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Abstract 
For the last hundred years, the existence and the value of the cosmological 
constant Λ  has been a great enigma. So far, any theoretical model has failed 
to predict the value of Λ  by several orders of magnitude. We here offer a solu-
tion to the cosmological constant problem by extending the Einstein-Friedmann 
equations by one additional time dimension. Solving these equations, we find 
that the Universe is flat on a global scale and that the cosmological constant 
lies between 10−90 m−2 and 10−51 m−2 which is in range observed by experiments. 
It also proposes a mean to explain the Planck length and to mitigate the sin-
gularity at the Big Bang.  
 
Keywords 
Two Time, Dimensions, Planck Length, Cosmological Constant Problem, 
Curvature of the Universe 

 

1. Introduction 
The history of the cosmological constant has been inferred with ups and downs. 
Originally, it was introduced by Einstein [1] to explain a steady-state Universe. 
When it was, however, discovered that the size of the Universe is not steady, 
Einstein discarded his idea of the cosmological constant and called it “die größte 
Eselei meines Lebens” (the biggest blunder of my life). 

Since the early 1990s, it has been known that the energy-matter content of the 
Universe consists not only of visible baryonic matter which contributes ≈ 5% to 
the Universe’s energy, but also of Dark Matter (≈23%) and a phenomenon called 
Dark Energy (≈72%) which is related to the expansion of the Universe and 
probably associated to the cosmological constant [2]-[7] where measurements of 
the Universe’s expansion suggest a value of approximately 10−52 m−2 [8] [9] [10] 
[11]. In current theories, the cosmological constant has a fundamental meaning 
for certain phenomena in our Universe, such as on the clustering of galaxies [12] 
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or on the gravity’s rainbow effect [13] of black holes on the propagation of pho-
tons with different wave lengths where the cosmological constant is treated 
equivalent to the thermodynamic pressure [14] [15]. This latter property of the 
cosmological constant is, for example, also used to derive a relation amongst geo-
metry, thermodynamics and information theory by using complexity [16]. 

There have been a plethora of attempts to derive the value of the cosmological 
constant theoretically. However, such calculations yield predictions which are 
many orders of magnitude larger than ≈10−52 m−2 which is also known as the 
“cosmological constant problem”. Zel’dovich related all elementary particles and 
the quantum fluctuations in the Universe to the background energy which ma-
nifests as the Dark Energy in General Relativity. By this approach, he, however, 
found a value of the cosmological constant which is approximately 20 orders of 
magnitude larger than the measured value [17] [18]; other authors quantize these 
discrepancy to even 120 orders of magnitude [19] [20]. Another approach to ex-
plain Dark Energy are Extended Theories of Gravity where Dark Energy does 
not result from the cosmological constant and thus makes it obsolete, but be-
comes manifest from higher order curvature terms which are added to the stan-
dard Einstein-Hilbert action, see [21] and references therein. More recently, Mar-
colli and Perpaoli coupled gravity to matter with methods of noncommutative 
geometry and found a variable cosmological constant. They give an analytic so-
lution for the effective cosmological constant with values of 1060 m−2, again 
larger than the measured value [22]. Garattini, Kruglov and Faizal showed that 
the cosmological constant might originate from a deformation of the Whee-
ler-DeWitt equation [23] [24]. Furthermore, this approach shows that the exis-
tence of the cosmological constant might exclude the Big Bang singularity. 

In 1996 Bars showed that a certain class of string theories contains more than 
one time dimension [25]. This idea was further developed by Bars and Kounnas 
[26] [27] constructing actions for interacting p-branes within two dimensions. 
This yields a phase transition where the additional time dimension becomes part 
of the compactified universe. Additionally, they present a new Kaluza-Klein like 
dimensional reduction mechanism together with an action for a string in two 
time dimensions. Based on such a second time dimension, Araya and Bars showed 
that the Lagrangians and Hamiltonians of one-time systems which do not appear 
to be connected to each other, can be dualised by introducing a second time di-
mensions [28]. As an example, they show that the Lagrangians of massive relati-
vistic and massless relativistic or massless relativistic and massive non-relativistic 
systems are dual to each other through such hidden relations. 

