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Abstract 
The work derives the quantum evolution in a fluctuating vacuum by intro-
ducing the related (dark) mass density noise into the Madelung quantum 
hydrodynamic model. The paper shows that the classical dynamics can 
spontaneously emerge on the cosmological scale allowing the realization of 
the classical system-environment super system. The work shows that the 
dark matter-induced noise is not spatially white and owns a well defined 
correlation function with the intrinsic vacuum physical length given by the 
De Broglie one. By departing from the quantum mechanics (the determi-
nistic limit of the theory) in the case of microscopic systems whose dimen-
sion is much smaller than the De Broglie length, the model leads to the 
Langevin-Schrodinger equation whose friction coefficient is not constant. 
The derivation puts in evidence the range of application of the Lange-
vin-Schrodinger equation and the approximations inherent to its founda-
tion. Increasing the physical length of the system description, the classical 
physics can be achieved when the scale of the problem is much bigger both 
than the De Broglie length and the quantum potential range of interaction. 
The long-distance characteristics as well as the range of interaction of the 
non-local quantum potential are derived and analyzed in order to have a 
coarse-grained large-scale description. The process of measurement, in the 
large-scale classical limit, satisfies the minimum uncertainty conditions if inte-
ractions and information do not travel faster than the light speed, reconciling 
the quantum entanglement with the relativistic macroscopic locality. 
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1. Introduction 

The conflict between the quantum mechanics and the classical ones attracts the 
interest of many researchers of the noways physics [1]-[16].  

This lack of knowledge has lead to many logical paradoxes that contrast with 
our sense of reality [1] [2] [3]. A quantitative tentative to investigate the problem 
was given by Bell [3] in response to the so-called EPR paradox [2], a critical 
analysis of the quantum non-locality respect to the notion of the macroscopic 
classical freedom and local relativistic causality.  

The Copenhagen interpretation of quantum mechanics [3] [4] [5] treats the 
wave function as representing “the probability” of finding a particle at some 
location’ [12]. However, such a treatment leads to the non-intuitive conclusion 
that the physical state is just a probability wave until observed. The absence of an 
analytical link with the pre-measure physical state fights against the common 
sense of reality and the existence of a real world independent by the observer 
and the measure process [5].  

If the Copenhagen probabilistic connection with the pre-measure world is 
strictly assumed, the conclusion that the real state is not physically defined be-
fore the measure is unavoidable. 

Actually, the completeness and self-consistency of this logical result cannot be 
achieved since the process of the observation is out of the Hamiltonian descrip-
tion of quantum mechanics. The need of having a classical environment in order 
both to perform the measure and to define the quantum eigenstates, indeed, 
leads to a great theoretical loophole: Is the classical world necessary to the 
quantum mechanics or the quantum evolution is the fundamental law?  

Besides, the unavailability of the theoretical connection between the quantum 
and the classical mechanics, that would explain how the laws of physics pass 
from the deterministic quantum behavior to the classical one (even irreversible), 
leaves open many questions about how concepts of the classical experience such 
as, measure, principle of causality, locality, physical state of the external reality, 
wave and particle behaviors, can be compatible or related to the quantum me-
chanics. 

The connection between the quantum state and the statistical (classical) 
process of measure is defined by a postulate that, is a matter of fact, makes the 
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quantum mechanics a semi-empirical theory without a self-consistent theoretical 
framework.  

On the other hand, if the wave function is something physically real, then, 
there must exist a defined mechanism (e.g., the so-called wave function collapse, 
out of the canonical law of quantum mechanics) expressing the interaction with 
the observer embedded into a classical universe.  

In this case, there also exists the problem about how the Schrödinger equation 
can be generalized [13] [14] or derived in the frame of such a more general 
quantum theory [15].  

In order to fill this theoretical lack, there exist various interpretations of 
quantum mechanics like the many-worlds interpretation [17], the Bohmian 
mechanics [18] [19], the modal interpretation [20], the relational interpretation 
[21], the consistent histories [22], the transactional interpretation [23] [24], the 
QBism [25], the Madelung quantum hydrodynamics [26] [27] [28] and the de-
coherence approach [29].  

The Madelung approach (that is a particular case of the Bohmian mechanics 
[30]) owns the important peculiarities to be both mathematically equivalent to 

the Schrödinger one [31] and to treat the wave function evolution e
Si

ψ ψ=   

in the classical-like representation as the motion of the mass density 2ψ  

owing the impulse i
i

Sp
q
∂

=
∂

. In this way it introduces the concept of trajectories 

of motion and naturally hosts the notion of physical reality before the measure.  
The Madelung description has the advantage of disembogues into the classical 

mechanics as soon as   and the so-called quantum pseudo-potential are set to 
zero.  

Nevertheless, if we wipe out (by hand) the quantum potential from the quan-
tum hydrodynamic equations in order to obtain the classical mechanics, we also 
cancel the stationary quantum eigenstates where the total force exerted by the 
Hamiltonian potential and the quantum one (on the mass density distribution 

2ψ ) is null. Doing that, we change the nature of the equation of motion. 
Thence, a more correct and analytic mechanism is needed to pass from the 
quantum non-local description to the classical one in the frame of the hydrody-
namic approach.  

Other characteristics of the quantum to classical transition are captured by the 
decoherence approach that investigates the possibility of obtaining the classical 
state through the loss of quantum coherence generated by the presence of the 
environment. The decoherence is shown to be produced into the system by 
treating it as a sub-part of the overall system, comprehending the environment 
whose interaction is semi-empirically defined by non unitary interaction [29]. 
However, this approach is not able to explain how, by having a quantum overall 
system, the observer can perform the irreversible processes of the statistical 
measure (and to be quantum de-coupled with the measured system). To over-
come this problem, the relational quantum mechanics introduces the su-
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per-observer that is not entangled with the overall system [21]. Actually, this “ad 
hoc” postulate, is unsatisfactory and brings logical contradictions.  

From the experimental and numerical simulation point of view, there exist the 
important evidence that the decoherence and the localization of quantum states 
come from the interaction with the stochastic fluctuations of the environment 
[32] [33] [34] [35] and/or dark matter.  

In this work the authors generalize the Madelung quantum hydrodynamic ap-
proach to its stochastic version, where the noise, due to the quantum-mechanical 
properties of a fluctuating vacuum (in term of curvature associated to dark mat-
ter), owns a non-white spectrum showing the emergence of the intrinsic De 
Broglie physical length into the vacuum.  

The work also shows that the stochastic Langevin-Schrodinger equation is de-
rived from the theory for systems whose physical length is much smaller than 
the De Broglie length. 

In the final section the authors analyze how the classical mechanics can be 
achieved, under appropriate conditions, on a large scale description. The uncer-
tainty principle in the measure process is investigated in the frame of the sto-
chastic quantum hydrodynamic model (SQHM). The paper analyzes how the 
measure in a classical large-scale system can satisfy both the uncertainty prin-
ciple and the finite velocity of transmission of light and information.  

2. The Quantum Hydrodynamic Equation in Presence of  
Vacuum Dark MASS Density Fluctuations 

In the present work we go beyond the flat static solution  

 4

81 0
2

R g TG
c

Rµν µν νµ
π

− ==  as for classical matter vacuum, and assume that 

there is still energy and momentum within the space-time due to the possible 

presence of gravitational waves that can give a contribution 
 4 08 TG

c νµ′ ≠
π . 

Solution to such equations has been introduced by De Sitter that illustrates that 
matter may not be the only source of gravity and thus wrinkles in the space-time 
may not be due to matter only. 

By considering the vacuum as a fluctuating background, we define the 
stochastic generalization of the quantum-hydrodynamic equations [26] [27] [28] 

[31] that for the wave function e
iS

ψ ψ
−

=   are given by the conservation 

equation for the mass density 2n ψ=   

( ) 0i
i

n nq
t q
∂ ∂

+ =
∂ ∂

 .                     (2.1) 

where the velocity 
iq  is defined, through the momentum 

( ),q t
i

i

S
p

q

∂
=

∂
, by the 

motion equations 

( ),1 q ti
i

i

Sp
q

m m q

∂
= =

∂
 ,                     (2.2) 
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( )qu
i

i

H V
p

q

∂ +
= −

∂
 ,                     (2.3) 

where ( ), *ln
2q tS ψ

ψ
= −

 , where H is the Hamiltonian of the system and where 

2 2 1 2

1 2

1
2qu

i i

nV
m q qn

∂
= −

∂ ∂


,                    (2.4) 

The ripples of the vacuum curvature are assumed to manifest themselves by 
an additional fluctuating mass density distribution (MDD) vacnδ  

tot vacn n nδ≡ +                        (2.5) 

where 0lim
vacn n nδ → = , that, through the quantum potential 

( )

2 1 22
1 2

2ntot

tot
qu tot

i i

n
V n

m q q
− ∂

= −
∂ ∂



,                  (2.6) 

leads to the fluctuating force 

( )ntot
qu

i

V

q

∂
−

∂
.                        (2.7) 

Being the mass density vacnδ  defined positive, the vacuum fluctuations (as a 
mean vacnδ ) give rise to an additional mass that, owning just the gravitational 
interaction, is dark matter.  

