( )Lf x  that is ( ) ( ) ( ),max max 1 2L L Lf x f x f= =  and the minimum value of 
( )Rf x  that is ( ) ( ) ( ),min max 1 2R R Rf x f x f= = . 

Therefore:  

( ) ( ) ( ) ( ), 2 2 2 22 , 21 1 2 2L Rg f f  ∈ = − +              (93) 

From the other hand, like a check, the derivative of its first member ( ),x yϕ  
of the relation (85) will be increasing with respect to g if, and only if, is: 

( ) ( ), 2 0gx y x y gxyϕ ϕ′ = = + − >  or ( ) ( )2 1 1 2g x y xy< + ≥ + =  

Because 2, 1x y ≤ . So since it is always ( ) ( )2 2x y xy+ ≥ , it is enough for 
the validity of the sufficient condition (85) [to be valid the (77) and so on] to 
choose one g equal or less than 2 and in accordance to the (93). Combining this 
maximum 2 of g [which we used in (4.17) of the article A] with the above mini-
mum of g from (93) we conclude that for sufficiency of our conditions we have 
to select the factor g from the space: 

( )2 2 2 2g− ≤ ≤                      (94) 
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Figure 2. Diagrams of fL, fR functions. 

 
So the relation (85) or its equivalent (77) to be valid. Therefore the minimum 

value of g will be: ( )2 2 2 1.293 1.3g = − = < . 
And so finally we prove that the relation (78) does apply. We understand that 

the choice of VSI 2g =  case of first article A in the relation (4.17) drives to 
take place the reduction of multitude of prime numbers and the reduction of 
multitude of twins in all VSI 2g =  relative to primes and twins multitudes in-
side the corresponding RSI Mδ  intervals. And therefore the calculations and 
the proof after (4.17) in the article A be correct. But for the completeness of this 
proof we must analyze something more, and this we will make just bellow. The 
relation (24) corresponds to the random VSI 2g =  and then because for 

( )2 2 2 2 ,2g  = ∈ −   the (84) for this VSI 2g =  will conclude fewer prime 
numbers than the corresponding RSI Mδ . Subsequently for this VSI 2g =  
putting this value of g in (24) we get: 

( ) ( )
1

2 2 2 22 1 1 1 1 0
2 3 5

M

M j
j M

P F g
q

ν

=

    = = − − − − =    
     

∏         (95) 

We percept that this probability is zero and therefore we can’t use the value
2g =  for the factor ( ) ( )1 1 2F g g= − . We must therefore substitute the value 
2g =  especially only for the first factor ( )1 1F g  with another value 1g  that 

we must calculate. However, this will result in a hybrid VSI 1, 2g  where the 
( )1b M  band will have a different value of g of its 1q -multiples eraser in rela-

tion to the erasers of all the other bands that will have the same value 2g = . 
Here emergences a new mathematical phenomenon. Based on the relation (95) 
that we found, if we eliminate the first band ( )1b M , all the other bands in pairs 
will increase their “virtual clear density of deletion” in relation to their respective 
pairs in the RSI Mδ . Therefore for this to happen with all bands without excep-
tion, each pair, that construct the band ( )1b M  by 1g g=  with any other band 

( )sb M  by 2sg g= = , 1s ≠ , must do the same thing, that is, increases its 
“virtual clear density of deletion” relative to its corresponding pair in the RSI

Mδ . Therefore we will go to relation (29) and we will ask for its corresponding 
relation the new form generally for ,i jg g . So we will have now: 

https://doi.org/10.4236/apm.2020.109035


P. C. Papadopoulos 
 

 

DOI: 10.4236/apm.2020.109035 577 Advances in Pure Mathematics 
 

( ) ( )
( )( ) ( )

1 1

1 1 1 1

i i j j

i j i j i j ij

g q g q

g x g y g x g y g g xy ρ

  − −   

= − − = − + − = −
         (96) 

The new general “virtual clear density of deletion” is ijρ  and refers to pairs 
( )ib M , ( )jb M , and will be: 

ij i j i jg x g y g g xyρ = + −                     (97) 

