
Journal of Software Engineering and Applications, 2020, 13, 191-205
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2020.139013 Sep. 29, 2020 191 Journal of Software Engineering and Applications

Evaluation of an Evolutionary Algorithm to
Dynamically Alter Partition Sizes in Web
Caching Systems

Richard Hurley, Graeme Young

Department of Computer Science, Trent University, Peterborough, ON, Canada

Abstract
There has been an explosion in the volume of data that is being accessed from
the Internet. As a result, the risk of a Web server being inundated with re-
quests is ever-present. One approach to reducing the performance degrada-
tion that potentially comes from Web server overloading is to employ Web
caching where data content is replicated in multiple locations. In this paper,
we investigate the use of evolutionary algorithms to dynamically alter parti-
tion size in Web caches. We use established modeling techniques to compare
the performance of our evolutionary algorithm to that found in statical-
ly-partitioned systems. Our results indicate that utilizing an evolutionary al-
gorithm to dynamically alter partition sizes can lead to performance im-
provements especially in environments where the relative size of large to
small pages is high.

Keywords
Evolutionary Algorithm, Web Cache, Partition, Simulation,
Performance Analysis, Hit Rate

1. Introduction

Today’s Internet is a vast network of interconnected computing devices, through
which information is shared at an extremely high volume and speed. Over time,
the amount of data transferred between computing devices has increased dra-
matically. To put it into perspective, the modern Internet consists of an envi-
ronment of video streaming, online television, massively multiplayer online
games, and live music streaming. Contrast this to an early Internet of utilitarian,
sparse Web pages featuring little more than a few paragraphs of plain text and

How to cite this paper: Hurley, R. and
Young, G. (2020) Evaluation of an Evolu-
tionary Algorithm to Dynamically Alter
Partition Sizes in Web Caching Systems.
Journal of Software Engineering and Ap-
plications, 13, 191-205.
https://doi.org/10.4236/jsea.2020.139013

Received: June 29, 2020
Accepted: September 26, 2020
Published: September 29, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.139013
https://www.scirp.org/
https://doi.org/10.4236/jsea.2020.139013
http://creativecommons.org/licenses/by/4.0/

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 192 Journal of Software Engineering and Applications

perhaps several small images. When juxtaposing that environment with the
aforementioned modern one, the increased demand on network infrastructure
becomes obvious. Although technology has attempted to keep pace with the in-
crease in demand, the risk of a Web server being inundated with more requests
than it can handle is an ever-present one. The amount of data circulated through
the Internet has been doubling every six months [1].

Not only is there a huge volume of information shared through the Internet,
the information tends to vary quite significantly based on the amount necessary
to transmit [2]. Atypical Web page could consist of text, image, sound, and video
files (or any combination of the aforementioned objects) all of which are of po-
tentially different sizes. For this work, Webpages will be simplified and divided
into two categories: small pages and large pages.

With the sharing or transferring of objects between computing devices comes
the issue of managing and mitigating delays that may arise from physical dis-
tance, network loads, and/or the amount of information transmitted [3] [4].
While Web caching, the process of storing and managing Web pages in multiple
locations, does not directly address the issue of page size, it can however address
the issue of multiple concurrent accesses.

A typical Internet architecture consists of groups of computing devices shar-
ing large volumes of information at a high speed. In its most basic form, the en-
vironment can be thought of being comprised of two classes of devices: servers
(provide the information), and clients (request the information) [5]. When a
client requests a Web page, the server relays a copy of that page to the client and
then waits for another request. However concise this approach may be in theory
it does not reflect the complex reality of the Internet with multiple clients ac-
cessing a server at any given time, and servers containing multiple pages that
may be requested. A direct result of this is that as the number of requests to a
server increases, the server takes longer to respond to each individual request
due to the increased load (number of requests in a given amount of time). Web
caching has been used in these networks to alleviate the load placed on servers
by reducing the number of requests actually being processed by the server [6] [7]
[8].