Chen [29] later interpreted two extra time dimensions as hidden quantum va-
riables where the non-local properties of quantum physics or the idea of matter 
waves using the de Broglie wave length are natural consequences from the action 
of a free particle in several time dimensions. Combining two-time physics with 
noncommutative ( )2,Sp R  gauge theories leads to theories containing all known 
results of two-time physics including the reduction of physical spacetime with 
the associated “holography” and “duality” properties [30]. Based on such an 
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( )2,Sp R  gauge symmetry, the Becchi-Rouet-Stora-Tyutin (BRST) formulation 
then allows to construct a field theoretic formulation of two-time physics in-
cluding interactions. Such a scenario determines the interaction at the level of 
the action uniquely by the interacting BRST gauge symmetry and opens a way to 
study two-time physics on the quantum level through the path integral approach 
[31]. Based on Romero’s and Zamora’s work on the relation between two-time 
physics and the Snyder noncommutative Space [32], Carrisi and Mignemi ex-
tended this model to seven dimensions deriving the symplectic structure of the 
Snyder model on a de-Sitter background [33]. 

Although theoretically possible, causality puts certain constraints on the prop-
erties of time dimensions summarized by Tegmark [34]. In the case of three spa-
tial dimensions, more than one macroscopic time dimension would lead to an 
unpredictable Universe. Therefore, any additional time dimension must be small 
or at least be irrelevant for the macroscopic observables of the Universe. How-
ever, even in this case, a second time dimension puts certain constraints on ma-
croscopic Newtonian and quantum physics: Whilst a second time dimension puts 
strong constraints on the connections coming from gauge interactions in New-
tonian physics, it leads to a generalized uncertainty relation involving level spac-
ings and Planck’s constant on the quantum level [35]. 

In previous work [36], we coupled the Lagrangian of a free, relativistic particle 
to a second time dimension, small enough to not violate the causality of the ob-
servable Universe. Starting from this Lagrangian, we showed that a small length 
scale, the Planck length, emerged from this theory and that the speed of light was 
not constant in the Early Universe, as predicted by Albrecht and Magueijo [37]. 

We now proceed one step further and extend the Robertson-Walker-Lemaître- 
Friedmann metric by one additional time dimension.  

2. The Friedmann Equations in Five-Dimensional  
Space-Time 

Our starting point is the extension of the four-vector  
tt

rx x rµ µ
τ

θ θϕ ϕ

       = → =           

                         (1) 

to a five-vector with a second time dimension τ  expanding four-dimensional 
space-time with time dimension t to five-dimensional space-time. Similarly, we 
extend the Robertson-Walker-Lemaître-Friedmann metric [38] [39] from  

( )
( )

( )
( ) ( )

2

2

2

2 2

2 22

0 0 0

0 0 0
1

0 0 0
0 0 0 sin

c t
a t

rg
K

a t r
a t r

µν

θ

 
 

− 
 
 = −
 
 − ⋅
 
 − ⋅ ⋅ 

       (2) 
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to 

( )
( )

( )

( )
( ) ( )

2

2

2

2

2 2

2 22

0 0 0 0

0 0 0 0

,
0 0 0 0

1

0 0 0 , 0

0 0 0 0 , sin

c t

f

a t
g r

K
a t r

a t r

µν

τ

τ

τ

τ θ

 
 
 
 
 −
 → =
 −
 
 

− ⋅ 
 − ⋅ ⋅ 

 (3) 

where a is the scaling parameter of the Universe, K  is the inverse square of 
the curvature and ƒ the characteristic speed for the second time dimension 
such as c for the first time dimension [36]. Here, K is chosen such that the Un-
iverse is hyperbolic for ( ) 0sign K < , parabolic for ( ) 0sign K >  and flat and 
steady for 1 0K ≡ . Note that, instead of using the conventional definition 

( ), , , ,x ct f rµ τ θ ϕ= , we have included the speeds c and ƒ in the five-dimensional 
metric. For full generality, we start with time depending velocities c and ƒ as 
proposed for the early Universe [36] [37]. 