The relation (97) now replaces the relation (29). Therefore, for the search of

1 ig g= , which concerns exclusively the interaction of the ( )1b M , ( )jb M  
bands of HVSI 1g , 2 relative to corresponding RSI (because the interaction be-
tween the all other pairs of bands with the same 2g =  has been investigated 
just before) we will accept in below the general cases of “equal or greater”, “equal 
or less” instead of previous “greater” and “less” correspondingly, because the 
probable equalities instead of the previous sufficient inequalities between the 
“virtual clear deletion densities” obviously do not change our conclusions and 
thus we will have successive: 

The (97) instead of (29) and therefore we have the relation: 

( ) ( ) 2i j i jg x g y g g xy x y xy xy+ − − + − ≥  instead of (77) and  

( ) ( ) ( )1 2 4 0i i jg x g g xy xy− − + ≥ , ( ) ( ) ( )1 2 4 0j i jg y g g xy xy− − + ≥  (98) 

Instead of (86) and so we have: 

( )2 4 4 0i j ig g y g y− + − ≤ , ( )2 4 4 0i j jg g x g x− + − ≤        (99) 

Instead of (88). And accordingly to the above we must put 1ig g= , 2jg =  
into (99) and thus the relations (99) result: 

( ) ( )1 4 4 1g y y≤ − −    and ( )1 0.25 1g x≤ + , ( ], 0,1 2x y∈   (100) 

For the first relation of (100) we have:  
( ) ( ) ( ) ( )24 4 1 3 4 1 0G y y y y′   = − − = − >       and so this is increasing 

function, that is ( )G y ↑ , and next using the first relation of (100) we find the 
result: 

( ) ( ) ( )1 min min 0 1g G y G y G≤ = = =                (101) 

The 2st of (100) gives: ( ) ( ) ( )20.25 1 1 0H x x x H x′′ = + = − < ⇒ ↓  
And using the last relation with the second relation of (100) we find the result: 

( ) ( ) ( )1 min max 1 2 2.25g H y H y H≤ = = =              (102) 

The (102) is compromiser because for the value 1g  is known that 1 2g <  
and consequently the (102) don’t give us extra information for the asking value

1g . Combining (101), (102) we conclude that one allowed value for the asking 
sufficiency is: 

1 1g =                           (103) 

We must point that the relations (94) and (103) gives us only some of useful 
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values of g but not all values, because we moved on a very open way for proper 
sufficient conditions (which imply these values 1 1, 2g g= = ) and not on equiv-
alent relations. Therefore the result (101) doesn’t mean that values of g greater 
than 1 re excluded. Correcting the (95) by use of (103) we have the total proba-
bility of the hybrid VSI which in below we’ll symbolize as HVSI 1, 2:  

HVSI 1, 2: 

1 2 2 21 1 1 1 0
2 3 5M

M

P
q

    = − − − − >    
     

             (104) 

On the basis of all the above we proved that the above HVSI 1, 2 has greater 
“virtual clear density of deletion” (from the interaction of all its bands together, 
because we examined all possible cases per two bands) in relation to the corres-
ponding RSI Mδ  and therefore we proved that this random (that is for the 
random value M) HVSI 1, 2 will have fewer prime numbers of its corresponding 
RSI Mδ . Let be this the Proposition: (105). 

In corresponding relation (4.17) of our first article A we used there as value 

1 1.75 1g = >  instead of the value of above relation (103), but something such do 
not change the final result because 0.5 0.125×∞ = ×∞ , and for this below in 
Section 5 we will repeat the part of calculations after the relation (4.17) until the 
relation (4.22) of the first article A but now with (104), not only for this trivial 
reason, but mainly to give to the reader a complete image of our analysis here. 
The result and the form of calculations are same.  

5. Organization of the Steps and the Final form of the Proof 

Let’s gather the steps of the proof. 
1) We have shown the proposition (105) that random RSI contains more 

prime numbers than the corresponding ideal HVSI 1, 2. The probabilities of the 
prime number occurrence in any random position ν  of a natural number in-
side these RSI Mδ  and HVSI 1, 2 will be given by the (80) and (104) respec-
tively.  