Physically, a Web cache is a storage medium that contains copies of Web pag-
es (or objects) from a Web server, with page content determined, at least in part,
by what pages are requested by clients. By storing copies of Web pages requested
by clients, a Web cache can process future requests for those particular pages
without involving the actual server. This is based on the assumption that those
cached pages will be requested again at some point in the immediate to near fu-
ture by other clients [7]. Web caches may be located in the client itself, in a
proxy server, or in a physically separate device somewhere on the Internet [9]. In
addition to physical location, it is also possible that several distributed caches,
each one of which contains copies of Web pages from the server.

Previous research has shown that partitioning Web caches has led to perfor-
mance improvements over systems that do not partition [10] [11]. Partitioning

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 193 Journal of Software Engineering and Applications

is a technique where a Webcache is divided into two fixed-sized partitions which
are then allocated for specific-sized Webpages (e.g., one could have a partition
for large pages and a partition for small pages). Much of the work done on parti-
tioning Web caches has been limited to static partitioning where the size of the
partitions remained fixed. In this paper, we examine dynamic partitioning where
the size of a partition for a particular Web page type can be increased or de-
creased based on the prevalence of that type of page. The approach we will use to
adjust the partition sizes will be based on an evolutionary algorithm [1] [12] [13]
that attempts to optimize an objective function.

This paper will be organized as follows: Section 2 focuses on the basic model,
with discussion provided on the choice of parameter. In Section 3, we will give a
detailed outline of the particular evolutionary algorithm employed in our study.
Section 4 presents some of the experimental results generated to investigate the
properties of our model, and its advantages/disadvantages compared to existing
models. Finally, in Section 5, we will provide a summary of findings and sugges-
tions for future research.

2. Model Description

Our Web caching system model is divided into two parts: a Web page request
reference model and a Web cache model. In this paper, we are concerned with
the relative performance between a dynamic partitioning Web cache system and
one which uses static partitioning. Since we are not concerned with the absolute
performance of the system, we can make some simplifying assumptions with our
system models.

2.1. Web Page Request Reference Model

The pages and objects stored in a Web cache and their request probabilities vary
over time. Pages such as a news article, viral videos, course assignments, memes,
etc. become popular for periods of time and then eventually are accessed less
frequently. To capture this behavior, we use a variant of the dynamic page ref-
erence model described in [14].

2.1.1. Page Popularity
The page reference model for a system with M Web pages is shown in Figure 1.
This model assumes that a Web page can be in one of two states: normal and
popular. Web pages in the popular state are v time more likely of being re-
quested than a page in the normal state.

The model also assumes that there are two types of pages: conventional and
potentially popular. Conventional pages remain in the normal state while poten-
tially popular pages alternate between the states based on an underlying Markov
chain. The rate at which a page transitions from a normal to popular state is λ1
and from popular to normal is λ2 with the time spent in either state is assumed
to be exponentially distributed. Finally, we let M0 < M denote the number of po-
tentially popular pages that are present in the system. With this type of model,

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 194 Journal of Software Engineering and Applications

Figure 1. Dynamic page reference model.

the model is able to generate page requests with high coefficients of variation, an
attribute that has historically shown to be desirable in such systems [15].

2.1.2. Page Size
To simplify our Web page reference model, we assume that there are only two
different sizes of Web pages, large or small (with a large page being k times the
size of a small page). Small pages have a service time (time to retrieve a copy of
the page from the Web server) that is assumed to be exponentially distributed
with a mean rate of μ−1, and large pages have a exponentially distributed service
time of kμ−1.

With the increased presence of images and videos, Web pages are increasing
in size, however, the majority of Web pages are still relatively small (less than
1000 KB) [16]. As a result, we assume that the probability of requesting a small
page p is 0:9 making the probability of requesting large pages 1 − p.

2.2. Web Cache Model

Our Web cache model is comprised of a page replacement model, an architec-
tural model, and a storage mode1.