For the purpose of this work, we assume that the vacuum dark matter (DM) 
does not interact with the physical system (the gravity interaction is disregarded 
for its weak constant and it is not included in H). As far as concerning the dark 
matter evolution, it is defined by additional (gravitational) motion equation 
descending by the cosmological dynamics. Nevertheless, we disregard the DM 
cosmological evolution and assume, for our laboratory macroscopic systems, 
that the dark mass vacnδ  is locally uniformly distributed with a constant 
amplitude of fluctuations ( ),q tnδ  such as 

( ),vac vac q tn n nδ δ δ≅ +                    (2.8) 

2.1. Spectrum and Correlation Function of the  
Dark-Matter-Induced Mass Density Fluctuations 

In deriving the characteristics of the quantum potential fluctuations (and hence 
of its force), we use the condition that the vacuum dark matter, described by the 
wave function vacψ , does not interact with the physical system (this due to the 
weak gravity constant). In this case the wave function totψ  of the overall system 
reads 

tot vacψ ψψ≅                        (2.1.1) 

leading to the overall quantum potential  

( )

22
11

222
1 11 1

2

2

ntot

vac
qu vac

i i

vac vac
vac vac

i i i i i i

V
m q q

m q q q q q q

ψ ψ
ψ ψ

ψ ψψ ψ
ψ ψ ψ ψ

−−

− −− −

∂
= −

∂ ∂

 ∂ ∂∂ ∂
= − + +  ∂ ∂ ∂ ∂ ∂ ∂ 





(2.1.2) 
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Moreover, given the energy fluctuations  

( ) ( ), , dqu tot q t qu q t
V

E n V qδ δ= ∫ ,                  (2.1.3) 

due to the vacuum dark mass density noise of wave-length λ  

( ) ( )
2 2 2cosvac vacn qλ λδ ψ

λ
∝

π
=                 (2.1.4) 

(associated to the dark matter wave-function fluctuation  

2cosvac qψ
λ

∝ ±
π                       (2.1.5) 

where  

( )

22
1 11

,

22
1

22
1

1

2

2 2 2cos sin
2

2 2tan
2

vac vac
vac vacqu q t

i i i i

i

i

V
m q q q q

q q
m q

q
m q

ψ ψ ψ
δ ψ ψ ψ

ψ
ψ

λ λ λ

ψ
ψ

λ λ

− −−

−

−

−

 ∂ ∂ ∂
= − +  ∂ ∂ ∂ ∂ 

 ∂      = + ± ±      ∂      
 ∂ 

π π π

π π
= +   ∂  







 (2.1.6) 

at small wave length ( 1 3Vλ  ), reads  

( ) ( )

( ) ( )

22
1

,

22
1

, ,

22

1 2 2tan d
2

1 2 2d tan d
2

2
2

totqu q t
tot iV

tot totq t q t
tot iV V

E n q q
n V m q

n q n q q
n V m q

m

λ

ψ
δ ψ

λ λ

ψ
ψ

λ λ

λ

−

−

 ∂ = +   ∂  
  ∂  = +    ∂  

π

 

 ≅  

π



π

π



π

∫

∫ ∫







(2.1.7) 

where it has been used the normalization condition ( ), dtot totq t
V

n q n V=∫  and 
where, on large volume, it has been used the approximation  

( )

2
1

0 ,
2 2lim tan dtot totq t

i

n q q n V
qλ

ψ
ψ

λ λ

∞
−

→
−∞

 π π∂   
   ∂   

∫  .      (2.1.8) 

The result (2.1.7) shows that the energy, due to the mass density fluctuations, 
increases as the inverse squared of λ . Being so, the associated quantum poten-
tial fluctuations, on very short distance (i.e., 0λ → ), can lead to unlimited 
large energy fluctuations even in the case of vanishing noise amplitude (i.e., 

0T → ).  
In order to warrant the convergence of Equations (2.2-3, 2.6) to the determi-

nistic limit (2.2-4) of quantum mechanics for 0T → , this behavior imposes the 
need of a supplemental condition on the spatial correlation function of the noise 
(we name it ( )G λ ). 

The derivation of conditions on the noise correlation function shape ( )G λ , 
brings a quite heavy stochastic calculation [36]. A more simple and straight de-
rivation of ( )G λ  can be obtained by considering the spectrum of the fluctua-

https://doi.org/10.4236/oalib.1106659


S. Chiarelli, P. Chiarelli 
 

 

DOI: 10.4236/oalib.1106659 7 Open Access Library Journal 
 

tions.  

Since each component of spatial frequency 2k
λ

=
π  brings the quantum po-

tential energy contribution (2.1.6), the probability of happening  

exp Ep
kT

 = −  
,                     (2.1.9) 

by (2.1.7) reads 

( )

22

2
2

2exp exp expqu cE mp
kT kTλ

δ λλ
λ

  
         ∝ − = − = −              
 

π
π



   (2.1.10) 

where 

( )1 22
2

c
mkT

λ =
                    (2.1.11) 

is the De Broglie length.  
From (2.1.10) it comes out that the spatial frequency spectrum ( )S k   

( )
2 22 exp exp

2
c ck

S k p
λ λ

λ λ

       ∝ = − = −                   

ππ       (2.1.12) 

is not white and the components with wave-length λ  smaller than cλ  go 
quickly to zero. 

Thence, given the mass density noise correlation function, that for the suffi-
ciently general case, to be of practical interest, can be assumed Gaussian with 
null correlation time, isotropic into the space and independent among different 
co-ordinates such as 

( ) ( ) ( ) ( ) ( )
( ) ( ), ,

, ,q t qq t q
T

n n n n G
α αβ β αβλ τ

δ δ δ δ λ δ τ δ
+ +

= ,     (2.1.13)
 

the spatial shape ( )G λ  reads 

( ) [ ] ( ) [ ]
2

21 2

exp d exp exp d
2

exp

c
k

c c

G ik S k ik k kλ

λ
λ λ

λ
λ λ

+∞ +∞

−∞ −∞

  ∝ ∝ −  
   

  
 ∝ − 


π

  

∫ ∫
     (2.1.14) 

The expression (2.1.14) shows that uncorrelated MDD fluctuations on shorter 
and shorter distance are progressively suppressed by the quantum potential al-
lowing the deterministic quantum mechanics to realize itself for systems whose 
physical length is much smaller than the De Broglie one.  

2.2. The STOCHASTIC Potential Approach 

The characteristics of the stochastic force noise induced by the fluctuations of the 
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quantum potential (due to the vacuum mass density fluctuations) can be derived 
by assuming the quantum potential as composed by a regular part ( )qu nV  (to 
be defined) plus the zero mean fluctuating part stV  such as 

( )

2 1 22
1 2

2ntot

tot
qu tot qu st

n
V n V V

m q qβ β

− ∂
= − = +

∂ ∂
 .            (2.2.1)

 

Moreover, given the force noise  

( ), ,
st

q t T
i

V
m

q
ϖ

∂
= −

∂
,                    (2.2.2)

 

it is possible to show (see appendix A) that it owns the correlation function  

( ) ( ) ( ) ( ) ( )
( ) ( ), ,

, ,q t qq t q
T

F
α αβ β αβλ τ

ϖ ϖ ϖ ϖ λ δ τ δ
+ +

=       (2.2.3)
 

with the condition  

( ) ( ) ( )0
lim , 0q qT Tα β

ϖ ϖ
→

=                   (2.2.4)
 

where the spatial shape ( )F λ  is connected to ( )G λ  of the dark matter and 
where T is the fluctuation amplitude parameter (of DM). Thence, the motion 
equation acquires the form 

i
pq
m

= ,                      (2.2.5)
 

( ) ( )( )
( ), ,

totq qu n

i q t T
i

V V
p m

q
ϖ

∂ +
= − +

∂
 ,             (2.2.6) 

2.3. Correlation Function of the Quantum Force Fluctuations for  
De Broglie-Length Small-Scale Systems 

As shown in Appendix A, the correlation function of the quantum potential 

fluctuations, at the smallest order in 
c

λ
λ

, reads 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

4 2

,4 2 ,

4 2

4 2

24 2

4 2

,

,
4

 ,
4

 ,
exp

4

q t q t

q t q t
c

q q
c

q q
T

c cc

a n n
m

a n n G
m

n n
a

m

α β

α β

α α

α β

λ τ

λ τ

αβ

ϖ ϖ

δ δ
λ

δ δ λ δ τ
λ

δ δ
λ δ τ δ

λ λλ

+ +

+ +
≅

=

  
 = − 
   







      (2.3.1) 

where 
4
a
π

 is the boson-boson s-wave scattering length for Lennard-Jones inte-

racting particles (see (3.6) in section 3).  
By using the variance (2.3.1), for systems, whose physical length L  is much 

smaller than the De Broglie length (i.e., 0
cλ
→

L ), it follows that 

https://doi.org/10.4236/oalib.1106659


S. Chiarelli, P. Chiarelli 
 

 

DOI: 10.4236/oalib.1106659 9 Open Access Library Journal 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,, ,

24 2

4 2

4 2

4 2

, lim ,

 ,
lim exp

4

,

4

c

c

q t q tq t q t
T

q q
T

c cc

q q

cc

x x

n n
a

m

n na D
m

α αβ β

α β

α β

λλ τ λ τ

λ αβ

αβ αβ

ϖ ϖ

δ δ
λ δ τ δ

λ λλ

δ δ
δ τ δ δ τ δ

λλ

→∞+ + + +

→∞

=

  
 = − 
   

≅ =

 







    (2.3.2)
 

where  

( ) ( )4 2

4 2

,

4
q q

cc

n naD
m

α α
δ δ

λλ
=


                  (2.3.3.) 

where ( ) ( )
5 5,q qn n l t m s

α α
δ δ − −  = =   

Besides, about the regular part quV , for microscopic systems, without loss of 
generality, we can pose 

( )

2 1 22 2 2 1 2
1 2

1 2

1
2 2 n

tot
qu tot st qu st

n nV n V V V
m q q m q qnβ β β β

− ∂ ∂
= − = − + = +

∂ ∂ ∂ ∂
    (2.3.4) 

where the spatial probability mass density (PMD) ( ),q tn  reads  

( ) ( ) 3
, , , dq tn q p t p= ∫N                     (2.3.5) 

where 

( ) ( ) ( )
3 3

, ,0, , , , , | ,0 d dz zq q t P q q z z t z z= ∫ 

   N N             (2.3.6) 

(where ( ), , , | ,0P q q z z t   is the PTF of the phase space Smolukowski equation 
(see (C.3) in Appendix C) for the Brownian process  

( ) ( )

( ) ( )( )
( )

1 21 n

t t

quq

j j t
j

V V
q q D

m q
κ κ ξ

∂ +
= − − +

∂
  ,           (2.3.7) 

where, as shown in Appendix B, at first order of approximation in ( )tq , the term 

stV  generates  

( )
1 st

t
j

V
q

m q
κ

∂
− ≅ −

∂
                       (2.3.8) 

and where 2

DD
κ

=


. 