2) We have said that the stability of 0MP  ( )MRν δ∀ ∈  of the relation (80) 
drives on basis of (3) to the stability of the corresponding probability of 

0, 0 0M twin M MP P P′=  of the twins within the same Mδ . This stability of 0MP  can 
be proved as follows. Let be ( ), MR R Dµ ν δ∈ =   . If { }2,3, ,s M Mq Y q∈ =   
then due to the random choices we will have ( ) ( )| | 1s s sP q P q qµ ν= =  ac-
cording to (67). But on the other hand, on the basis of ( ) ( )1 2| |s sq qν µ<>  we 
conclude that the cancellation of a measured deletion |sq µ  from the sq
-multiples because it has an overlap of another eraser kq -multiples of the delet-
ing |kq µ , will have the same probability as the cancellation of a measured de-
letion |sq ν  from the sq -multiples because it has an overlap (coincidence) of 
another eraser kq -multiples of the deletion |kq ν . We observe that both the 
deletions of a multiple of type P and its cancellations of type K of the relation 
(28) are drives to the equal probabilities for random positions of ( ), MRµ ν δ∈ . 
And according to (68) we have and the symmetrical results for the not divisibili-
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ty. 
Therefore, the two catholic events P, K, that determine the probability that the 
,µ ν  are prime numbers imply on the basis of (31), (32) that the ,µ ν  would 

have equal probabilities to be prime numbers into the same ( )MR δ : 

( ) ( )prime prime constM MP P kν δ µ δ= ∈ = = ∈ = =        (106) 

That is, the (106) catholically (generally) obeys exclusively and only to the re-
lation (81) and to the catholic (general) inequalities which we proved for (80). In 
other words the factors iMG  of the relation (80) in random Mδ  [ ( )M R Dδ = ] 
will have random values obeying only to the general restrictions of mathematical 
necessities as it is 0 iM iG q< < , and inequalities we proved etc. The constant 
number k of the above relation (106) as well the corresponding as well constants 

,g Hk k  are given by (80), (82), (104) depending on what kind of silver interval 
we are referring to each time. By the definition of the random RSI the previous 
proposition (106) essentially comes from the missing of catholic information for 
special relations between places of bands inside this ( )MR δ . In other words we 
have shown that the probability of a prime can be considered constant within a 
randomly selected Mδ , as well in its corresponding ideal HVSI 1, 2 from its de-
finition because the HVSI 1, 2 is ideal. And according to the (106) we conclude 
that the every twin would have constant probability in the random RSI as well in 
ideal HVSI 1, 2 as we suppose in the calculations of the relation (5) in the intro-
duction. Because the constancy of probability of prime numbers is the only 
proposition which influence absolutely on the basic relation (5) method of cal-
culations below according to the classical theory of probabilities and statistics 
and nothing more.  

3) We have defined the “random selection” in (31) of the Section 3. In the be-
low we use the basic definitions in 1 and 5 etc of “Nomenclatures” (section in 
Appendix at the end) and the part A of Introduction at the beginning of this ar-
ticle B:  

0MP , MP , 0 0 0M M MP Pξ′ = , M M MP Pξ′ = , 0Mn N= , 0,M twinN , MN , ,M twinN  

We conclude on the basis of (3) that in a random RSI the probability of a twin 
will be:  

( ) ( ) [ ]2 2 2
0, 0 0 0 0 0 0M twin M M M M M M M MP P P P P P Pξ ξ′= = = , M N∀ ∈   (107) 

But the proposition (105) gives 

0 1M MP P >                           (108) 

Now first we observe that if 0 2Mn N= ≥  then the relations (13), (107), (108) 
imply: 

( )[ ]20, 1 2M twin MP P≥ , || 2M N n∀ ∈ ≥               (109) 

But every special case with 0 1Mn N= ≤  results to 0, 0M twinP =  and its cor-
responding 0MP >  and so for these cases the (109) don’t be valid. Therefore we 
must exclude these cases 0 1Mn N= ≤  from the applications of the relation 
(109) to the relations (123), (127) below.  
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We must examine the other cases 0 1Mn N= ≤ . For this we introduce the 
symbolisms: 