2.2.1. Page Replacement Model
One of the main components of a caching system is the page replacement algo-
rithm which is responsible for discarding pages in the Web cache once it be-
comes full to make room for new pages. Although there are several different
page replacement algorithms, we use Least Recently Used (LRU) [17] which se-
lects the least-recently used page (determined from the last accessed timestamp)
to be removed. Since we are concerned with relative performance, using the
same replacement algorithm for our systems under investigation will not create
any unfairness.

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 195 Journal of Software Engineering and Applications

2.2.2. Architectural Model
Our work expands on a Web cache model that was introduced by [18], and is
shown in Figure 2. The Web caching system model has a finite population of N
clients interacting a Web cache which is partitioned into a small page cache par-
tition (SPCP), and a large page cache partition (LPCP).

Page requests are generated by the clients after an exponential think time (z)
and sent to the Web cache. When the Web cache receives a page request, the
cache first checks if there is a copy stored locally. If the page is found, it is simply
returned to the client. However, if no copy of the requested page can be found,
the request will be sent to the originating Web server, a copy is made at the Web
cache, and the Web page is returned to the client. If the appropriate partition for
the page size of the request is full at the Web cache, LRU is used to select a page
for removal.

It is assumed that if the request cannot be satisfied by the Web cache and must
be retrieved from the originating Web server, the processing time is to be μ−1
(this includes the service time and propagation delay). If the request can be sa-
tisfied by the Web cache, then the processing time is assumed to be 0.5μ−1. If the
request is for a large Web page, all the times are assumed to be k times larger.

2.2.3. Storage Model
We consider two variations of the cache storage model: a statically partitioned
cache and a dynamically partitioned cache. The key difference is that the stati-
cally partitioned cache assumes that the partition sizes (measured in terms of the
number of small pages that can be stored) remain fixed throughout the duration
of the simulation while the partition sizes in the dynamically partitioned caching
system vary according to an evolutionary algorithm. For either case, a parti-
tioned cache in general treats large and small pages differently. From Figure 2, it
can be seen that the cache is split into two separate areas: one for large pages and
one for small pages. It is assumed that the ratio of space reserved for large pages
is (PL). Whenever a small page is brought into its partition, the available amount

Figure 2. Web caching architecture model.

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 196 Journal of Software Engineering and Applications

of storage in that partition is decreased by1. Similarly, when a large page is
brought into its partition, the available amount of memory in that partition is
decreased by k (the reverse occurs when a page is removed from its partition). If
a partition is full, and the size of the partition cannot be adjusted through the
evolutionary algorithm, then the LRU (Least Recently Used) algorithm is used to
free enough space for that page to then be cached.

3. Evolutionary Algorithm

Evolutionary algorithms, as the name implies, are a class of algorithms for solv-
ing complex problems using processes that mimic those found in nature, specif-
ically the processes of evolution [12]. The natural processes replicated in evolu-
tionary algorithms include: mutation, breeding, natural selection, and evolution.
In our research, we apply evolutionary programming which uses selection, con-
trolled through a tournament, to determine candidate elements for successive
generation [19] (see Figure 3). Each trial solution in the Web cache population
faces competition against a preselected number of opponents and receives a win
if it is at least as good as the competition. The selection process eliminates those
elements with the least number of wins (much like survival of the fittest).

Evolutionary programming makes use of mutation to invoke variety in the
population. The mutation operation simply changes aspects of the population
according to a statistical distribution, with the severity of the mutations being
reduced as the global optimum is approached. In a dynamic environment such
as a Web cache system, a global optimum may not be possible since the behavior
of the system constantly changes.

Of particular interest in this research is to examine an evolutionary algorithm
that is dynamic in nature: that is, develop an algorithm that can perform ad-
justments while the system is in operation (in our case, at the point when pages
are required to be stored in a Webcache). Such predictive systems are well suited
to be used in an Internet environment where Web pages and object can over
time and as well, users change habits change [12].

Figure 3. Evolutionary programming cycle.