From metric (3), we derive the Christoffel symbols and subsequently the Ricci 
tensor Rµν  and the Ricci scalar R (which are summarized in the supplementary 
Mathematica script).  

In order to formulate Einstein’s field equations, we also extend the ener-
gy-momentum tensor  

( ) ( )
( )

( )
( )

2

11

22

33

0 0 0
0 0 0
0 0 0
0 0 0

c t t
p t gT

p t g
p t g

µν

ρ 
 

− =  − 
 − 

          (4) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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( )

( )

2

2

33

44

55

, , 0 0 0

, , 0 0 0
0 0 , 0 0
0 0 0 , 0
0 0 0 0 ,

c t t c t f t

c t f t f t
p t g

p t g
p t g

ρ τ τ ρ τ

τ ρ τ τ ρ τ
τ

τ
τ

 
 
 
 → − 
 −
  − 

 (5) 

with the density ρ  and the pressure p for an isotropic, perfect fluid. 
Finally, inserting the metric (3), the Ricci tensor and Ricci scalar as well as the 

energy-momentum tensor (5) into the Einstein equation  
41 2 8 NR g R g G c Tµν µν µν µνπ− + Λ =  leads to a set of four equations  

( ) ( )( )
( )

3 2 3 2
3 2

3 3 2

1 2 2

2 2 8 N

c c K a f Kaf a Kf a a
Kf a

Kaf ca Kcf a aa G p

 ′ ′ ′ ′′+ Λ − + +

− + + = π−   

         (6) 

2 23 8 Nc a G f aρ− π′ =                      (7) 

( ) ( )( )2 2 3 2 3 2
2 3

1 3 3 3 3 8 Nc K a f Kaf a Kf a aa Kf a G
Ka f

ρ ′ ′ ′ ′′+ Λ − + =  π+ +   (8) 
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( )( ) ( )3 2 2 2 2 2 2 4
2 3 3 3 3 8 N

c c K a f Ka Kaf ca Kcf a a G f
Ka

ρ ′+ Λ + − + + =  π     (9) 

where the dot (  ) denotes the time derivative with respect to t and (') with re-
spect to τ . 

In comparison to the 4D Friedmann equations, we now have two equations 
more allowing us to estimate the cosmological constant Λ  and the curvature of 
Universe. This is a similar approach to the original idea by Kaluza and Klein [40] 
[41] where they used a five-dimensional space time with four space dimensions 
to decouple 4D electromagnetism from 5D relativity. 

3. Discussion and Limits of the Five-Dimensional Friedmann  
Equations 

In this section, we are going to reduce Equations (6)-(9) and derive analytic ex-
pressions for the cosmological constant Λ  and the curvature 1 K . 

Combining Equations (6)-(8) leads to the conservation of energy  

23 3 2 3p c fa a a a a a a
c fc

ρ ρ ρ ρ ρ ρ
′  ′ ′− + + + = + + 

 



            (10) 

which relates the scale factor a, the pressure p and the density ρ  to each other. 
We divide the pressure into two terms coming from the matter and radia-

tion in the Universe. We assume that the motion of particles in the Universe 
on a global scale is isotropic and collisionless, therefore the matter pressure is  

negligible, hence 0matp =  Solving (10) leads to 
( )

( )3 2

1 l
mat mat

f t t
C

fa c
τ

ρ
τ

− + +
=   

with a lower time limit lt , and an integration constant matC . Since ƒ depends on  

τ only, ƒ needs to be constant, hence 3 2

1
mat matC

a c
ρ = . The radiation pressure  

is connected to the density through 2 3radp cρ=  [42]. Using that ƒ is constant, 
the solution of the resultant differential Equation (10) gives  

( )
( )

,
d

,

4 2

1 e

t

tl

a t t t
t

a t t t
rad radC

a c

τ
τ

ρ

′ − + +
− + +∫

= . The total density is thus given through 

( )
( )

,
d

,

3 2 4 2

1 1 e

t

tl

a t t t
t

a t t t
mat radC C

a c a c

τ
τ

ρ

′ − + +
− + +∫

= +                (11) 

where the lower limit lt  is a time close to the origin of the Universe, hence we 
set 43