( )0 0MN M N= , ( ) ( )0 0 1Mf N M N M= − , 2 2
1M M Mq q −Κ = − , 

1M M Mq q −Λ = , 1M M M+Α = Κ Κ , ( )1 1 1M M Mq λΒ = − =       (110) 

We also define that “A proposition Pr will be statistically valid (SV) in a set A 
with frequency νω , symbolizing this as ( )Pr \ \ Aνω , when, and only when the 
Pr is valid on a fraction greaten than νω  into the elements of the random se-
lected subsets iA  of A, which evidently for every iA  are produced by random 
selections of elements from A with a corresponding random (changeable every 
time) multitude im  under the condition that the random natural number im to 
meet the special rules for the control of the truth of Pr. If the A has infinite 
number of elements then the statistics must provide the level of importance 

1ε =  (that is 100% certainty and not 0.01ε =  etc) for the safety of the result

νω  by the use of catholic propositions of set A“. This is the Proposition: (111) 
If is valid ( )Pr 0.5 \ \ A  we will agree below to saying that the proposition Pr 

is simply statistically valid in set A. This is the Proposition: (112). 
If the fraction Mf  is greater than 1 with ( )M R N= , then the number of 

( )0n N M=  of primes in RSIs Mδ  will be a statistically ascending sequence of 
M and because we know the initial values of ( )0N M  for finite values of M we 
can percept that the majority of RSIs Mδ  in their set D must have

( )0 2n N M= > . We will prove it by proving first that 1Mf > . According to the 
above definitions (110) and 1, 5 of Nomenclatures (section in Appendix at the 
end of this article B) etc., we have: ( )0 0M MN M P d=  and so we must examine 
the validity of the relation 

1M M Mf = Α Β >                       (113) 

So for be valid the (113), is enough to be valid  

1M M Mλ+Κ > Κ  or 2 2
1 1M M M Mλ λ−
+Λ + Λ > +            (114) 

Initially comparing the numerator with denominator in MΑ  on the (113) 
and having in mind the logarithmic theorem of prime dilution, as more as the 
differences between successive primes increasing, we have the intuition that the 
above is valid, because from the other hand the factor MΒ  must take values 
about 1 in contradiction to MΑ  that must take values very greater than 1. Let 
us examine it. From the proven theorem of prime numbers we know that the 
expected number of primes in interval { } ( ]1,M Mq qν +∆ =  by continuous and 
discrete values of the natural number ν  and measure of interval  

1M M Mq q qν +∆ = ∆ = −  will be: 

( ) ( ) ( )
1

1ln 1 ln ln
M

M

q

M M M M M
q

q q I q q
ν

ν
ν

+=

+
=

∆ < = < ∆  ∑       (115) 

The above sum in (115) is referred often in form of an integral. Next for the 
above relation (115) we put:  
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( )lnM M Mu q q= , ( )ln 0M M M Mk q q I= ∆ − >           (116) 

Because inside to the { } ( ]1,M Mx q q +∆ =  exists only one prime number (the 

1Mq + ) we conclude that we can put 1MI =  and so the (116) gives: 

( ) ( )1M M M M M M Mq q u k I u k∆ = + = +  or ( )1M M M M M Mq q q u k u+ − = +  

and then 1 1M M M Mu u k+Λ = + + . Next for the other term 1
M
−Λ  of (114) we ob-

serve an inverse inequality, that is ( )1 1 1ln lnM M M M M Mq q q q q I− − −∆ = − <  and 
then putting: 

( )1 1ln 1M M M M Mq q q k I− −′− + = =  

similarly we get the relation: 

( )1M M M M M Mq q q u k u− ′− = − +  

that results to 1 1M M M Mu u k− ′Λ = − + . Substituting 1M +Λ , 1
M
−Λ  in (114) for the 

validity of the relation(114) is sufficient to be valid: 

( ) ( ) ( )2 2, 1 1 1M M M M M M M M M MF k k u u k u u kλ λ′ ′= + + + − + > +    (117) 

For the (117) first we will examine the: 

( )0,0 1MF λ> +                       (118) 

Expanding the (117) is equivalent to ( ) ( )2 1 1M M Mu λ λ> − +  which is 
transformed to ( ) 2exp 0.5M M Mq q q e> − <    which is valid 4M∀ > . Next 
easily we observe that the function ( ),M MF k k ′  in (117) is as well ascending of 