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 197 Journal of Software Engineering and Applications

One issue that arises from the use of an evolutionary algorithm in the context
of a dynamic system is the determination of an optimum solution. In a relatively
static environment, a fixed optimum solution can usually be determined since
the underlying factors do not change significantly. However, in a dynamic Web
environment the underlying factors change constantly and as a result, the opti-
mum solution changes as well, making a fixed best solution impossible [12].

In order for an evolutionary algorithm to function, parameters must be pro-
vided that can be altered, or mutated, as required. In our model, these consists
of:
 SPStart: defined to be the starting size of small page partition (must be less

than or equal to maximum cache size and greater than or equal to 1).
 SPAltAmt: defined to be the amount to change small page partition size by

maxChange units during any single mutation. For our system, we choose
maxChangeto be 4 as this provides a reasonable balance between the time to
converge on a solution and the accuracy of solutions provided.

 SPMin: minimum size of small page partition (must be less than or equal to
maximum cache size and greater than or equal to 1).

 LPStart: starting size of large page partition (this is set to whatever is left over
from maximum cache size once small partition start size has been deter-
mined).

 LPMin: minimum size of large page partition (this is set to whatever is left
over from maximum cache size once minimum small partition size has been
determined).

When a change of maxChange units is to be applied, the actual amount of
change is determined based on a uniform distribution between 1 and max-
Change to avoid introducing a bias into the system. This is fundamental to en-
suring reliable results from the evolutionary algorithm, as the amount of the
mutation must be random to ensure that solution spaces are searched in the
most effective way possible.

The algorithm used for implementing the evolutionary approach is as follows
(for a more detailed presentation of the algorithm, please see [13]):

1) A panel of judges is created (a best solution to which candidates in the cur-
rent genetic pool are compared). The decision as to how many judges to include
is based on the number of candidates in the genome pool (the collection of solu-
tions that will be compared to the judges). A value too large will result in an ex-
cessive amount of time to converge on a solution. Too small a number could re-
sult in the algorithm prematurely converging on a solution. For our algorithm,
we use two judges and a genome pool of five.

a) On the first iteration, to get the algorithm started, random solutions are
provided to the judges with SPMin, LPMin, SPStart, and LPStart being set to
uniform random values between 0% and 50% of the total cache size (this allows
free space in the cache to be reallocated from one partition to another by the
evolutionary algorithm).

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 198 Journal of Software Engineering and Applications

b) A simulation run is performed for solutions represented by the judges to
gather statistics that will then be compared to those generated by candidate solu-
tions in the next step.

c) Five candidate genomes (i.e., trial solutions) are generated with SPStart,
LPStart, SPMin, and LPMin initially set to uniform random values between 0%
and 50%. Each of these candidates is measured against the current judges to de-
termine fitness (i.e., if a candidate exhibits better performance than one of the
judge, the candidate replaces the judge in the next generation). Fitness is deter-
mined based on performance measures such as cache hit rate.

2) On each successive generation, for each candidate in the pool:
a) A new cache partition assignment is generated, using the traits encoded in

the current candidate genome (SPMin, LPMin, SPStart, LPStart).
b) These traits are mutated in the candidates by randomly determining for

each of SPM in and SPStart, if the mutation will be positive or negative, and the
amount of the mutation (1 ≤ amtChange ≤ maxChange).

c) A simulation run is initiated using the new cache partition assignment.
d) Fitness results for the current candidate are then compared to that of the

judges to see if any of the judges should be replaced.
3) Step 2 is then repeated (with the performance measures for each of the

candidates and judges reset before the next generation) until there are five con-
secutive generations that show no change in the status of the judges. At this
point, we assume we have the best obtainable solution for cache partition as-
signments in the best performing judge.