Planck 0 s 01lt t −= ≈≈ . We will show later (20) that we can assume aτ  to be  

constant and therefore 
( )
( )

,
exp d 1

,
l

t

t

a t t t
t

a t t t
τ
τ

 ′ − + +
=  − + + 

∫  for all t. Note that the  

conservation of energy (10) is equivalent to the acceleration Equation (6), there-
fore we are left with the three Equations (7)-(9) relating the two velocities ƒ, c, 
the curvature 1 K , the cosmological constant Λ  and the scaling parameter 
a to each other. 
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Generally the scaling parameter depends on both time dimensions t and τ . 
However, we know that we only observe one time dimension together with three 
spatial dimensions. Because of this and as a standard method to solve differential 
equations with two independent variables, we here choose a separation ansatz 
for ( ),a t τ  which is usually either a product ansatz or a sum ansatz. As we will 
discuss below the system of equations considered here can be solved using a sum 
ansatz. Since the second time dimension cannot be observed at the present stage 
of the Universe’s evolution, ( ),a t τ  needs to be of the form ( ) ( ) ( )~ ta t t aτα τ+  
such that ( )lim 0

t
tα

→∞
= . Therefore, the second time dimension can only operate 

on a small spatial scale which is not accessible to experiments directly. Therefore, 
we make the ansatz  

( ) ( ) ( ), e , 0t
ta t a t aβ

ττ τ β= + <                 (12) 

with a contribution ( )ta t  for the first time dimension only and a contribution 
( )e t aβ

τ τ  for the second time dimension such that ( ) ( ), ta t a tτ →  for large t. 
This implies that the second time dimension expands the Universe by a small 
value aτ  not measurable with current methods. Note that in theory, there is a 
whole class of functions ( )tα  satisfying ( )lim 0

t
tα

→∞
= ; however, since Equation 

(12) needs to be inserted into a system of differential equations, we require a func-
tion which is sufficiently smooth and differentiable, which is why we choose the 
exponential function. On the other hand, we assume that ( )ta t  tends to 0 for 

0t →  which is the usual assumption for the Big Bang. Yet, unlike a universe 
with four space-time dimensions, the overall scaling parameter ( ),a t τ  tends to 

( ) 0aτ τ ≠  for 0t → ; hence we avoid a singularity for 0t →  [43] [44] [45] 
[46]. 

For the speed of light, we make the ansatz  

( ) 0
0

cc t c
t t

= +
−


                      (13) 

since the speed of light is time-dependent with 1t−  for small t and becomes 
8 1

0 3 10 m sc −≈ × ⋅  for 0t t  and reference length and time c  and 0t  [36] 
[37]. 

Inserting (12) and (13) into (7)-(9) leads to the equations 

( )
( )

( )

( )
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2
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2
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0
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3 e
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a t t t
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τ
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τ

β
τ

τ
τ
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− + +∫

 
′− + − 




= + 
  + +  − 





+

π


  + +  −  







       (14) 
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t
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rad

t
t

C
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τ

′ − + +
− + +∫













+ 
  + +  −  



   (16) 

We now use this system of equations to derive analytic expressions for the 
cosmological constant and the Universe’s curvature. But before doing so, we 
discuss this system for very large and very small t. 

Since 3 4~ t ta aρ − −+  Equation (14) for large t implies that the scaling factor 
and hence the Universe are growing. For t →∞  and identifying 0f c=  (15) 
and (16) simply become the Friedmann equation for four space-time dimensions 
[44] [45]. 

For small t, 0t → , and using 0f c= , we get  

2
2

0 0 2 2
0 2 3

0 0
0 0

1 13 8 N mat rad
cc a G c C C
t c ca c a c

t t

τ

τ τ

β

 
 

   ′− − = +   
      − −        

π


 

   (17) 
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( ) ( )( )
2 2

220 0
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+ − = + + = +  
  

 
= + 

 
π



 





   (19) 

In the following, we estimate the values of aτ , of K and of Λ . Since we do 
not know the exact values for the density ρ  as well as for the constants 0t , c  
and β , we here limit ourselves to give ranges for K and Λ . Furthermore, we 
use 11 3 1 26.674 10 m kg sNG − − −≈ × ⋅ ⋅  and 8 1