,M Mk k ′  and so the relation (117) will be valid for all values of ,M Mk k ′  because 
these take positive values from their definitions. If we use the correct values 

1, 1M MI I − ≠ , then similarly we result that for the validity of the relation (114) is 
sufficient to be valid:  

( ) ( )2 2
1 1d d d dM M M MI I−
+ −

   Λ > Λ    , 

so the first member of the (117) to be ascending sequence of M. Or equivalently 
[ ] [ ]1 1 1 1M M M MI q I q+ − − > . But this last result under examination is valid because 
its numerator statistically is greater than its denominator and the obvious reason 
is that the sequence 1M M M MI q I q +<  is statistically ascending. Indeed, the MI  
counts the primes (with values here about 1) and thus is changing statistically 
very slowly than the corresponding increment of prime Mq  because the prime 
numbers dilute as their values increase more and more as they tend to the infi-
nite. We conclude that the (114) is valid and therefore the (113) is as well valid. 
So we proved the relation (113).  

Based on (111) let 0 1 2, , , 0ω ω ω ≥  are the frequency’s values with which 

Mδ  of D are displayed statistically and have respectively multitudes  
( )0 0,1, 2,3,n N M= =   of their prime numbers. Let initially hypothesize that 

2 3 40 ω ω ω= = = = . Let be this as hypothesis Hyp-2. This could mean, for 
example, that within the infinite number of Mδ  of the set D only finite popula-
tions with ( )0 2n N M= ≥  appear. So based on Hyp-2 for the cases  

( )0 0,1n N M= =  inevitably will be 0 1 1ω ω+ = . According to the (113) that we 
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proved will be valid for 0 1,ω ω  that ( ) ( )0 01N M N M+ > , and therefore statis-
tically and with a level of security 1ε =  (i.e. 100%), we can claim that more 
than half of Mδ  in D will have ( )0 1n N M= ≥ . That is, according to (112) this 
proposition ( )0 1n N M= ≥  will be statistically valid in D if Hyp-2 is true in D. 
The reason is obviously that all Mδ  with ( )0 0n N M= =  have successors 

1Mδ +  and therefore based on (113) we proved before, this will happen. That is, 
based on the definition (111) defining as { }Pr 1n= ≥  the ( )Pr 0.5 \ \D  will 
apply. We therefore conclude that 0 1ω ω< , and after we said due to Hyp-2 it is 
valid 0 1 1ω ω+ = , we will have 1 01 2ω ω> > . Similarly, all Mδ  with 1 1 2ω >  
and corresponding ( )0 1n N M= ≥  will have successors 1Mδ +  in D for which 
the statistical relation (113) that is ( ) ( )0 01N M N M+ >  will be valid and with 
security 1ε =  (i.e. 100%) due to its universal power (113). So, similar to before, 
we have statistically populations of RSIs Mδ  with ( )0 2n N M= ≥ , ( )M R N=  
with occurrence frequencies ( )2 11 2ω ω>  and again 1ε = . And after we said 

1 1 2ω >  it will finally be ( )( ) ( )2
2 1 2 1 2 1 2ω > =  and with 1ε =  (i.e. 100%) 

due to the catholic validity of the relation (113) in D. Therefore we proved that 
the hypothesis Hyp-2 is not valid and thus is rejected.  

We conclude that there is a non-zero value 2ω  for RSI Mδ  which all have
( )0 2n N M= ≥ . Proposition: (119). 

We now have three useful conclusions: 
1) Based on the relations (13), (107), (108), (119) we conclude that the inequa-

lity (109) will be valid in a non zero fraction * 0ω >  of the total population of 
intervals Mδ  and with random distribution of M values concerning this popu-
lation, due to the lack of catholic (general) information for some other distribu-
tion of M. Proposition: (120). 