4. Results

The results from this study were generated using a discrete event simulation.
The focus of the work is on applying an evolutionary algorithm to a Web cach-
ing problem and determining its ability to explore a large solution space in an
efficient manner. We did examine the impact that the parameters of our evolu-
tionary algorithm had on the performance of system and found that varying the
number of judges, number of candidates, ratio of the number of candidates to
number of judge, and mutation degree did not have a significant impact on sys-
tem performance (other than to vary the number of generations required to
achieve convergence).For a more detailed examination of these experiments,
please see [13]).

In this paper, we will examine the impact of the cache size (C), relative size of
large to small pages (k), percentage of small pages (p), number of Web pages
(M), and the relative performance benefits of a Web caching system that utilizes
dynamically-controlled partition sizes against to a system that used statical-
ly-assigned partition sizes. The performance measures of interest for our study is
the hit rate of the Web caches. To reduce the number of experiments, we ex-
amine the system under three different loading scenarios: low system utilization
(server utilization ≈ 50%), medium system utilization (server utilization ≈ 70%),
and high system utilization (server utilization ≈ 90%).

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 199 Journal of Software Engineering and Applications

We begin with Figure 4 which examines which examines the effects that va-
rying the relative size of large to small pages (k) has on the hit rate for various
cache sizes in a system under a medium load(the trends for low and high loads
were similar and not shown in this paper).

The results indicate that varying the relative size of large to small pages (k)
does not have a significant impact on the performance of our dynamically parti-
tioned Web caching system. The most likely reason for this is that the percentage
of small pages in the Web cache is initially assumed to be high and so increases
in hit rate come mainly from the expansion of the small page partition. Thus, the
actual net effect of changes to storage space (through alterations to k) for large
pages would not have a significant impact on the resulting hit rate. Figure 4
shows that the maximum decrease we see in hit rate occurs when the cache size
is 35%, and results in a decreases of only 3.9% as k is increased from 2 to 10. The
graph does indicate, however, that increasing the percentage of Web pages
cached does lead to an increase in hit rate as one would expect (up to 43% in
model).

We believe that the dynamic nature of partition sizes achieved by our evolu-
tionary model may provide some measure of stability as k fluctuates, at least
with respect to the performance measure of hit rate. Further evidence of this can
be observed in Figure 5, where we investigate the effect on hit rate of altering the
percentage of small pages (p) for various values of k in a medium load system.
From Figure 5, we can observe that the hit rate, while varying the probability of
a page being small (a larger value of p would lead to a higher hit rate as more
Web pages are small), does not change significantly based on k. This helps to
confirm the theory that our evolutionary algorithm focuses on hit rate, which we
can observed from the next graph (Figure 6), works to the detriment of large
page-related metrics such as byte hit rate.

Byte hit rate measures the number of bytes satisfied by the cache, in relation
to the total number of bytes requested. A larger value of k indicates that the rela-
tive size of a large page increases resulting in a decrease in the byte hit rate.

Figure 4. Effects of relative size of large pages (k) on hit rate (medium load) for various
cache sizes (C), µ = 1, v = 10, z = 100, p = 0.9, M0 = 10%, M = 1000.

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 200 Journal of Software Engineering and Applications

Figure 5. Effects of relative size of large pages (k) on Hit Rate (medium load) for various
percentages of large pages (p), µ = 1, v = 10, z = 100, C = 25%, M0 = 10%, M = 1000.

Figure 6. Effects of relative size of large pages (k) on byte hit rate (medium load) for var-
ious percentages of large pages (p), µ = 1, v = 10, z = 100, C = 25%, M0 = 10%, M = 1000.

Similar trends were observed in systems with low and high loads and therefore
not presented here.