Moreover, the relation between the friction coefficient 1
D

mβ κ 
 
 

=  and the 

diffusion coefficient D, at the first order in the series expansion  

( )01
10

D D
κ κ 
 
 

′≅ + ,                       (2.3.9)
  

can generally read 

( )( )2

1
2

D
kT O

mD
κ α= +                      (2.3.10) 
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where α  is a numerical parameter that measures how the quantum hydrody-
namic trajectories of motion are perturbed by fluctuations (leading to quantum 
decoherence and to energy dissipation). This parameter is specific for each con-
sidered system since the sensibility of the system to fluctuations is related to the 
Lyapunov exponents of their classical trajectories of motion. This aspect goes 
beyond the purpose of this work and (2.3.10) is semi-empirically assumed here. 

For 0α =  we have a system that maintains the quantum coherence with no 
dissipation (e.g., as happens in the deterministic limit).  

For 1α =  we retrieve the Einstein relation 2kTD
mκ

=  that holds for the so 

called “dust matter” (the mass density, constituted by monomolecular dust, 
representing the classical MDD limit of the Madelung quantum hydrodynamics 
[31]). 

In the general case of a system submitted to fluctuations, neither in quantum 
deterministic limit nor in the classical one, we assume that 

0 1α< ≤ . 

In order the SQHM theory comprehends the canonical quantum mechanics in 

the deterministic limit (i.e., cλ →∞
L

, where L  is the physical length of the 

system), it must hold both that 

0lim 0T D→ =                     (2.3.11) 
 

and that 

0lim 0T κ→ = .                   (2.3.12) 

Given that, by (2.3.2) 

( ) ( )
( ) ( )4 2

, 4 2

,
,

4
q q

q t q
cc

n naD
m

α α

α α

δ δ
ϖ ϖ

λλ
= =



        (2.3.13) 

we obtain 

( )

( ) ( ) ( ) ( ) ( ) ( )

( )2 1 22 3 2
6

2 4 2

2 4
2

, ,
c

q q qqT T

kT mkTm
D

an n a n n
α α βα

α λ α

δ δ δ δ
= =



 (2.3.14) 

( ) ( ) ( )
( )1 22

5
3 2

,
2

q q T
a n n kT

m
α α

δ δ
κ

α
−=



,          (2.3.15) 

That, by posing 

( ) ( ) ( )
( )5 2

0 0lim , 2T q q T
n n kT

α α

χδ δ→ = n  (with 0χ ≥ )     (2.3.16) 

leads to 

( )
2 1 2

1 2
0 2 2

0

lim 2T
mD kT

a
χα −

→ =
n

             (2.3.17) 

( )
2 1
0 20 3 2limT kT

m
χκ

α
+

→ =


n
.              (2.3.18) 
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Moreover, by assuming in the limit of small fluctuations amplitude 

( )0 0lim ,   0T kT γα α γ→ ≈ > ,            (2.3.19) 

it follows that  

( )
2 1 2

1 2 20
2
0

2 mD kT χ γα − +=
n

              (2.3.20) 

( )
2 1
0 2

3 2
0

kT
m

χ γκ
α

+ −=


n
,               (2.3.21) 

so that (2.3.11-12) are satisfied by  

1
12

2 2

χ
γ χ

−
< < + .                 (2.3.22) 

For instance, for 1 2χ =  and 1 2γ =  it follows that 
2 1 2
0
2
0

2 mD kT
α

=
n

                   (2.3.23) 

( )
2

1 20
3 2

0

kT
m

κ
α

=


n
,                 (2.3.24)

  

( )22 2
05 22D D kT

m
κ= =



 n ;              (2.3.25) 

For 0χ =  and 1 4γ = , we obtain 
2 1 2
0
2
0

2 mD kT
α

=
n

                  (2.3.26) 

( )
2

1 40
3 2

0

kT
m

κ
α

=


n
,                 (2.3.27)

  

( )3 22 2
05 22D D kT

m
κ= =



 n               (2.3.28) 

Furthermore, by posing  

2

p

D
c

D
m

γ
λ

 
=  

 

 L                    (2.3.29) 

and  

4 p
c

D

kT λ
κ α

γ
 =  
  L

                   (2.3.30) 

where Dγ  is the dimensionless constant  

( )
3

2 2 1 2 2 20
2 2
0

4
p

p
D p p

m kT χ γα
γ

−

− + −

−=
L n

,            (2.3.31) 

that for  2p =  reads 

( )
21 2

2 1 20
2 2

0

4D
m kT γ χα

γ − −=
L n

                (2.3.32) 
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and for system that satisfies the condition 2 1 2γ χ= +  that warrants D kT∝ , 
(2.3.23-4, 2.3.26-7)) gives 

21 2
0

2 2
0

4D
m α

γ =
L n

.                    (2.3.33) 

2.4. The Generalized Langevin-Schrödinger Equation for De  
Broglie-Length Systems  

The quantum-hydrodynamic Equation (2.3.7) for the complex field 

( ) ( ) ( ) ( ) ( )
1 2

, , , ,,exp expq t q t q t q tq tnψ ψ    = =   S S            (2.4.1)
 

where 

1 S q
m qα

∂
=

∂
                       (2.4.2) 

reads 

( ) ( )

2

1 222
1 2 1 2 1 2

1 2

1 d 1 1
d

1
21

q t

S S S S S S Sq
m t q t q m q q q q t m q q

V S q q mD
m q q

m q

α
α α α β β α β β

β β α
β β

α

ψ
β ξ

ψ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = + = +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂
 ∂ − + −
 ∂ ∂ = −

∂







 (2.4.3) 

leading to the partial stochastic differential equation 

( ) ( ) ( )

1 222
1 2 1 2 1 2

1 2

1
2q t t

S S Sm V S q q mD C
t q q m q q β β α

β β β β

ψ
β ξ

ψ

 ∂∂ ∂ ∂  + = − − + − +
 ∂ ∂ ∂ ∂ ∂ 



  (2.4.4) 
 

Introducing the Environment  
The presence of unnoticeable small dark matter fluctuations, even negligible on 
the ordinary scale systems, is sufficed to lead to a finite De Broglie length that is 
much smaller than the cosmological scale allowing the quantum decoherence and 
the emergence of the classical behavior into the universe.  

The possibility of dividing the universe in classical sub-parts, allows to correct-
ly introduce the existence of the environment. Besides, given that the action of 
force noise of the environment on the MDD derivatives generates an increase of 
the energy of the quantum potential in the same way as the dark matter, it follows 
that the spatial shape of the correlation function of the force noise of the envi-
ronment owns the same form of that one of the dark matter. 

Thence, in presence of the physical environment it is possible to assume the 
stochastic interaction  

( )
1 2 1 2 1 2

stext ext ext tV S q q Dβ ββ ξ= −                 (2.4.1.1) 

from which it follows that  

( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2 1 2 1 2

stextq t t q t tV V S q q mD C V S q q mD Cβ β β ββ ξ β ξ+ + − + = + − + (2.4.1.2) 

where, by assuming both extD D 

 .and extβ β , it follows that 
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ext extD D D D= + ≅                       (2.4.1.3) 

and  

ext extβ β β β≅ + ≅ ,                    (2.4.1.4) 

and that all preceding formulas can be retained with the substitution  

extD D→                           (2.4.1.5) 

extβ β→                          (2.4.1.6) 

It must be noted that, in absence of dark matter fluctuations, the quan-
tum-decoupling of the environment cannot be assumed and that 

stextV  cannot be 
formulated in the form of (2.4.1.1). Thence, (2.4.1.5-6) can be assumed only in a 
physical vacuum that, following the general relativity, is constituted by a fluc-
tuating geometrical background. 