2) And finally using the (113) we have 1 2, 1, 2, ,ν νω ω ν ν−> =   and mul-
tiplying these ν  inequalities by members we result to ( )1 2 ν

νω > , 
1, 2,3,ν =   because from the first we have that 0 1ω < . Thus we proved that 

the cases ( )0n N M ν= ≥ , ( )M R N=  will appear in set D statistically with 
frequencies ( )1 2 ν

νω > , Nν ∈  and with a security levels 1ε =  (i.e. 100%). 
Combining the relations 0 2 1ω ω+ + =  and (113) we have that  

*
0 1 2 3ω ω ω ω ω< < = + + , and then *

2 3 1 3 1 4ω ω ω= + + > > , with 1ε = . 
Therefore we result that in any case more than the 1/4 of the elements Mδ  of D 
satisfies the necessary condition 0 2Mn N= ≥  of the relation (109) because of 
(13). And thus finally we conclude that: “The relation (109) is valid to a part 

* 1 4ω >  of the set D”. This is a useful Proposition: (121). 
Defining as { }Pr 0nν ν= ≥ > , the ( ) )Pr 1 2 \ \Dν

ν

  will be valid.  

3) The number of the primes in Mδ  tends to infinity as M tends to infinity 
that is ( )lim

M
n

→∞
= ∞ . Indeed, according to the previous (2) we conclude that 

0µ∀ >  there is a population Popµ  from Mδ  with non-zero occurrence fre-
quency ( )1 2 µ

µω > , where each of these Mδ  of Popµ  will has a number 
(multitude) of prime numbers ( )0n N M µ= ≥ . So we proved that the number 
of primes n in RSIs tends to the infinite. Proposition: (122). 

Based on the relation (109) and the proposition (121), to be valid the hypothe-
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sis that “the twin’s multitude in N is infinite”, that is, the twins are infinite in the 
infinite number of RSIs, it is enough to be valid: 

[ ]2
1

M

M
M

P
=∞

=

= ∞∑ , 

because from the counting of twins (5) and using the (109) with the proposition 
(121) we will have: 

[ ] [ ] [ ]2 2 2*
0,

1 1 1 1

1 1 1 1
2 4 2 8

M M M M

M twin M M M
M M M M

R P P P Pω
=∞ =∞ =∞ =∞

= = = =

 = = > = ∑ ∑ ∑ ∑  (123) 

As we promised, we will repeat the calculations from the relation (4.16) of the 
first published article A until its relation (4.22), making the change dictated by 
the relation (104) etc. We will keep the same symbols of the article A in counting 
of below relations, reminding that ( )P pν ν=  in the article A based on the fol-
lowing relation (4.17) is now the 0MP  of RSI in the above, and the ( )1MP Pν =  
corresponds to the default VSI 1 of (81) and finally the MP  is the probability of 
a prime in HVSI 1, 2. Also below we don’t use the (4.19) of the article A because 
this relation refers to twin probability that we replaced by the correct (3) as we 
said. In article A we had the (4.16): 

( ) ( )( ) ( )0 1 2
1

1 1 1
M

M M j M
j

P p P F
ν

ν ρ ρ ρ
=

= > = = − − −∏         (124) 

And now due to the (105) and (104) for HVSI 1, 2 it is true the (4.17) of the 
article A: 

0
2

1 21
2

M

M M
j j

P P
q=

 
> = −  

 
∏ , M N∀ ∈                (125) 

In this way an interesting scenario occurs, a sequence of inequalities: 

0
2

1

1

1 1

1 1

1 1 2 2 2 21 1 1 1 1
2 2 3 5 7

2 21 1 3 5 9 11 15
2 3 5 7 1113 17

2 3 21 1 3 5 7 8 9 11 13 14 15
2 3 5 7 8 9 1113 14 15 17 1 2

M

M M j
j M

M M

M M

M M M M

M M M M

P P F
q

q q
q q

q q q q
q q q q

ν

=

−

−

− −

− −

     > = = − − − − −     
      

 − −
=  

 
  − − −   >      + −     

∏ 



 

( )1 2 , ,M Mq M Nν δ


  
 

= ∀ ∈ ∀ ∈

 

Particularly, all the successive fractions of the type ( )1ν ν +  were inserted in 
brackets (…) exactly where they were missing, which creates a more enhanced 
inequality. The last arose after the erasing of the equal numerators and denomi-
nators. Consequently for the true function ( )p ν , that defines the exact number 
of prime numbers in the random RSI Mδ , the result will be the (4.18) of article 
A: 