We now examine the effects that the number of Web pages has on the per-
formance of the system. In Figure 7, we show the impact that increasing the
number of Web pages has on hit rate for select values of the relative size of large
pages (k) in a medium load system. From Figure 7, we can see that the number
of Web pages present used in the model does not significantly alter the behavior
of the system: the hit rate experiences an increase of about 3.6% as the number
of pages (M) is increased. We can also see that the value of the relative size of
large to small pages (k) does not seem to impact the hit rate as the number of
pages increases(for byte hit rate, larger values of k would lead to a lower value as
fewer pages could be kept in the cache [13]). This allows us to run our model

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 201 Journal of Software Engineering and Applications

Figure 7. Effects of the number of web pages (M) on hit rate (medium load) for various
percentages of large pages (p), µ = 1, v = 10, z = 100, C = 25%, p = 0.9, M0 = 10%.

with a reduced number of Web pages and be able to extrapolate the trends to
larger systems while lowering the amount of time necessary to generate results.

Lastly, we compare the performance of our dynamically-partitioned Web
caching system to statically-partitioned systems (the partition sizes for the large
and small pages remain fixed for the duration of the simulation). Also, for inter-
est, we will include the results those of a single-partition cache (large and small
Web pages share the same cache). The purpose of these experiments is to gauge
the effectiveness of the evolutionary aspect of our model, relative to a system
which does not employ such a strategy. We compare the results for the three
loading scenarios (low, medium and high) in an environment where the relative
size of a large to small pages (k) is 2 and 10. The results are shown in Figure 8
and Figure 9.

As can be observed in Figure 8 and Figure 9, the resulting hit rates differ by a
significant amount between the various static solutions, the evolutionary algo-
rithm solution, and the single-partition solution. We can see from Figure 8 that
the single-partition cache system tends to outperform our evolutionary algo-
rithm when the ratio of large to small pages is low (k = 2). When partitioning is
involved, our dynamically-partitioned system outperforms the randomly-chosen
static solutions. We believe that this shows the benefits of altering partition size
while the system is operating. It is also interesting to note that there little varia-
tion in hit rates as the load on the systems goes from low to high indicating that
Web caching in general is not affected by the amount of user traffic.

When we increase k to 10, the results become more beneficial for our evolu-
tionary algorithm approach. As shown in Figure 9, we can see that our dynami-
cally-partitioned system consistently provides an improvement in hit rate of up
to 4.8% beyond that shown by the single-partition cache. This is most likely due
to the fact that the changing of partition sizes accommodate numbers of pages
more effectively as page sizes are increased.

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 202 Journal of Software Engineering and Applications

Figure 8. Hit rates of evolutionary algorithm approach versus statically-partitioned (k =
2), µ = 1, v = 10, z = 100, C = 25%, p = 0.9, M0 = 10%, M = 1000.

Figure 9. Hit rates of evolutionary algorithm approach versus statically-partitioned (k =
2), µ = 1, v = 10, z = 100, C = 25%, p = 0.9, M0 = 10%, M = 1000.

5. Conclusions

The selection of the partition size is an important decision in a Web caching
system [11]. In this paper, we have investigated the use of an evolutionary algo-
rithm to dynamically control partition size in a Web cache system. We have es-
tablished that from our model, utilizing an evolutionary algorithm seems to
outperform a statically-partitioned Web cache, and that the performance im-
provement tends to increase with the relative size of large to small pages.

We analyzed our system under multiple loading scenarios, different values of

https://doi.org/10.4236/jsea.2020.139013

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 203 Journal of Software Engineering and Applications

relative size of large to small pages, increasing ratios of larger pages, and various
choices for the total number of Web pages. Our research showed that in terms of
hit rate, our evolutionary algorithm appears to cope well with increases in the
relative size of large to small pages. Byte hit rate, on the other hand, suffered
from a decrease as the relative size of large to small pages was increased, which
indicates that the caching strategy employed by our model tends to favor hit rate
over byte hit rate. It also speaks to the idea that the large page partition becomes
a limiting factor to performance as relative size of large to small pages is in-
creased. As for changes to the total number of pages, we found that system be-
havior remained relatively constant, regardless of the number of Web pages.
This demonstrates that the number of Web pages is not a significant factor in
algorithm behavior.