2.5. The Langevin-Schrödinger Equation 

Once the dark matter makes possible to have the classical environment, a system 

of microscopic physical length L  (i.e., 0
cλ
→

L ) obeys to the conservation Eq-

uation (see (C.3.9, C.3.11) in appendix C) 

( )
( )( )

( )

( )
( )( )

( )

,

,

,

,0

,

,0

lim

lim 0

q t
c

q t
c

q t
t dissq t

i

q t
t dissq t

i

n q
n Q

q

n q
n Q

q

λ

λ

→

→

 ∂
 ∂ + +
 ∂ 
 
 ∂
 ≅ ∂ + + =
 ∂ 
 





L

L

        (2.4.1.7) 

where (see ( C.3.11) in appendix C) 

( )
( )

( )
( )

( )

,

3, , , ,

2

-terms

0

1 1 d
2 !q t

kk
hq p t q p t

diss
h

k

D C
Q p

p n p p
αχ ε

α χ ε

∞

=

 
 

∂ ∂ = + + ∂ ∂ ∂ 
 
 

∫ ∑ 









N N
   (2.4.1.8) 

and where it has been used the identity lim
c

q qλ
→∞

= 

L

. Thence, by (2.4.1.7) it 

follows that 

( ),1 1
2

q tdissQS S
t m q q m q qα α α α

ψ ψ
ψ

ψ
∂ ∂ ∂ ∂ ∂

= − − +
∂ ∂ ∂ ∂ ∂

       (2.4.1.9)
  

leading to the generalized Langevin-Schrodinger equation (LSE)  

( ) ( )
( )

( )
,

2 2
1 2 1 2 1 2

22
q tdiss

q t t

Q
i V S q q D i C

t m q q β β
β β

ψ ψ β ξ ψ
ψ

 ∂ ∂  − = − + − + +
 ∂ ∂ ∂  





  (2.4.1.10)(C.2.7) 

Robust Quantum Systems and the Canonical LSE  
Moreover, since for a quantum system that owns 0 0α →  and hence Dκ 

 , 
able to strongly maintain its quantum coherence (we name it “robust” quantum 
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systems), it holds 

( )0 ,0lim 0
q tdissQα → → ,                 (2.4.2.1) 

and, for  
2

2 1 2
0T

k

χ γα + −

<                     (2.4.2.2) 

(e.g., 
2
0T

k
α

<  for 1 2χ =  and 1 2γ = ), also that 

0 0lim finiteα κ→ = ,                  (2.4.2.3) 

for sufficiently small temperature, the term ( ),

2
q tdissQ

i
ψ

 can be disregarded in 

(2.4.1.10) and the LSE reads  

( ) ( ) ( )( )0

2 2
1 2 1 2 1 2

, 0lim
2T q t ti V S q q D C

t m q qα β β
β β

ψ ψ β ξ ψ→
∂ ∂

= − + + − +
∂ ∂ ∂





 .(2.4.2.4) (LSE) 

As already observed, the sensibility of the system to fluctuations is related to 
the Lyapunov exponents of its classical trajectories of motion. Thence, that for li-
near systems (non classically chaotic) 0 0α →  and the (LSE) can be applied to 
them. 

Generally speaking, for the case of classically chaotic systems, the LSE (2.4.1.10) 
has to be considered. 

Moreover, it must be noted that the SLE description is made possible by the 

integrability of the velocity field 
1 Sq
m qβ

β

∂
=

∂
  that can be warranted in small 

scale (slightly perturbed) quantum system but it may fall in macroscopic 
large-scale system whose velocity field can be non-integrable. 

2.6. The SQHM with Adiabatic Elimination of Fast Variables  

For slow kinetics with the characteristic time chτ  satisfying the condition  
3 2 2

0
2
0

1
16

D
ch

m m
kT
α γ

τ
κ α
= =





L

n
,                 (2.5.1) 

Equation (2.3.7) (for 0T > ) reduces to  

( )
( )( )

( )

2 1 2
1 2

4 2

p p
quqD

Dt t
c c

V V
q

mkT q m
γ

γ ξ
α λ λ

∂ +     = − +     ∂     

 



L L
    (2.5.2) 

that for 2p =  reads 

( )
( )( )

( )

( )( )
( )

2
1 2

3 2
1 40 0

2
00

16 2

2

quqD
Dt t

quq
t

V V kTq
q

V Vm kTm
q mkT

γ
γ ξ

α

α α
ξ

∂ +
= − +

∂

∂ +
= − +

∂



 





mL L

nn

        (2.5.3) 
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For a quantum system with 3010 kg−≈m  and 1010 m−≈L , equation (2.5.2) 
can be applied to kinetics with characteristic time down to 

( )

2
1710 s

16 2
D D

ch
T

γ γ
τ

α α
−≈



mL
                 (2.5.4) 

that being 
2 21 2

50 0
2 2 2

0 0

4 4 10D
m α α

γ = ≈ ×
L n n

                 (2.5.5) 

gives 

( ) ( )

3 2
120 0

2 2
0 0

2
10 s

4
ch

m
kT kTγ γ

α α
τ −≈



n n
              (2.5.6) 

It is worth mentioning that Equation (2.5.3) leads to a simplified Smolukowski 
equation that is only a function of the space variables [37]. 

3. Emerging of the Classical Behavior on Coarse-Grained  
Large Scale  

Is matter of fact that, if the quantum potential is canceled by hand in the 
quantum hydrodynamic equations of motion (2.1-3), the classical mechanical 
equation of motion emerges [28]. Even if this is true, this operation is not 
mathematically correct since it changes the characteristics of the QHA equations. 
Doing so, the stationary configurations (i.e., eigenstates) are wiped out because 
we cancel the balancing of the quantum potential force against the Hamiltonian 
force [37] that generates the stationary condition. Thence, an even small 
quantum potential cannot be neglected into the deterministic QHA model. 

On the contrary, in the SQHM it is possible to correctly neglect the quantum 
potential (at least in classically chaotic systems) when its force is much smaller 
than the noise ϖ  such as  

( )
( ), ,

1 qu n
q t T

i

V

m q
ϖ

∂

∂


.                      (3.1) 

When the non-local force generated by the quantum potential is quite small 
(respect to the fluctuations amplitude) so that 

( )
1 2 1 21

2 2 2
qu n

D D
i c

V mkT
m q m m

κ γ κ γ
λ

∂      =       ∂       

 





L L ,     (3.2) 

its effect can be disregarded in (2.3.7).  
Besides, even if the noise ( ), ,q t Tϖ  has zero mean, the mean of the quantum 

potential fluctuations ( ),st n SV Sβ≅  is not zero, and the stochastic sequence of 
inputs of noise alters the coherent reconstruction of the quantum superposition 
of state by the dissipative force ( )tqκ−   in (2-3-7). Moreover, by observing that 

( )

1 2

2D t
c m

κ γ ξ
λ

  
  

  

L
                     (3.3) 

https://doi.org/10.4236/oalib.1106659


S. Chiarelli, P. Chiarelli 
 

 

DOI: 10.4236/oalib.1106659 16 Open Access Library Journal 
 

grows with the scale of the system (i.e., 
cλ
→∞

L  for macroscopic systems), 

condition (3.2) is satisfied if  

( )( )1lim limitedq

c

qu n

q
i

V

m qλ
→∞

∂
=

∂
                 (3.4) 

and the classical behavior can emerge in systems of sufficiently large physical 
length. Actually, in order to have a large-scale description, completely free from 
quantum effects, we can more strictly require  

( )( ) ( )( ) ( )( )1 1lim 0q q q

c

qu n qu n qu n

q
i i i

V V V

m q m q qλ
→∞

∂ ∂ ∂
= =

∂ ∂ ∂
.      (3.5)  

By observing that for linear systems  

( )
2limq qu qV q→∞ ∝ ,                    (3.6) 

from (3.6) the SQHM shows that they do never have a macroscopic classical 
phase. Generally speaking, stronger the Hamiltonian potential higher the wave 
function localization and larger the quantum potential behavior at infinity [38]. 
Given the MDD  

( )
2 exp k

qPψ  ∝ −                       (3.7) 

where ( )
k
qP  is a polynomial of order k, in order to have a finite quantum poten-

tial range of interaction it must be 
3
2

k <  (it results 2k =  for uni-dimensional 

linear interaction). Actually, since the linear interaction is not maintained up to 
infinity (for energetic reason, a finite bound energy requires a weaker than linear 
interaction such as ( )lim 0q qV→∞ → ), there exists a large-scale classical descrip-

tion when the physical length of the system is much larger than the range of li-
near interaction. A physical example comes from solids owning a quantum lat-
tice. If we look at the intermolecular features where the interaction is linear, the 
behavior is quantum (such as the x-ray diffraction shows), but if we look at their 
macroscopic properties (e.g., low-frequency acoustic wave propagation) the 
classical behavior is shown. 

For instance, systems that interact by the Lennard-Jones potential for which 
the long distance wave function reads [39] 

1 2 1limr a
r

ψ −
→∞ ∝                       (3.8) 

that leads to the quantum potential 

( )

22 2
2

2

1 1lim lim
2r qqu nV a

m r r mr
ψ

ψ
ψ→∞ →∞

∂
= = =

∂ ∂
 

         (3.9) 

and to the quantum force 

( )
2

22 2 2

3

1
1 1lim lim 2

2 2
qu n

r q

V rr
r m r r r m r r r m r

ψ
ψ→∞ →∞

∂∂ ∂∂ ∂
= = = −

∂ ∂ ∂ ∂ ∂ ∂ ∂
   , (3.10)  
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the large scale classical behavior can appear [38] [40] in a sufficiently rarefied 
phase (see section 4.4).  