0 3 10 m sc −≈ × ⋅  for the gravitational 
constant and the speed of light. In standard cosmology [47], the ratios matΩ  
and radΩ  of matter and radiation in our Universe are connected to the density 
(11) and hence to a and 0c  through  

2
3 20

0
3
8mat mat

H
C a c

Gπ
≈ Ω  and 

2
4 20

0
3
8rad rad

H
C a c

Gπ
≈ Ω  

where we use ( ) 11 18 1
0 Mpc70 km s 2.27 10 sH −− − −≈ ⋅ ⋅ ≈ ×  [48]. Note that for 

small t a tends to aτ  and that obsa R=   is the scaling parameter which re-
lates the actual size   of the Universe at times ( ),t τ  to the size  

26GLy46.6 4.41 10 mobsR ≈ ≈ ×  of the observable Universe. 
We finally need to give estimates for c , 0t  and β  before we can continue 

our discussion. Since we know that the contribution of aτ  to the whole scaling 
factor ( ),a t τ  (12) needs to vanish not only for t →∞ , but also for the ob-
servable Universe, we require ( )exp 1obstβ   for 1713.8 Ga 4.35 10 sobst ≈ ≈ × , 
and hence ( ) 1log 1.0 0 sobstβ −≈ ; we here choose ( ) ( )5 15 110 - 10 sβ − − −− −  
such that ( )exp 0obstβ ≈ . Although the speed of light might not have been con-
stant in the Early Universe [37], it needs to be constant for the Universe today. 
We therefore choose 43

0 Planck 10 st t −= ≈  to be on the Planck scale as well as 
( ) 1

0 1 m sobsc t t −− ⋅
  or equivalently ( ) 1 17

0 m s 4.35 10 mobsc t t −− ⋅ ≈ ×
 . 

For these estimates, Figure 1 shows ( ) ( )a aτ ττ τ′  as a function of ( )aτ τ  
(following from Equation (17) for various matΩ  and radΩ . It illustrates that the 
growth of aτ  is negligible relative to its size; therefore we assume aτ  to be 
constant for all τ , hence 0aτ′ ≡ . Thus, retrospectively, we see indeed that the 
integral in (11) disappears. Since we have no direct measurements of the second 
time dimension τ , aτ  needs to be small; from previous work [36], we know  
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Figure 1. ( ) ( )a aτ ττ τ′  as a function of ( )aτ τ  for fixed 10 110 sβ − −= − , 1710 mc =  

and various matΩ  and radΩ . The dotted line indicates the scaling parameter for the 

Planck length 35
Planck 10 m−≈ . 

 
that a second time dimension is responsible for the Planck length. Therefore, for 
the following, we set  

( ) 624.59 10 const.aτ τ −≈ × =                    (20) 

which is the approximate scale factor for the Planck length ≈10−35 m. 

4. The Universe’s Curvature and the Value of the  
Cosmological Constant 

Assuming aτ  to be constant, hence 0a aτ τ′ ′′= ≈ , we use the remaining Equa-
tions (18) and (19) to determine Λ  and K for which we still need to approx-
imate ( )0ta t =  and ( )0ta t = . We are here stuck with a dilemma since these 
derivatives couple the two time dimensions to each other, and there is no way 
to determine ( )0ta t =  and ( )0ta t =  in a self-consistent way. For small 

Planck 0t t≈ ≈ , we are thus limited to use the four-dimensional Friedmann  

equation [44] [45] yielding 
2 2

20 0
2 2 2
0 0

8 1 1
3 3

N
mat rad t

t t

G c c
a C C a

Ka c a c
  Λ

= + − − 


π


  

and 
2
0

2 2 3 2
0 0

4 1 2
3 3

N
t mat rad t

t t

G c
a C C a

a c a c
π   Λ− −

= + − 
 

 . 

Finally using these expressions to calculate ( )0ta t =  and ( )0ta t =  and in-
serting them into (18) and (19) yield  
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2
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These two equations give two sets of solutions ( )1 1, KΛ  and ( )2 2, KΛ  which 
are very lengthy and which we have therefore added to the supplementary Ma-
thematica script. 

