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Abstract

We present a study of 2D Skyrmions under rotation. The purpose
of this study is to establish the result of the rotation on the stability
of 2D Skyrmions. Usually the 2D skyrmions are metastable unless
the underlying geometry introduces a characteristic length or e.g.
magnetic field is present in the problem. We have used a previous
study of the rotating plane which proves the appearance of curva-
ture as a result of the rotation. The curvature of the rotating disk
introduces length and plays here the role of strength of the angular
momentum of the field. We have shown that this additional length
scale introduced by the curvature stabilises the 2D Skyrnions under
rotation.
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1. Introduction

The 2D skyrmions have played significative role in the modelling of
high Tc¢ superconductivity based on the 2D quantum antiferromagnet,
the quantum Hall effect etc. One significant feature of the static model
as it has been formulated by Belavin and Polyakov [1] is that the
skyrmions are metastable. If the field is modelled by normalised unit
vector field n (with n? = 1) we have that:
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where A is a scalar. This means that the whole skyrmion may be
scaled down to a point. In order to stabilise the skyrmions one has to
introduce length in the problem or to take out a hole in the middle
of the plane or to apply external magnetic field [2]. To illustrate this
we will consider only the example of the nonlinear sigma model on a
cylinder which exhibits skyrmions that are stable and whose length is
correlated with the radius of the cylinder [3].
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Let the radius of the cylinder be pg. In order to incorporate the
constraint n? = 1, we will work with the two fields (6, ®) where n =
(cosf, sinf cos®, sinf sin®). Here 0 is the co-latitude and ®
is the azimuthal angle. Then, in cylindrical coordinates (p,z,p) the
Hamiltonian is as follows [3]

= 2 sin? D)2
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where J is the spin-spin coupling constant. If in this Hamiltonian we
replace ¢ — Az then H(\) # H i.e. the Hamiltonian is no more scale
invariant and the skyrmion cannot be shrunk to a point. In what
follows we would like to investigate if there are even more methods of
stabilising the skyrmions.

2. The Rotation and Its Cosequences

Now we will present a novel method for stabilising skyrmions, namely
putting the disk (we are considering a disk with finite radius (where
skyrmions are metastable too) [4] rather tnan an infinite plane) in
rotation. We consider two coordinate systems on the disk, one is fixed
(z,0,y) and one which is rotating with the disk: (2/,0,y’). The two
coordinate systems are related by:

2’ = xcoswt + ysin wt (3)

Yy = —xsinwt + ycoswt

here w represents the angular velocity of rotation. The corresponding
derivatives then transform in the following way:

0 .
= coswt— — sinwt—

oz oz’ oy’
. 0
oy sin wt% + cos wta—y/ (4)

Under this transformation the energy density of the static Hamilto-
nian in Equation (1) transforms in a simple way:
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Because of the rotation we have to consider the full dynamical hamil-

tonian density:
1 [dn)\? on\? on\?
(%) *"(’Kax) *(ay” ©

In the context of an anti-ferromagnet [5,6] e.g. ¢ is the spin velocity
and Jy is the spin interaction constant. We note that the implicit de-
pendence of n on time is through z’(t) and 3/(¢). Now let us calculate
the kinetic term in the rotating coordinate system:

2
L (dn\" 5 [onar | onay)? M)
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DOLI: 10.4236/jmp.2020.119083 1327 Journal of Modern Physics


https://doi.org/10.4236/jmp.2020.119083

R. Dandoloff

The total static Hamiltonian in the rotating coordinate system now

reads [7]:
2 2
r_ w[,On  ,On|"
H —// = {y 5 xay/} dz'dy (8]
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Now it is obvious that the Hamiltonian H’ is not invariant under
stretching ' — Az’ and 3’ — My’ so possible skyrmions will not
collapse in one point as in the case of the non rotating disk. Let us
note another interesting feature of the Hamiltonian H': this is the
appearance of the Gaussian curvature K = —3‘;’—22 for small 2 <<'1
Indeed the line element in the non rotating plane is ds? = dz2+dy? and

obviously the curvature K = 0. In the rotating disk the line element
is ds? = dr? + h(r)%d¢? where h(r) = Tot772- The curvature is

K =120 2 0 [8]. The Hamiltonian H' reads:
1 on on 1>
H = —IK| |y == —2'— | da'd 9
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The rotation introduces curvature and hence length in the problem
which stabilises possible skyrmions. In order to elucidate the role of

the Gaussian curvature we are going to rewrite the Hamiltonian H’' in
polar coordinates:

' =rcosf y =rsinf (10)
Now we will use the fact that the vector n is normalised and will
write it in the following form: n = (sin 6 cos ®, sin f sin @, cos§). We

will consider only cylindrically symmetric configuration i.e. ® = ¢
The new Hamiltonian density now reads:

a2y

where L = ,/%|K | g—g plays the role of an “angular momentum” for

2
+ %|K| {g;] 1 rdrd (11)

2
the vector field [7]. Now because (g—(’;) — sin?# the Hamiltonian

reads:

(G

The presence in the Hamiltonian of the “angular momentum” of the
field L prevents the Hamiltonian of being scale invariant as it is in the
case of the non rotating disk. The Euler-Lagrange equation related to
this Hamiltonian reads:

do 20 (T |Kr
- _ = —_ i 1
Jodr + Jordr2 ( . + 3 )sm@ (13)

1
+ g|K| sin? 9] rdrdf (12)
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Here we introduce the following change of variables: 7 = In = or
r =rge” . rgis a very small radius around the origine of the coordinate
system where the system is not well defined [9]. In the new variable
7 the Euler-Lagrange equation becomes a sine-Gordon equation with
variable coefficients.

d*6 |K|r3e*™\ .
P (1 + YA sin 6 (14)

This equation has to be solved numerically. For flat disk (non ro-
tating) where the curvature is zero |K| = 0, we recover the radial
sine-Gordon equation.

3. Conclusion

The 2D skyrmions on the plane are metastable because they can be
scaled to a point. Usually these skyrmions are stabilised by introduc-
ing length into the problem: e.g. the cylinder, or the plane with a hole
cut in it, or the introduction of an external magnetic field which in-
troduces length. We have shown here that even without manipulating
the underlying manifold (the plane) by cutting, or bending, we can
stll introduce length into the problem via rotation of the plane. The
rotation introduces curvature and hence length.
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