It is interesting to note that in (3.9) the quantum potential acquires the form 
of the hard sphere potential of the pseudo potential Hamiltonian model of the 

Gross-Pitaevskii equation [15] [41] where 
4
a
π

 is the boson-boson s-wave 

scattering length. 
By observing that, in order to fulfill the condition (3.5) a sufficient condition 

reads 

( )( )

( )

1

0
, ,

1 d limited        ,qqu n

i
r

V
r r

m q
θ ϕ

θ ϕ
∞

−
∂

= ∀
∂∫ ,          (3.11)  

it is possible to define the quantum potential range of interaction [38]  

 

( )( )

( )

( )( )

( )

1

0
, ,

, ,

dq

q

c

qu n

i
r

qu c
qu n

i
r

V
r r

q

V

q

θ ϕ

λ θ ϕ

λ λ

∞
−

=

∂

∂
=

∂

∂

∫
                 (3.12)  

that gives a measure of the physical length of the quantum non-local effects.  
The convergence of the integral (3.11) for 0r →  is warranted for L-J type 

potentials since, near the equilibrium point ( 0r = ), the L-J interaction is linear 
and being 

( )( )0

2
0lim

q
r qu n

V r
→

→ ∝  it follows that  

( )( )

( )

1
0

, ,

lim constantqqu n

r
i

r

V
r

q
θ ϕ

−
→

∂

∂
 .               (3.13) 

3.1. From Micro to Macro Description 

By discretizing the phase space conservation equation given by the current Equa-
tions (2.2.5-6, 2.4, 2.3.4, 2.3.8) for the system of N coupled particles [42], it is 
possible to obtain the quantum hydrodynamic master equation for a macroscopic 
system of a huge number of molecules. Such a theoretical model goes beyond the 
purpose of the present work and it is left to a future investigation. 

Here, generally speaking we observe that, given the range of interaction of the 
quantum potential quλ , the De Broglie length cλ , and the system size L  ( 3

L
the mean available volume per molecule), we can generally distinguish the cases: 

1) ,qu cλ λL   
2) ,qu cλ λ>L   
3) qu cλ λ> L >  
4) cλ > L   
Typically, for the L-J potential the quantum potential range of interaction quλ  

extends itself a little bit further than the linear zone around the equilibrium posi-
tion 0r  (let’ say up to 0r + ∆ ).  
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By using this approximation for the L-J interaction, so that for 0r r< + ∆   

( )qu nV
r

q
α

∂
≈

∂
,                       (3.1.1) 

and for 0r r> + ∆  [39] 

( )
2

3

12qu nV

q m r

∂
− ≈

∂
 ,                     (3.1.2) 

quλ  reads 

( )

0

0

4 4
0

0 3
03

1 dd

1 3

r

r c
qu c

c

c

rr r
r

r
λλ λ

λ
λ

∞+∆

+∆

 
 
 ≈ + = + ∆ +  + ∆  
 

∫∫
         (3.1.3) 

that, since for 4 KT   and microscopic mass 3010 kg−≈m , 9
0 10 mc rλ −≈ , 

we obtain  

0qu rλ ≈ + ∆                        (3.1.4) 

Thence, the rarefied phases owing 0qu crλ λ+ ∆  L , for particles inte-
racting by a Lennard-Jones potential, is fully classic since the mean molecular 
distance L  is much larger both than the De Broglie length and the quantum 
potential length of interaction quλ . 

The second case 0qu crλ λ> + ∆ L  refers to dense phases (e.g., fluid phase) 
that still own a classical behavior since, as a mean, the particle is distant 
each-other more than the range of interaction of the quantum potential. The in-
ter-particle distance mostly lies in the non-linear range of L-J interaction [38]. 

The case “3” 0 qu cr λ λ+ ∆ > L  applies when the neighboring molecules 
lie in the linear range of the intermolecular potential at a distance smaller than 
the non-local quantum potential interaction quλ .  

The observables on such physical scale show quantum behavior (e.g., the 
Bragg’s diffraction of the atomic lattice). 

In the case “4” cλ > L , when the condensed fluid phase (i.e., 0r> + ∆L ) 
persists down to a very low temperature so that the De Broglie length becomes 
larger than the mean intermolecular distance ( 4 KT <  for typical intermole-
cular distance of order of 10−9 m), the fluid shows an extreme decrease of mole-
cular viscosity [38]. The super-fluidity is induced by the quantum potential inte-
raction between the molecules [40]  

By changing the temperature and, accordingly, both cλ  and the mean in-
ter-molecular distance L , we can have quantum-to-classic phase transition in the 
case iii and iv, respectively: 

1) 1
qu

ε
λ

→
L

+  (with c quλ λ< ) solid-fluid transition with melting of 

crystalline lattice (e.g., ice -water transition [38]) 

2) 1
c

ε
λ

→ +
L  (with qu cλ λ< ) superfluid-fluid transition (e.g., He4 lambda 
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point [38] [40])  

3.2. Measurement Process and Quantum Decoherence  

The SQHM model shows that the measure is not necessarily a decoherent process 
by itself: The sensing part of the measuring apparatus (the pointer) and the 
measured system may have a canonical quantum interaction that, after the mea-
surement when the measuring apparatus is brought to the infinity (at a distance 
much beyond cλ ), ends. Then the reading and the treatment of the “pointer” 
state are done by the measurement apparatus: This process is practically a classic 
irreversible process (with a defined arrow of time) leading to the macroscopic 
output of the measure.  

On the other hand, the decoherence is necessary for the measurement process 
in order to have, both before the initial time and after the final one, quan-
tum-decoupling between the measurement apparatus and the system in order to 
collect a statistical ensemble of data from repeated measures.  

3.3. Minimum Measurements Uncertainty  

If for physical length much smaller than cλ  any system approaches the 
quantum deterministic behavior and behaves as a wave so that its sub-parts are 
not independent each-other, it follows that in order to perform the measurement 
(with independence between the measuring apparatus and the measured system) 
it is necessary that they are far apart (at least) more than cλ and hence, for the 
finite speed of propagation of interactions and information, the measured 
process must last longer than the time  

( )1 22

2

2
c

c mc kT

λ
τ = =

 .                   (3.3.1) 

For qu cλ λ>  the measurement time can be even bigger than (3.3.1) but not 
less. 

Moreover, since higher the amplitude of the noise T lower the value of cλ  
and higher the fluctuations of the energy measurements ( )TE∆ , it follows that 

the minimum duration of the measurement c

c
λ

τ =  multiplied by the precision 

of the energy measurement ( )TE∆  has a lower bond. 

Given the Gaussian property of the noise (2.3.2), we have that the mean value 

of the energy fluctuation, for unidimensional systems, is ( )
1
2TE kT∆ = . Thence, 

for the non-relativistic case ( 2mc kT ) a particle of mass m owns an energy 
variance E∆   

( )( ) ( ) ( )( ) ( )
1 22 1 22 1 22 2 2 22T TE mc E mc mc E mc kT ∆ ≈ + ∆ − ≅ ∆ ≅ 

 
 (3.3.2) 

from which it follows that  
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( )1 22

2cmc kT hE t E
c

λ
τ∆ ∆ > ∆ ∆ = =

π
,            (3.3.3) 

It is worth noting that the product E τ∆ ∆  is constant since the growing of 
the energy variance with the square root of T is exactly compensated the 
decrease of the minimum time τ  of measurement  

The same result is achieved if we derive the experimental uncertainty between 
the position and momentum of a particle of mass m in the quantum fluctuating 
hydrodynamic model.  

If we measure both the spatial position of a particle with a precision cL λ∆ >  
(so that we are able to not perturb the quantum configuration of the measured 
system) and the variance p∆  of the modulus of its relativistic momentum 

( )1 2
p p mcµ

µ =  due to the fluctuations that reads 

( ) ( )

( ) ( )( )
( )( ) ( )

1 22
2

1 22 2

1 2 1 2

2

2

T

T

E
p mc mc

c

mc m E mc

m E mkT

 ∆  ∆ ≈ + −     

≅ + ∆ −

≅ ∆ ≅

               (3.3.4) 

we obtain the experimental uncertainty  

( )1 2 2
cL p mkT hλ∆ ∆ > =

π
                  (3.3.5) 

If we measure the spatial position with a precision cL λ∆ < , we have to 
perturb the quantum state. Due to the increase of the spatial confinement of the 
wave function (by increasing the environmental temperature or by an external 
potential), the increase of both the quantum potential energy and its fluctuations 
are generated so that the final particle momentum gets a variance p∆  higher 
than (3.3.5).  

It is worth mentioning that the SQHM leads to the minimum measurements 
uncertainty as a consequence of the relativistic postulate of finite speed of light 
and information.  

Even if the quantum deterministic behavior ( cλ →∞ ) in the low velocity limit 
( c →∞ ) leads to the undetermined inequalities 

c
c
λ

τ ≥                         (3.3.6) 

( )1 22 2
c

cE mc kT
λ

∆ ≅ =                  (3.3.7) 

their product  

2Eτ∆ ≥                        (3.3.8) 

remains defined and constitutes the minimum uncertainty of the quantum 
deterministic limit. Beside, (3.3.6) in the relativistic limit shows that the duration 
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of the measurement process in the deterministic limit becomes infinite. Being it 
endless, it is not possible to perform it in the canonical quantum mechanical 
universe. 

Moreover, since non-locality is confined in domains of physical length smaller 
than cλ  and information cannot be transferred faster than the light speed (oth-
erwise also the uncertainty principle will be violated) the local realism is obtained 
in the coarse-grained large scale physics and the paradox of a “spooky action at a 
distance [43]” is limited on a distance of order of cλ  or of quλ .  

The above result holds for particles with rest mass different from zero, while 
for determining the length of non local interaction (entanglement) of the photon 
( cλ →∞ ?) the relativistic generalization of the SQHM is required. 

3.4. Field of Application of the SQHM 

The stochastic quantum hydrodynamic theory able to describe how the quantum 
entanglement is maintained up to a certain distance (see (3.11-3.12)) and how it 
can be maximized (see (3.4-3.5) and comment below), can lead to important im-
provements in the development of materials for high-temperature superconduc-
tors and Q bits systems.  