( ) ( ) ( )
( ) ( )

01

1 2 1 2 , ,

M M M

M M

P P P p P P

q M N
ν ν ν

ν ν δ

= ≥ = = >

> ≥ ∀ ∈ ∀ ∈
            (126) 

The last inequality from the above five inequalities of the relation (126) de-
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rives obviously from the relation 2 2
1M Mq qνν α +≤ = <  that refers to the natural 

numbers ν  of the silver interval, whilst the others inequality of (126) derives 
from everything that was mentioned before for the consequences from the 
proposition (71) concerning the limits of ( )sb M . 

Thereupon, for the natural number aν ν=  of the RSI Mδ , the relation (126) 
with the above relations (109), (121), (123) results to (4.20) of A: 

[ ]
2 2 2

1 1 1

2 2 2

1 1 1
2*

0,
1 1 1
2 32

M M M

M M M

q q q

M M twin M
q q q

R P P
ν ν ν

ω
ν

+ + +− − −

= = =

 = = > ∑ ∑ ∑         (127) 

Hence, the infinity multitude of the silver intervals one has the (4.21) of A: 
2

1

2

1

1 1 4

1 1 1 1 1 1 1 1 1
32 32 4 5 6 7 8

M

M

q

M
M M q

R R
ν

νν ν ν

+ −∞ ∞ =∞

= = ==

   = > = = + + + + +       
∑ ∑ ∑ ∑    (128) 

However, the second part of (128) becomes infinity because the brackets are 
the result of the subtraction of a finite multitude of terms from the known har-
monic series, that as we know, it becomes infinity [(4.22) of article A)]: 

1 1 1 1 1 1 1
1 2 3 4 5 6 ν
+ + + + + + + + = ∞                (129) 

Therefore, it was proven that the wanted multitude of the twin prime numbers 
in the infinite multitude of natural numbers will also be infinite. 

“The dark paths (intervals) of infinity” in Section 5 of the A article is also a 
second method of solving this twin’s problem applying the (126), (125) which 
will based on (104), (105) which we proved here in a clear way.  

6. Conclusions 

1) The main conclusion of the analysis is that the hypothesis that “twins are 
infinite” in N is correct. The evidentiary method examined all cases of overlap-
ping bands and relied on the comparison between a random RSI and the cor-
responding HVSI 1, 2 thus exploiting on the basis of mathematical causality the 
catholic (or general or universal) information of the statistical distribution of 
twins until to infinity, based on the propositions (31), (32), thus excluding the 
case of accidental deviation of the calculations based on strict definitions deriv-
ing from mathematical necessity “that in mathematics nothing happens without 
a cause”. Because of the unique definition of statistical counting of twins, that is 
the case.  

2) The length of the RSI that is infinitely distant from the first RSI becomes 
statistically infinite as well as the number of its prime numbers becomes statisti-
cally infinite.  

3) A numerical control method (insignificant for our proof) in the first 299 
shows the arithmetical results in Table 2, where we see the very small number of 
twins of HVSIs 1, 2 in comparison to the corresponding RSIs. 

Figure 3 shows the graph d-n, where the natural number n of horizontal axis 
represents the tens from silver intervals. We observe that to the initials 299 HVSI 
1, 2 the fractions d = RT(i)/HT(i) which are made from the average multitude  
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Figure 3. Graph (d – n) of silver intervals. 

 
Table 2. Correlation between different types of silver intervals. 

 
Multitude of 

Primes 
Multitude 
of Twins 

Fraction 
Primes/Twins 

Silver Interval 
Multitude 

RSI 279,791 26,592 10.5 299 

HVSI 1, 2 33,166 289 114 299 

VSI g = 1 314,728 25,144 12.5 299 

 
RT(i) of twins per 10 respective RSI divided by the average multitude HT(i) of 
twins per n = 10 HVSI 1, 2, is increasing starting from about 10 until a value 
about 110. The increment of one order of magnitude between 10.5 (or 12.5) and 
114 into Table 2 due to the relation 2

twin primeP P=  that is 279,791/33,166 is about 
10. 