Figure 2 shows the solution ( )1 1, KΛ  for various Ω , β  and c ; note that 
the solutions ( )1 1, KΛ  and ( )2 2, KΛ  give similar values. Figure 2(a) and Fig-
ure 2(b) shows that for a given set of β  and c , Λ  and K  are almost 
constant and only vary slightly for different radΩ  and matΩ . In contrast, the 
dependence on β  and c  is much more significant with bridging several orders 
of magnitude. Hence, K  varies from approx. 10174 m2 to 10216 m2 for all consi-
dered cases which implies that the curvature 1 K  is approximately 0. Addi-
tionally, Λ  varies between 10−90 m−2 and 10−51 m−2 which is well in agreement 
with measurements determining Λ  to approx. 10−52 m−2 [11]. In addition, we 
have performed parameter studies how Λ  and K depend on ( )0, ta a tτ  and 

0t  for fixed 10 110 sβ − −= − , 1010 mc = , 0.5matΩ =  and 0.5radΩ = . For all 
considered cases, we observe that there is not a significant deviation from the val-
ues of Λ  and K  as shown in Figure 2, therefore not altering our conclusions. 

5. Conclusions and Outlook 

Extending the Friedmann equations by one time dimension allows us to solve 
several cosmological mysteries simultaneously:  

1) The second time dimension leads to a small expansion of the Universe 
which we interpret as Planck length. 

2) This small extension exists for all times t, including the limit 0t → . 
Therefore, the size of the Universe does not shrink to zero for small t avoiding a 
singularity of infinite mass and energy density at the Big Bang. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a), (b) 1Λ  and 1K  as a function of matΩ  for fixed 10 110 sβ − −= − , 
1710 mc =  and various radΩ . (c), (d) 1Λ  and 1K  as a function of c  for fixed 

0.5mat radΩ = Ω =  and various β . 
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3) The Universe’s curvature is almost zero; hence the Universe is flat.  
4) The cosmological constant varies between 10−90 m−2 and 10−52 m−2 which 

agrees with measurements [11].  
The overall scenario is thus that the second time dimension expands the Un-

iverse on a very small length scale becoming manifest as the Planck length. Sub-
sequently, from this small length scale, the Universe’s curvature and the size of 
the cosmological constant follow. Note that the value of the cosmological con-
stant is sometimes related to the zero-point-energy or vacuum-energy in quan-
tum physics. However, in contrast to a quantum theory approach, we have pre-
sented a mechanism, which allows to estimate the value of the cosmological 
constant self-consistently from the Friedmann equations in a (2, 3) space time 
geometry, and whilst quantum theories cannot predict the value of the cosmo-
logical constant correctly [20], we relate it to the small Planck length and are in-
deed capable of confining its value within a range which is consistent with mea-
surements and thus offers a solution to the cosmological constant problem. Since 
the cosmological constant, equivalent to the thermodynamic pressure, might be 
related to the effect of gravity’s rainbow in the vicinity of black holes [49] [50] 
[51] [52] [53], this poses the question whether a second time dimension is really 
the fundamental property of space-time for the sensitivity of photons on gravity 
depending on their wavelengths. However, this is out of the scope of this paper 
and will be subject to future research. 

Furthermore, it is interesting to note that we have not presumed any periodic-
ity or compactness of the second time dimension as normally assumed for addi-
tional space dimensions. The effect of the second time dimension, however, is 
limited to a spatial scale of the size of the Planck length only. Therefore, the 
second time dimension does not act on the macroscopic Universe and is thus 
not visible to current experiments so far. However, this does not exclude that the 
proposed scenario can be tested in the future with advanced technology. 

The presented approach gives novel ideas on how to approach cosmological 
singularities in the future. The connection of vanishing singularities and addi-
tional time dimensions gives rise to investigate the Big Bang more thoroughly in 
the context of extended space-time. Beyond that, we suggest to extend other me-
trics with additional time dimensions, such as the Schwarzschild metric or the 
Eddington-Finkelstein metric to study the effect of additional time dimensions 
on black holes. 
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