Moreover, the theory owing to a self-defined quantum correlation distance can 
be also very important in defining different regimes of chemical kinetics in com-
plex reactions and phase transitions. 

Besides, the SQHM can furnish an analytical self-consistent theoretical model 
for mesoscale phenomena and quantum irreversibility. 

4. Conclusions 

The stochastic quantum hydrodynamic model shows that in the physical fluc-
tuating vacuum, the spatial spectrum of the noise is not white and it owns the De 
Broglie characteristic length. Due to this fact, the quantum entanglement is effec-
tive in systems whose physical length is much smaller than such a length. The 
model shows that the non-local quantum interactions may extend themselves up 
to a finite distance in the case of non-linear weakly bonded systems.  

The Langevin-Schrodinger equation can be derived in the frame of the stochas-
tic quantum hydrodynamic model by taking into account, at the first order of 
approximation, the effect of fluctuations on microscopic systems.  

The derivation of the Langevin-Schrodinger equation from the general sto-
chastic quantum hydrodynamic model makes clear its basic assumptions and its 
range of applicability limited to microscopic systems whose physical length is 
much smaller than the De Broglie one. 

The stochastic quantum hydrodynamic model shows that the minimum un-
certainty condition is satisfied during the process of measurement (that can have 
a finite duration) in a classical super-system if, and only if, interactions and in-
formation do not travel faster than the speed of light, making compatible the rela-
tivistic postulate (at the base of the large scale locality) with the non-local quan-
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tum interactions at the micro-scale.  
The stochastic quantum hydrodynamic model makes compatible the hydrody-

namic description of quantum mechanics with the decoherence approach show-
ing that the quantum potential is not able to maintain the quantum coherence in 
presence of fluctuations, generating a frictional force leading to a relaxation 
process (decoherence) and to the decaying of the superposition of states that do 
not physically survive in macroscopic systems made up of molecules and atoms 
interacting by long-range weak potentials such as the Lennard-Jones one. 

The stochastic quantum hydrodynamic model describes how the quantum 
dynamics realizes itself in a vacuum whose metric fluctuates. In this scenario, the 
canonical quantum mechanics is the limiting description achieved just in the flat 
static vacuum.  

Figuratively, in a 3-dimensional space time, the space can be represented by the 
surface of a see with very small ripples (instead by a flat static plane), the non 
local interaction of quantum mechanics breaks down on large scale and, in huge 
systems of weakly bounded particles, the classical mechanics emerge. 

Acknowledgements 

I thank Danilo De Rossi Professor Emeritus at the University of Pisa, for the pas-
sionate and in-depth discussions on the matter. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Young, T. (1804) The Bakerian Lecture. Experiments and Calculations Relative to 

Physical Optics. Philosophical Transactions of the Royal Society of London, 94, 
1-16. https://doi.org/10.1098/rstl.1804.0001 

[2] Feynmann, R.P. Leighton, R. and Sands, M. (1963) The Feynman Lectures on Phys-
ics: Volume 3. Addison-Wesley, Boston. 

[3] Auletta, G. (2001) An Outline of an Interpretation of Quantum Mechanics. In: Ga-
rola, C. and Rossi, A., Eds., The Foundations of Quantum Mechanics: Historical 
Analysis and Open Questions, World Scientific, Singapore, 31-49.  
https://doi.org/10.1142/9789812793560_0002 

[4] Greenstein, G. and Zajonc, A.G. (2005) The Quantum Challenge. 2nd Edition, Jones 
and Bartlett Publishers, Boston.  

[5] Shadbolt, P., Mathews, J.C.F., Laing, A. and O’Brien, J.L. (2014) Testing Founda-
tions of Quantum Mechanics with Photons. Nature Physics, 10, 278-286.  
https://doi.org/10.1038/nphys2931 

[6] Josson, C. (1974) Electron Diffraction at Multiple Slits. American Journal of Phys-
ics, 42, 4.  

[7] Zeilinger, A., Gahler, R., Shull, C.G., Treimer, W. and Mampe, W. (1988) Single- and 
Double-Slit Diffraction of Neutrons. Reviews of Modern Physics, 60, 1067-1073.  
https://doi.org/10.1103/RevModPhys.60.1067 

https://doi.org/10.4236/oalib.1106659
https://doi.org/10.1098/rstl.1804.0001
https://doi.org/10.1142/9789812793560_0002
https://doi.org/10.1038/nphys2931
https://doi.org/10.1103/RevModPhys.60.1067


S. Chiarelli, P. Chiarelli 
 

 

DOI: 10.4236/oalib.1106659 23 Open Access Library Journal 
 

[8] Carnal, O. and Mlynek, J. (1991) Young’s Double-Slit Experiment with Atoms: A 
Simple Atom Interferometer. Physical Review Letters, 66, 2689-2692.  
https://doi.org/10.1103/PhysRevLett.66.2689 

[9] Schöllkopf, W. and Toennies, J.P. (1994) Nondestructive Mass Selection of Small 
van der Waals Clusters. Science, 266, 1345-1348.  
https://doi.org/10.1126/science.266.5189.1345 

[10] Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., Van Der Zouw, G. and Zeilinger, 
A. (1999) Wave-Particle Duality of C60 Molecules. Nature, 401, 680-682.  
https://doi.org/10.1038/44348.  

[11] Nairz, O., Arndt, M. and Zeilinger, A. (2003) Quantum Interference Experiments 
with Large Molecules. American Journal of Physics, 71, 319.  
https://doi.org/10.1119/1.1531580 

[12] Born, M. (1954) The Statistical Interpretation of Quantum Mechanics—Nobel Lec-
ture.  

[13] Ghirardi, G.C., Rimini, A. and Weber, T. (1986) Unified Dynamics for Microscopic 
and Macroscopic Systems. Physical Review D, 34, 470-491.  
https://doi.org/10.1103/PhysRevD.34.470 

[14] Ghirardi, G.C. (2000) Local Measurements of Nonlocal Observables and the Relati-
vistic Reduction Process. Foundations of Physics, 30, 1337. 

[15] Pitaevskii, P.P. (1961) Vortex Lines in an Imperfect Bose Gas. Journal of Experi-
mental and Theoretical Physics, 13, 451-454. 

[16] Everette, H. (1957) “Relative State” Formulation of Quantum Mechanics. Reviews 
of Modern Physics, 29, 454-462. https://doi.org/10.1103/RevModPhys.29.454 

[17] Vaidman, L. (2012) Probability in the Many-Worlds Interpretation of Quantum 
Mechanics. In: Ben-Menahem, Y. and Hemmo, M. (Eds.), Probability in Physics, 
The Frontiers Collection XII, Springer, 299-311. 

[18] Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in Terms of 
“Hidden” Variables. I. Physical Review, 85, 166-179.  
https://doi.org/10.1103/PhysRev.85.166 

[19] Goldstein, S. and Ward S. (2007) On the Uniqueness of Quantum Equilibrium in 
Bohmian Mechanics. Journal of Statistical Physics, 128, 1197-1209.  

[20] Lombardi, O. and Dieks, D. (2016) Particles in a Quantum Ontology of Proper-
ties. In: Bigaj, T. and Wüthrich, C. (Eds.), Metaphysics in Contemporary Phys-
ics, Brill-Rodopi, Leiden, 123-143. 

[21] Laudisa, F. and Rovelli, C. (2002) Relational Quantum Mechanics. In: Zalta, E.N., 
Ed., The Stanford Encyclopedia of Philosophy, Springer, Berlin, Heidelberg. 

[22] Griffiths, R.B. (2003) Consistent Quantum Theory. Cambridge University Press, 
Cambridge.  

[23] Cramer, J.G. (1980) Generalized Absorber Theory and the Einstein-Podolsky-Rosen 
Paradox. Physical Review D, 22, 362-376. https://doi.org/10.1103/PhysRevD.22.362 

[24] Cramer, J.G. (2016) Quantum Entanglement and Nonlocality. In: Cramer, J.G., Ed., 
The Quantum Handshake, Springer, Cham, 39-45.  
https://doi.org/10.1007/978-3-319-24642-0_3 

[25] Von Baeyer, H.C. (2016) QBism: The Future of Quantum Physics. Harvard Univer-
sity Press, Cambridge. https://doi.org/10.4159/9780674545342 

[26] Madelung, E. (1926) Quantentheorie in Hydrodynamischer Form. Zeitschrift für 
Physik, 40, 322-326. https://doi.org/10.1007/BF01400372 

https://doi.org/10.4236/oalib.1106659
https://doi.org/10.1103/PhysRevLett.66.2689
https://doi.org/10.1126/science.266.5189.1345
https://doi.org/10.1038/44348
https://doi.org/10.1119/1.1531580
https://doi.org/10.1103/PhysRevD.34.470
https://doi.org/10.1103/RevModPhys.29.454
https://doi.org/10.1103/PhysRev.85.166
https://doi.org/10.1103/PhysRevD.22.362
https://doi.org/10.1007/978-3-319-24642-0_3
https://doi.org/10.4159/9780674545342
https://doi.org/10.1007/BF01400372


S. Chiarelli, P. Chiarelli 
 

 

DOI: 10.4236/oalib.1106659 24 Open Access Library Journal 
 

[27] Jánossy, L. (1962) Zum Hydrodynamischen Modell der Quantenmechanik. Zeit-
schrift für Physik, 169, 79-89. https://doi.org/10.1007/BF01378286 

[28] Weiner, J.H. (1983) Statistical Mechanics of Elasticity. John Wiley & Sons, New 
York, 315-7. 