4) No one of 299 cases gave twin’s multitude of HVSI 1, 2 greater than the 
twin’s multitude of the corresponding RSI. Also the d had the above great values 
with an increment as the M was increasing which strengthens the inequalities of 
the proof. The arithmetical results are only an accompanied picture and nothing 
more in the previous proof. But the arithmetical finite experiments some times 
are useful because they indicate hidden cases and give birth new ideas indicating 
the way of research like every human experiment and experience.  

5) Also the inequality (4.5) of article A has been controlled successfully in all 
these first 299 silver intervals. 
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Appendix 

Nomenclatures 
1) a) Real Silver Interval (RSI): )2 2

1,M M Mq qδ +=   with arithmetical length  
2 2

1M M Md q q+= − , M N∈ , 

where 1,M Mq q +  are two successive prime numbers. This is also defined in Sec-
tions 1A of Introduction, also in 2, and it is referred in Section 4, e.g. relation 
(80). Sub sequent of all types of Silver Intervals (SI) is: { }1 2 3, , , ,M MY q q q q=  . 
Defined in the Section 1B and also referred at the beginning of the Section 2. b) 
And for the Sections 3, 5 etc., we define as random choice from a set A and un-
der a Catholic Information’s restriction CIR the random selection of an element 
under this general restriction CIR: ( )||ia R A CIR= . In case with infinite num-
ber of elements we expand the finite definition to the infinite letting the number 
N of the elements of A tends to the infinite. Also we define as Gold Interval (GI): 

[ ]1 21,N Nq q q∆ =  , with its sub sequent { }1 2 3, , , ,N NX q q q q=  .  
2) Probability to happening the event 1e : ( )1p e . And also the probability to 

happening the event 1e  under the condition to be happened another event 2e : 
( )1 2||p e e . And their independence will be ( ) ( )1 2 1||p e e p e= .  
3) Virtual Silver Interval: [VSI g] or ( )vir

M gδ . This is defined in Sections 1B, 2 
and it also is referred in Section 4, e.g. the relations (24), (82). The special VSI 

1g =  or ( )1vir
Mδ  we call as default VSI. 

4) Hybrid Virtual Silver Interval 1, 2: HVSI 1, 2. This is defined in Section 4, 
e.g. the relation (104). 

5) 0 0,,M t M twinn N n N= =  are the multiyudes of the primes ant the twins in a 
Random RSI [or symbolically ( )MR δ ] correspondingly. And ,,M M twinN N  are 
the multiudes of the primes and the twins in the corresponding HVSI 1, 2. Also 

0 0,,M M twinP P  are the probabilites to find a prim and a twin in a random palce ν
of a ( )MR δ , see relation (80). And ,,M M twinP P  are the probabilites to find a 
prim and a twin in a random palce of the corresponding HVSI 1, 2 ( )MR δ , see 
relation (104). 

6) The Band ( )sb M  is the subinterval of all the multiples [moving eraser: 
( sq -multiple)] of some prime number s Mq Y∈ , defined between the two limits 

( ) ( )1, , ,s sM Mθ θ τ  of their space [ ( )sb M ] in all types of Silver Intervals:  

( ) ( ) ( )1, , ,s s sb M M Mθ θ τ=    . 

This is defined in Sections 1B, 2.  
7) “Real clear density of deletion” and “Virtual clear density of deletion”. 

These are defined in Section 1B and in the Section 2, e.g. the ( )MU gρ =  of 
the relation (28). 

8) “Catholic Information”. This is referred below in “The steps”, and it is de-
fined at the beginning of the Section 3.  

9) We define two events of divisibility |ν µ  and not divisibility , not |ν µ , 
where a natural number ν  divides and not devides another natural number µ  
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correspondingly. These definitions exist also in Section 3.  
10) The inequality (3.2) or (4.5) of article A for RSI Mδ  is important:  

2 2
1 4 4 , 1,2,3,4, ,M M M M sd q q q q s M+= − > ≥ ∀ =   and 1M∀ >  

This is used e.g. in Section 4 for proving the (74), (75), (77) etc.  
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