Our last set of experiments compared a dynamically-partitioned system (using
an evolutionary algorithm) with several statically-partition systems and a system
without partitioning. We found that the evolutionary algorithm solution out-
performs the statically-partitioned systems and has the potential to outperform a
traditional Web cache in terms when the relative size of large to small pages in-
creases. This finding is significant as the choice of partition size does affect per-
formance and thus, a difficult parameter to determine. Our algorithm attempts
to adjust this value as conditions vary.

Future research in this area could include investigating the mechanisms of the
evolutionary algorithm such as allowing the mutation amount to become varia-
ble and providing alternative methods of comparison between judges and can-
didates to lead to further gains in performance. Data mining of cache logs could
also be investigated to assist the evolutionary algorithm in its initial partition as-
signment in an attempt to arrive at the “optimal” solution more efficiently.
Another area of research could involve introducing a more diverse model for
Web pages as opposed to just large and small. A Web page could be considered
to be composed of a number of cacheable (and uncacheable) objects each of va-
rying sizes. A more complex model for Webpages would lead to more options
for an evolutionary algorithm. Finally, if considering the potential real-world
application of an evolutionary algorithm for controlling partition sizes, it would
be important to conduct a detailed examination of the overhead associated with
utilizing the algorithm (a factor that was ignored in this research).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Athena, V. (2002) Evolutionary Techniques for Web Caching. Distributed and Pa-

rallel Databases, 11, 93-116. https://doi.org/10.1023/A:1013385708178

[2] Calzarossa, M.C., Massari, L. and Tessera, D. (2016) Workload Characterization: A
Survey Revisited. ACM Computing Survey, 48, Article No. 48.

https://doi.org/10.4236/jsea.2020.139013
https://doi.org/10.1023/A:1013385708178

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 204 Journal of Software Engineering and Applications

https://doi.org/10.1145/2856127

[3] Arlitt, M., Cherkasova, L., Dilley, J., Friedrich, R. and Jin, T. (1999) Evaluating
Content Management Techniques for Web Proxy Caches. ACM SIGMETRICS Per-
formance Evaluation Review, 27, 3-11. https://doi.org/10.1145/346000.346003

[4] Berger, D.S., Beckmann, N. and Harchol-Balter, M. (2018) Practical Bounds on Op-
timal Caching with Variable Object Sizes. ACM SIGMETRICS Performance Evalua-
tion Review, 46, 24-26. https://doi.org/10.1145/3292040.3219627

[5] Veliskakis, M., et al. (2005) Domproxy: Enabling Dynamic-Content Front-End Web
Caching. Proceedings of the 10th International Workshop on Web Content Cach-
ing and Distribution, Sophia Antipolis, 12-13 September 2005, 56-61.

[6] Kvaternik, K., Llorca, J., Kilper, D. and Pavel, L. (2016) A Methodology for the De-
sign of Self-Optimizing, Decentralized Content-Caching Strategies. IEEE/ACM
Transactions on Networking, 24, 2634-2647.
https://doi.org/10.1109/TNET.2015.2478059

[7] Nguyen, H.V., Iacono, L.L. and Federrath, H. (2019) Mind the Cache: Large-Scale
Explorative Study of Web Caching. Proceedings of the 34th ACM/SIGAPP Sympo-
sium on Applied Computing, New York, NY, April 2019, 2497-2506.
https://doi.org/10.1145/3297280.3297526

[8] Plumley, B. and Hurley, R.T. (2016) Effectiveness of Load Balancing in a Distri-
buted Web Caching System. Proceedings of the 7th International Conference on
Computer Modelling (ICCM2016), Berkeley, CA, 1-4 August 2016, 46-60.