[29] Lidar, D.A., Chuang, I.L. and Whaley, K.B. (1998) Decoherence-Free Subspaces for 
Quantum Computation. Physical Review Letters, 81, 2594-2597. 
https://doi.org/10.1103/PhysRevLett.81.2594 

[30] Tsekov, R. (2011) Bohmian Mechanics versus Madelung Quantum Hydrodynamics. 
112-119. 

[31] Bialyniki-Birula, I., Cieplak, M. and Kaminski, J. (1992) Theory of Quanta. Oxford 
University Press, Oxford, 87-111. 

[32] Cerruti, N.R., Lakshminarayan, A., Lefebvre, T.H. and Tomsovic, S. (2000) Explor-
ing Phase Space Localization of Chaotic Eigenstates via Parametric Variation. Phys-
ical Review E, 63, Article ID: 016208.  
https://doi.org/10.1103/PhysRevE.63.016208 

[33] Calzetta, E. and Hu, B.L. (1995) Quantum Fluctuations, Decoherence of the Mean Field, 
and Structure Formation in the Early Universe. Physical Review D, 52, 6770-6788.  
https://doi.org/10.1103/PhysRevD.52.6770 

[34] Wang, C., Bonifacio, P., Bingham, R. and Tito Mendonca, J. (2008) Detection of 
Quantum Decoherence due to Spacetime Fluctuations. 37th COSPAR Scientific As-
sembly, Montréal, 13-20 July 2008, 3390. 

[35] Lombardo, F.C. and Villar, P.I. (2005) Decoherence Induced by Zero-Point Fluctu-
ations in Quantum Brownian Motion. Physics Letters A, 336, 16-24. 
https://doi.org/10.1016/j.physleta.2004.12.065 

[36] Chiarelli, P. (2013) Can Fluctuating Quantum States Acquire the Classical Behavior 
on Large Scale? Journal of Advances in Physics, 2, 139-163.  

[37] Chiarelli, P. (2020) Stability of Quantum Eigenstates and Kinetics of Wave Function 
Collapse in a Fluctuating Vacuum, in Progress.  

[38] Chiarelli, P. (2013) Quantum to Classical Transition in the Stochastic Hydrody-
namic Analogy: The Explanation of the Lindemann Relation and the Analogies Be-
tween the Maximum of Density at He Lambda Point and that One at Water-Ice 
Phase Transition. Physical Review & Research International, 3, 348-366.  

[39] Bressanini, D. (2011) An Accurate and Compact Wave Function for the 4He Dimer. 
EPL, 96, Article ID: 23001. https://doi.org/10.1209/0295-5075/96/23001 

[40] Chiarelli, P. (2014) The Quantum Potential: The Missing Interaction in the Density 
Maximum of He4 at the Lambda Point? American Journal of Physical Chemistry, 2, 
122-131. https://doi.org/10.11648/j.ajpc.20130206.12 

[41] Gross, E.P. (1961) Structure of a Quantized Vortex in Boson Systems. Il Nuovo 
Cimento, 20, 454-457. https://doi.org/10.1007/BF02731494 

[42] Gardiner, C.W. (1985) Handbook of Stochastic Method. 2nd Edition, Springer, Ber-
lin, 331-341.  

[43] Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description 
of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.  
https://doi.org/10.1103/PhysRev.47.777 

[44] Weiner, J.H. and Forman, R. (1974) Rate Theory for Solids. V. Quantum Brownian 
Motion Model. Physical Review B, 10, 325-337.  
https://doi.org/10.1103/PhysRevB.10.325 

[45] Ruggiero, P. and Zannetti, M. (1981) Critical Phenomena at T=0 and Stochastic 

https://doi.org/10.4236/oalib.1106659
https://doi.org/10.1007/BF01378286
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevE.63.016208
https://doi.org/10.1103/PhysRevD.52.6770
https://doi.org/10.1016/j.physleta.2004.12.065
https://doi.org/10.1209/0295-5075/96/23001
https://doi.org/10.11648/j.ajpc.20130206.12
https://doi.org/10.1007/BF02731494
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevB.10.325


S. Chiarelli, P. Chiarelli 
 

 

DOI: 10.4236/oalib.1106659 25 Open Access Library Journal 
 

Quantization. Physical Review Letters, 47, 1231-1234.  
https://doi.org/10.1103/PhysRevLett.47.1231 

[46] Ruggiero, P. and Zannetti, M. (1983) Microscopic Derivation of the Stochastic 
Process for the Quantum Brownian Oscillator. Physical Review A, 28, 987-993. 
https://doi.org/10.1103/PhysRevA.28.987 

[47] Rumer, Y.B. and Ryvkin, M.S. (1980) Thermodynamics, Statistical Physics, and Ki-
netics. Mir Publishers, Moscow, 269.  

  

https://doi.org/10.4236/oalib.1106659
https://doi.org/10.1103/PhysRevLett.47.1231
https://doi.org/10.1103/PhysRevA.28.987


S. Chiarelli, P. Chiarelli 
 

 

DOI: 10.4236/oalib.1106659 26 Open Access Library Journal 
 

Appendix A  

In order to derive the correlation function of the quantum potential fluctuations, 
we assume that the dark matter density (MD) fluctuations ( ),q tnδ  own an 
amplitude that is very much smaller than the MD of the physical system n and 
hence it follows that 
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where  

0limT n n→ = .                       (A.2) 
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that since the mean value n  is not random, leads to 
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that at first order in λ  reads 
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Given that the terms with first derivatives 
qγ

∂
∂

 and 
qγ

∂
′∂

 give terms 

proportional to q q λ′− = , in the limit of 0λ →  they are null and thence it 
follows that 
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and, given that ( )2
4

1

c

kT
λ

∝ , for very low temperature, it follows that 
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          (A.7) 

As far as it concerns the quantum potential force fluctuations, the zero order 
term can be generally assumed of the form 
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,
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           (A.8) 

Since lim n n n nδ →


, for Lennard-Jones potential we have that  

1) 
0 0 0

2 1
2

1lim lim limr r r r r rn n a
r

ψ −
→∞ →∞ →∞≅ ≅ ∝           (A.9) 

where 
4
a
π

 is the boson-boson s-wave scattering length. (see (3.6) in section 3), 

and hence that 

2) 
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         (A.10) 

for 0r r> + ∆ . 
Moreover, by assuming in the linear range of interaction for 0r r< + ∆ , the 

Gaussian localization  
2

0 2exp
2

rn n
r

= −
∆

                    (A.11) 

where 0r r r= − , it follows that the diffusion coefficient owns a parabolic beha-
vior 
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      ′ ′ ′ ′   ≅ + + ≅ <        ′ ′ ′ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆      

 (A.12) 

that tends to zero for 0r →  or 0r′ → .  
Moreover, given that ~r∆ ∆  and that for 0r r< + ∆ L  (i.e., ( ) 0G λ → ) 

the ratio n
n
δ  reaches the lowest value (since about all the mass is localized 

there), the wave function is poorly perturbed by MDD fluctuations (and is well 
described by the deterministic quantum limit), we can assume (A.10) over all the 
space to obtain  
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As far as it concerns the force correlation function, in this case we obtain 
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(A.14) 

Appendix B 

The irreversible force induced by fluctuations in small scale systems 
In order to obtain the explicit expression of the term 

( )ntot
quV

qα

∂

∂
                     (B.1) 

let’s start by Equation (2.2.6 )  

( ) ( )( )1 ntot
quqV V

q
m qα

α

∂ +
= −

∂
                (B.2) 

that we can rearrange as  
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m q q n q qn

q
m q
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∂
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where the term  
22 1 2

1 2

1 1 tot

tot

nn
q q q n q qnα β β β β

 ∂∂ ∂
−  ∂ ∂ ∂ ∂ ∂ 

              (B.4)
 

in (B.3) generates an additional acceleration respect to the deterministic case 
leading to a change of the velocity field q  of the mass density. It is noteworthy 
that, in the deterministic case (B.4) becomes null and 0limD totn n→ ≡  (actually, 
in the limit of small fluctuations (i.e., small size systems), n is close to the value of 
the deterministic limit of the eigenstates).  

Moreover, by observing that in the stationary states (i.e., 0q = , the analo-
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gouses of the eigenstates of the deterministic limit [37] (let’s name them qua-
si-eigenstates), the mean MDD totn  does not changes with time and both 

( ) ( ) ( ) ( ),

2
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1lim d
q

tt

tot t tot vacq qq
tt

n n n n n const
t τ

τ δ
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= =
∆ ∫  ,               (B.6)

 

approaching the stationary state (i.e., 0q → ) it follows that  
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,(B.7)

 

and thence, generally speaking, for small q , sufficiently close to the stationary 
quasi-eigenstates, (B.4) can be developed in the series approximation  
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       (B.8)
  

where 0A  is a stochastic noise whose mean 0A  is defined by the stationary 
state condition 

( ) ( ) ( )

2 22 1 2 2 1 2

1 2 1 2

00 , 1 , ,

1 1 1 1 0

0

tot tot

tot tot

n
q t q t n q t

n nn n
q q q n q q q q q q n q qn n

A q q A

α β β β β α β β α β β

α α

  ∂ ∂∂ ∂ ∂ ∂ ∂ − = − =    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

= + + + = = 


(B.9)
  

Thence, at first order in q , close to the deterministic limit of quantum me-

chanics (i.e., 0
cλ
→

L ), leads to  
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to 
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t
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ξ
∂ +

= − − +
∂


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where  
1 2

1 2 DD
m

∗

=                        (B.12) 

The first order approximation (B.10) allows the Marcovian process to become 
self-consistent (independent by the dark matter evolution) reducing to and where 

( ) ( )
3

, , , dq t q p tn p
+∞

−∞

= ∫ N  is defined by the Smolukowski Equation (C.3) in appendix 

C, of the Marcovian process (2.3.7).  
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Moreover, for system with irrotational velocity field (that admits the action 

function S) such as 
i

S q
q
∂

=
∂

 , Equation (2.3.7) can read 
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that by posing 
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S SA

q qα α
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leads to  
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q D
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β
ξ
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∂
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Besides, by comparing (B.15) with (2.3.4), it follows that 
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        (B.16)
 

and that 

( )
1 2 1 2 1 2

st tV q q Dβ β αξ=                      (B.17)
 

Finally it interesting to note that, for m constβ κ= ≈  the quantum hydrody-
namic equation of motion leads to the quantum Brownian particle given by [44]  

( )( )
( )

1 21 quq
t

V V
q q D

m qα α α
α

κ κ ξ
∂ +

= − − +
∂

  .            (B.18)
 

is recovered. 
Unfortunately, the validity of (B.18) is not general since β  is not constant.  
This agrees with the results given in ref. [45] [46] that show that only in the 

case of linear harmonic oscillator, in contact with a classical heat bath, the friction 
β  can be a constant. Besides, since in order to have the quantum decoupling 
with the environment (i.e., a classical super-system), the non-linear interaction is 
needed (see identity (3.5-6) of section 3), actually, the case β  = constant is nev-
er rigorously possible except for the deterministic limit of the canonical quantum 
mechanics with 0β = .  

It can only approximately accepted for locally linear oscillators (non-linearly 
coupled to the environment) for which we can assume 0α ≈ . 

Appendix C  

The environmental Marcovian noise in presence of the quantum potential 
Since totn  is postulated by the approximation (2.8) the determination of β  

as well as of all the model is not complete.  
Nevertheless, once infinitesimal dark matter fluctuations have broken the 

quantum coherence on the cosmological scale (i.e., 6010 mcλ   that for bario-
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nic particles with mass ( )30 2710 kg− ÷∼m , it is enough  
2

120 180410 K 10 KT
mk

− −∼


 ) and the resulting classical universe can be divided  

in sub-parts (the Newtonian limit of gravity is sufficiently weak force for satisfy-
ing condition (3.5)), we can define the super-system made up of the system and 
the environment.  

At this stage, we can disregard the vacuum fluctuations associated to the dark 
matter (i.e., 0nδ = ) and consider the Markovian process (2.3.7) 

i
pq
m

= ,                         (C.1)
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1 2nquq

i t
j

V V
p m D

q
κ ξ

∂ +
= − +

∂


 ,              (C.2) 

In presence of the quantum potential the evolution of the MDD 

( ) 0, lim n totq tn nδ →=  due to the stochastic motion Equation (2.3.7)) depends by the 
exact sequence of the force inputs of the Marcovian noise.   

On the other hand,, the probabilistic mass density (PMD) ( ), ,q p tN  of the 
Smoluchowski equation  

( )( )
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0 0 0 0

3 3
0 0 0 0
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, , , | , , , , | , d d

P q p q p t t t

P q p q p t P q p q p t t t q p

τ

τ
∞

−∞

′ + −

′ ′ ′ ′ ′ ′ ′ ′= −∫
      (C.3) 

for the Marcovian process (2.3.7) (where the PTF ( ), | ,P x z tτ  represents the 
probability that an amount of the PMD) ( ), ,q p tN  at time t, in a temporal interval 
τ, in a point ( )0 0,z q p= , transfers itself to the point ( ),x q p=  [47]) is some-
how indefinite since the quantum potential depends by the exact sequence of the 
inputs of the force noise. 

Even if the connection between ( ),q tn  and ( ),n q t  cannot be generally war-
ranted, the approximation (B.10) that reads 

( )

2 2 1 2 2
1 2

11 2
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2 t

n n mD A q
m q q q n q qnα β β β β

ξ
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,       (C.4)
 

introduces the linkage between ( ),q tn  and  

( ) ( )
3

, , , dq t q p tn p
+∞

−∞

= ∫ N                     (C.5) 

leading the motion equation  

( )

( ) ( )( )
( )

1 2n

t

quq

i j t
j

V V
p m q m D

q
κ κ ξ

∂ +
= − − +

∂
             (C.6) 

It is worth mentioning that the applicability of (C.6) is not general but it is 
strongly subjected to the condition of being applied to small scale systems with 

cλL  that admit stationary states ( 0qα = ) whose MDD is sufficiently close to 
that of the deterministic eigenstates (i.e., small force noise amplitude) for which it 
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is possible to assume that the collection of all MDD ( ), ,q p tn  configurations will 
reproduce the PMD ( ),n q t  such as 

( ) ( )

2

2

1lim d

tt

tq q
tt

n n n
t

τ

∆

∆ →∞
∆

−

= =
∆ ∫                  (C. 7) 

This assumption is at the basis of the relation (C,4) that expresses the connec-
tion between the PMD n and the MDD n  (i.e., the information about n  can 
be obtained by knowing n and qα ).  

Besides, if the system is sufficiently close to the deterministic limit of the 
quantum mechanics (for which cλL  (i.e., very small force noise amplitude) it 
is a sufficient condition) and it owns (irrotational [31]) stationary states (i.e., qua-
si-eigenstates) so that it is still quantum and. the action function S (as integral of  

the momentum field) exists, we have that 1 Sq
m qα

α

∂
=

∂
  and n  can be defined 

by knowing n and S. 
C.1. The conservation equation of the Smolukowski equation in presence 

of the quantum potential 
By using the method due to Pontryagin [47] the Smolukowski equation leads to 

the differential conservation equation for the PTF ( ), | ,P q z tτ   
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P P

t x
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∂ ∂

V
,                 (C.1.1) 

where the current ( ), | ,0i ix z tJ P= V  is given by the series of cumulants 
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and where 
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being 
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.(C.1.5) 

Moreover, for one particle problem or many decoupled particle system (e.g., 
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linear oscillators)) it is possible the diagonal description 
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C.2.1. The non-Gaussian PTF generated by the quantum potential 
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V
,            (25)(C.2.1.1)

  

where the current ( ), | ,0i ix z tJ P= V  is given by the series of cumulants [47] 
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where 

( ) ( ) ( ) ( ) ( )1 11

3
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1lim d
n nn
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i i m m m mim m y q tC y q y q y q P yτ ττ→= − − −∫


 (C.2.1.4)

 

that owns an infinite number of terms due to the presence of the quantum poten-
tial.  

If on one hand, the continuity of the Hamiltonian potential warrants that ve-

locities 
( )i iy q

τ
−

 are finite and ( )
1

0
n

n
im mC →


 on very short time increment, on  

the other hand, since the quantum potential depends by the derivatives of ( ),q tn , 
it can lead to very high values of force also in the limit of very short time incre-
ment so that very far away points ( )i iy q−  can contribute to the probability 
transition function ( )| ,P y q tτ,  and the cumulants higher than two cannot be 
disregarded in (C.2.1.3). 

Thence, being the cumulants higher than two non-vanishing, the PTF 
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( ), | ,P q z tτ  is not Gaussian and. and equation (C.1.1) does not reduce to the 
FPE.  

C.3. The motion equation for the spatial densities  
By integrating over the momenta, the conservation equation  

( ) ( )

( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

1
, , , ,

2, , , ,

1
, , , ,

2

-terms

, , , ,

1 1
2 !

1 1
2 !

i

i

nn
im im lq p t q p t

nm m liq p t q p t

i i

nn
im im lq p t q p t

nm m l

n

q p t q p t
t x

C C

x n x xx

t x x

C C

x n x x
pq

t q p
βα

α β

∞

=

∞

=

∂ ∂
+

∂ ∂

 ∂ ∂
 ∂ + +
 ∂ ∂ ∂∂ ∂  = + +

∂ ∂ ∂

 
∂ ∂

∂ + +
∂ ∂ ∂∂∂∂  = − − +

∂ ∂ ∂

∑

∑





















N N V

N N

N N

N N

NNN 0
ix




=

∂

(C.3.1) 

( )

( )

( )

( )
( )

( )

, | ,0 , | ,0

2, | ,0 , | ,0

2 -terms

1 1
2 !

kk
im im lx z t x z t

i i
hm m lx z t x z t

k

D P C P
x

P x n P x x

∞

=

∂ ∂ 
= = − + +  ∂ ∂ ∂ 

∑ 












Q
V

P
 (C.3.2) 

( )
( )( )

t
i quq

q
q

x V Vp mq
q

β
β

α

α

 
   

=   = ∂ +  = −    ∂ 







 

             (C.3.3) 

( )
( )( )

( )
1 2

t
i quq

p t

p m
q

x V Vp mq D
q

β
β

α
α

α

ξ

 
   

= = ∂ +    = − +    ∂ 





 

         (C.3.4) 

where 

( ) ( ) 3
, , , d h
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we obtain 
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that with the condition ( ), ,lim 0p q p t→∞ =N  and by posing 
3
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leads to 
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gives the compressibility of the mass density distribution that is linked to the 
generation of entropy and quantum dissipation. Thence, Equation (C.3.9) can 
read 

( ),q tdiss
n n q n q Q
t q qα α

α α
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= + +

∂ ∂ ∂
               (C.3.12) 
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