[9] Hurley, R.T. and Li, B.Y. (2008) A Performance Investigation of Web Caching Ar-
chitectures. Proceedings of the 2008 C3S2E Conference, 12-13 May 2008, 205-213.
https://doi.org/10.1145/1370256.1370291

[10] Arlitt M., Friedrich, R. and Jin, T. (1999) Performance Evaluation of Web Proxy
Cache Replacement Policies. Lecture Notes in Computer Science, 1469, 193-206.
https://doi.org/10.1007/3-540-68061-6_16

[11] Hurley, R.T., Feng, W. and. Li, B.Y. (2003) Performance Benefits of Partitioning in a
Web-Caching Environment. Proceedings of 16th International Conference on
Computer Applications in Industry and Engineering, Las Vegas, Nevada, November
11-13, 2003, 64-69.

[12] Bonino, D., Corno, F. and Squillero, G. (2003) A Real-Time Evolutionary Algorithm
for Web Prediction. Proceedings of the IEEE/WIC International Conference on
Web Intelligence, Halifax, NS, 13-17 October 2003, 139-145.
https://doi.org/10.1109/WI.2003.1241185

[13] Young, G. (2012) On the Use of Evolutionary Programming to Dynamically Alter
Cache Sizes. Master’s Thesis, Trent University, Peterborough, ON, Canada.

[14] Plumley, B. (2015) An Investigation of Load Balancing in a Distributed Web Cach-
ing Systems. Master’s Thesis, Trent University, Peterborough, ON, Canada.

[15] Bodnarchuk, R.R. and Bunt, R.B. (1991) A Synthetic Workload Model for a Distri-
buted System File Server. ACM SIGMETRICS Performance Evaluation Review, San
Diego, CA, April 1991, 50-59. https://doi.org/10.1145/107972.107978

[16] Butkiewicz, M., Madhyastha, H.V. and Sekar, V. (2011) Understanding Website
Complexity: Measurements, Metrics, and Implications. Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference, Berlin, Ger-
many, November 2011, 313-328. https://doi.org/10.1145/2068816.2068846

[17] Hasslinger, G., Ntougias, K., Hasslinger, F. and Hohlfeld, O. (2016) Performance
Evaluation for New Webcaching Strategies Combining LRU with Score Based Ob-

https://doi.org/10.4236/jsea.2020.139013
https://doi.org/10.1145/2856127
https://doi.org/10.1145/346000.346003
https://doi.org/10.1145/3292040.3219627
https://doi.org/10.1109/TNET.2015.2478059
https://doi.org/10.1145/3297280.3297526
https://doi.org/10.1145/1370256.1370291
https://doi.org/10.1007/3-540-68061-6_16
https://doi.org/10.1109/WI.2003.1241185
https://doi.org/10.1145/107972.107978
https://doi.org/10.1145/2068816.2068846

R. Hurley, G. Young

DOI: 10.4236/jsea.2020.139013 205 Journal of Software Engineering and Applications

ject Selection. 2016 28th International Teletraffic Congress (ITC 28), Würzburg,
Germany, 12-16 September 2016, 322-330. https://doi.org/10.1109/ITC-28.2016.150

[18] Li, B.Y. (2002) An Investigation of Partitioned Caching in the World Wide Web.
Master’s Thesis, Trent University, Peterborough, ON, Canada.

[19] Rabl, T. and Jacobsen, H.-A. (2017) Query Centric Partitioning and Allocation for
Partially Replicated Database Systems. Proceedings of the 2017 ACM International
Conference on Management of Data, New York, NY, May 2017, 315-330.
https://doi.org/10.1145/3035918.3064052

https://doi.org/10.4236/jsea.2020.139013
https://doi.org/10.1109/ITC-28.2016.150
https://doi.org/10.1145/3035918.3064052

	Evaluation of an Evolutionary Algorithm to Dynamically Alter Partition Sizes in Web Caching Systems
	Abstract
	Keywords
	1. Introduction
	2. Model Description
	2.1. Web Page Request Reference Model
	2.1.1. Page Popularity
	2.1.2. Page Size

	2.2. Web Cache Model
	2.2.1. Page Replacement Model
	2.2.2. Architectural Model
	2.2.3. Storage Model

	3. Evolutionary Algorithm
	4. Results
	5. Conclusions
	Conflicts of Interest
	References

